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Abstract 15 

A maternal diet that provides adequate nutrition during pregnancy and lactation is vital to the 16 

neurodevelopment of offspring. One-carbon metabolism plays an important role in the closure of the 17 

neural tube of the developing embryo; however, the impact of maternal one-carbon dietary deficiencies 18 

on offspring neurological function later in life remains relatively unknown. Stroke is one of the leading 19 

causes of death globally, and its prevalence is expected to increase in younger age groups as the 20 

incidence of various risk factors for stroke increases. The aim of our study was to determine the impact 21 

of maternal nutritional deficiencies on cerebral blood flow and peripheral hemodynamics after 22 

ischemic stroke in adult offspring. In this study, adult female C57BL/6J mice were placed on either 23 

control (CD), choline (ChDD) or folic acid (FADD) deficient diets for four weeks to deplete stores 24 

prior to mating and maintained on the assigned diet during pregnancy and lactation. Female offspring 25 

were weaned and transitioned to a CD for the duration of the study. Ischemic stroke was induced in the 26 

sensorimotor cortex of 2- and 10-month-old female offspring using the photothrombosis model. Six 27 

weeks after induction of stroke, cerebral and peripheral blood flow was measured using the Vevo2100 28 

Pulse Wave Doppler tracing modality. Our data showed that 3.5-month-old female offspring from a 29 

ChDD mothers had reduced blood flow in the posterior cerebral artery compared to CD mice; this 30 

effect disappeared in older offspring. In 11.5-month-old females we observed changes in peripheral 31 

hemodynamics, but not in young animals. Our findings suggest that a maternal dietary deficiency in 32 

choline results in reduced cerebral blood flow in adult female offspring after ischemic stroke, but the 33 

long-term effects are not present. This result points to the key role of the maternal diet in early life 34 

neuro-programming, while emphasizing its effects on both fetal development and long-term 35 

cerebrovascular health.  36 

1 Introduction  37 

Maternal nutrition during pregnancy and lactation is recognized as a critical factor determining 38 

the health of offspring (1–5). Early life nutritional cofactors are critical for typical fetal development, 39 

but also in determining offspring disease outcome (6,7). The Developmental Origins of Health and 40 

Disease (DOHaD) theory suggests that prospective chronic diseases are programmed in utero (8–11). 41 

When already compensating for fetal nutrient accumulation and increased maternal metabolic demands 42 

(12), altered or insufficient maternal nutrition impacts both early development and future offspring 43 

health. In offspring, maternal dietary deficiencies have been associated with ventricular septal defects 44 

(13) and impaired glucose tolerance (14), as well as modified neural tube closure (15,16) and 45 

neurocognitive development (17–21). Beyond this evidence of suboptimal structural development in 46 

offspring, maternal nutritional deficiencies have been linked to programming of offspring metabolic 47 

(22) and epigenetic (23–28) adaptations, thereby predisposing that individual to life-long 48 

cardiovascular, metabolic, and neuroendocrine dysfunction.  49 

Epidemiological studies have demonstrated the effect of maternal diet on lifelong cardiovascular 50 

and neurological function (29–31). Most of this population-level work reveals an effect of poor 51 

maternal health on birthweight and incidence of disease and cardiovascular risk factors in adulthood, 52 

such as hypertension and hyperlipidemia (4,10). Such relationships have been shown in numerous 53 

global populations and are apparent from birth through early childhood (32). Folate and choline are 54 

important players in healthy fetal neurodevelopment due to their involvement in the closure of the 55 

neural tube and are components of one-carbon metabolism (33,34). Folate and its chemically 56 

synthesized form folic acid are important for fetal neurodevelopment (35), as folate requirements 57 

during pregnancy are increased by 5- to 10-fold compared to non-pregnant women (36). Maternal 58 

folate and choline levels during pregnancy have also been shown to be important in the development 59 
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of the cerebellum and hippocampus (37), as well as affecting postnatal myelination trajectories (38), 60 

short-term memory (39), hyperactivity/attention (40), neurocognitive development (41), and risk of 61 

autism spectrum disorder (ASD) (42).  62 

Recent work in rodent models has improved mechanistic understanding of how maternal levels 63 

of folate and choline impact neurodevelopmental processes (43). Akin to human epidemiological 64 

studies (29–31), murine maternal folate deficiencies have been implicated in adverse reproductive 65 

performance, implantation, and fetal growth (44). During pregnancy and lactation, maternal dietary 66 

folic acid availability has been shown to influence progenitor cell mitosis, and apoptosis in the fetal 67 

mouse forebrain (45) and hippocampus (39). Investigations of maternal perinatal folate deficiencies 68 

have revealed reduced hippocampal proliferation, impaired vesicular transport and synaptic plasticity, 69 

as well as poor neurite outgrowth (46), modified cellular neocortex composition, and diminished 70 

complexity and arborization of projection neurons (47) in offspring. In addition to these structural 71 

observations, both genetic and epigenetic modifications have been observed; maternal folate 72 

deficiencies reduced expressions levels of brain derived neurotropic factor (BDNF) and H3K9me2 in 73 

the fetal hippocampus, and  folic acid deficiency for two generations, significantly enhancing de novo 74 

mutations accumulation during meiosis (48). Choline, another one-carbon cofactor implicated in a 75 

number of diverse biological processes (49), has yielded variable results in animal models of 76 

neurodevelopment. Effects of maternal choline deficiencies, such as defective layering of the cortex, 77 

reduced cortical size and brain weight (50), and modified hippocampal electrophysiology (51) and 78 

neurogenesis (52), have been observed in offspring. Beyond these physiological, and histological 79 

findings, choline and folate deficiencies have been shown to elicit similar adverse effects, such as 80 

impaired homocysteine remethylation, oxidative stress, and endothelial dysfunction in murine 81 

cerebrovasculature (59,60); effectively demonstrating the link between maternal one-carbon cofactors 82 

and typical fetal neurodevelopment.  83 

The link between maternal nutrition and fetal development is abundantly clear, but the long-84 

term effects of maternal nutritional deficiencies on adult offspring are less well-studied. Investigating 85 

the links between cerebral and peripheral blood flow and the maternal environment will improve our 86 

understanding of dietary requirements during pregnancy and provide information on the role of 87 

maternal nutrition in early life programming of adult neurovascular diseases, such as ischemic stroke. 88 

Stroke is among the leading causes of death globally and its prevalence as a major health concern is 89 

predicted to increase, as the global population ages and demographics of populations change (53,54). 90 

One of the many reasons these problems exist is that the majority of preclinical studies are targeted 91 

only towards male subjects (55). Over 90% of preclinical studies use strictly male mice whereas all 92 

clinical studies use equal part male and female participants (55,56). This makes clinical pharmaceutical 93 

findings favor better outcomes in males (57,58).  The aim of this study was to determine the impact of 94 

perinatal maternal nutritional deficiencies in folic acid or choline on cerebral and peripheral (cardiac 95 

and aortic) hemodynamics flow after ischemic stroke in adult and mid-age female offspring.  96 

2 Materials and Methods 97 

2.1 Experimental Design 98 

All animal experimentation was performed following approval by the Midwestern University 99 

Institutional Animal Care and Use Committee in accordance with animal welfare guidelines.  100 

Experimental manipulations are summarized in Figure 1. Briefly, for the maternal cohort (n = 30) 101 

female and (n = 30) male C57BL/6J mice were purchased from Jackson Laboratories and acclimatized 102 

for one week to controlled housing conditions (22 ± 1°C, 12h-light/12h-dark cycle) with ad libitum 103 
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access to food and water (RRID: IMSR_JAX:000664, Jackson Laboratories). At two months of age 104 

(Day 0), females were randomized to control (CD, TD.190790), and commercially (Envigo) prepared 105 

folic acid (FADD, TD.01546) or choline deficient (ChDD, TD.06119) diets and maintained on these 106 

diets for four weeks prior to mating, and later throughout pregnancy and lactation (Figure 1). Levels 107 

of folic acid and choline bitartrate in experimental diets are listed in in Table 1 (39,59–61). 108 

After weaning, female offspring were maintained on the CD ad libitum. Offspring were randomized to 109 

one of two cohorts undergoing photothrombotic (PT) stroke at either 2- or 10-months of age, followed 110 

by ultrasound measurements at 1.5 months post-stroke.  111 

 112 

Figure 1. Experimental timeline. Beginning at 2-months-of age female mice were fed either control 113 

(CD), folic acid (FADD) or choline (ChDD) deficient diets. The female mice were maintained on these 114 

diets throughout the pregnancy and lactation until the offspring were weaned. Once the offspring were 115 

weaned, they were fed the CD. Separate cohorts of female offspring at 2 or 10 months of age had 116 

ischemic stroke induced via the photothrombosis (PT) model. At 3.5 (CD, n = 6 ; FADD, n = 7 ; ChDD, 117 

n = 6) and 11.5 (CD, n = 6 ; FADD, n = 6; ChDD, n = 6) months of age all female mouse offspring 118 

underwent ultrasound imaging (U). 119 

Table 1. Experimental Diets. Concentration (in milligrams/kilogram) of folic acid and choline 120 

bitartrate in control (CD), folic acid-deficient (FADD), and choline-deficient (ChDD) diets fed to 121 

mothers throughout pregnancy and lactation.  122 

  Diet 

 Control FADD ChDD 

Folic Acid (mg/kg) 2 0.3 2 

Choline Bitartrate (mg/kg) 1150 1150 300 

 

 
   

2.2 Photothrombosis  123 

When female offspring reached 2 or 10 months of age, ischemia was induced using the 124 

photothrombosis model. They were anesthetized with isoflurane (1.5%) in a 70:30 nitrous 125 

oxide:oxygen mixture. Core body temperature was monitored with a rectal thermometer (Harvard 126 

Apparatus) and maintained at 37 ± 0.2 ºC using a heating blanket. 10 mg/kg of the photosensitive Rose 127 

Bengal dye was injected intraperitoneally 5 minutes prior to irradiation. A 532 nm green laser was 128 
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placed 3 cm above the animal and directed to the sensorimotor cortex  (mediolateral + 0.24mm) for 15 129 

minutes (59,62–64).  130 

 131 

2.3 Ultrasound imaging 132 

Approximately 1.5 months after ischemic stroke, Vevo® 2100 ultrasound imaging system (FUJIFILM, 133 

Visual Sonics) was used to assess offspring in vivo cerebral (Figure 2A) and peripheral vascular 134 

function as previously reported (65,66). Measurements were completed in random order by 135 

investigators blinded to treatment groups. The high-frequency, high-resolution ultrasound system is 136 

equipped with a 40 MHz transducer (MS550S) with a focal length of 7.0 mm, frame rate of 557 fps 137 

(single zone, 5.08 mm width, B-mode), and a maximum two-dimensional field of view of 14.1×15.0 138 

mm with a spatial resolution of 90 μm lateral by 40 μm axial.  139 

Mice were anesthetized in an induction chamber with 3% isoflurane and 1 L/min flow of 100% oxygen 140 

for 1–2 mins, then placed supine on a heated platform and maintained with 1.5–2% isoflurane. Heart 141 

rate, electrocardiogram (ECG), and respiratory rate were measured by the four ECG electrodes 142 

embedded in the platform. Using a heat lamp and heated platform, body temperature was maintained 143 

at 36–38°C and monitored by a rectal probe throughout.  144 

The left ventricular (LV) structural and functional parameters, including stroke volume, ejection 145 

fraction, fractional shortening, and cardiac output, were calculated from the LV parasternal short-axis 146 

M-mode view and recorded at the level of two papillary muscles. An M-mode cursor was positioned 147 

perpendicular to the anterior and posterior walls in the middle of the LV for measuring wall thickness. 148 

Interventricular septal wall (IVS) thickness during diastole (IVSd) and systole (IVSs) were also 149 

obtained from LV parasternal long-axis M-mode view.  150 

Aortic diameters at the annulus, sinuses of Valsalva, and sinotubular junctions were measured from 151 

the B-mode aortic arch view. Ascending and descending aortic, and posterior cerebral artery (PCA) 152 

peak velocities were measured from the pulse wave (PW) Doppler-mode. Pulse wave velocity (PWV) 153 

was obtained from the B-mode and Doppler-mode aortic arch view, calculated as PWV (mm·s−1) = 154 

aortic arch distance (d2-d1)/transit time (T1-T2). The PW Doppler mode sample volume was placed 155 

in the ascending aorta to verify the time from the onset of the QRS complex to the onset of the 156 

ascending aortic Doppler waveform (T1). Using the same image plane, the time from the onset of the 157 

QRS complex to the onset of the descending aortic Doppler waveform (T2) was also measured, and 158 

the average values for T1 and T2 over 10 cardiac cycles were calculated. Furthermore, the aortic arch 159 

distance was measured between the two sample volume positions along the central axis of aortic arch 160 

on the B-mode image.  161 

Transcranial Doppler sonography is a non‐invasive, non‐ionizing, inexpensive, portable, and safe technique that 162 
uses a pulsed Doppler transducer for assessment of intracerebral blood flow in the clinical practice (67,68) and 163 
has become an important translational tool to evaluate the intracerebral blood flow in animal models.  164 
 165 
The posterior cerebral artery (PCA) peak blood flow was measured using the Vevo 2100 high-resolution 166 
ultrasound system and the 24MHz (MS250) transducer. The trans occipital window was used to visualize the 167 
posterior cerebral arteries and pulsed wave (PW), Doppler-mode was used to measure the PCA peak blood flow 168 
velocity.   169 

 170 

 171 
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 172 

2.4 Statistics  173 

Ultrasound data was analyzed by two individuals that were blinded to experimental treatment groups 174 

using Vevo Lab ultrasound analysis software (VisualSonics, Toronto, Canada). Using GraphPad Prism 175 

9.0., One-way ANOVA analysis was performed to analyze maternal dietary effects, and two-way 176 

ANOVA analysis was performed to assess aging effects. Significant main effects of two-way ANOVAs 177 

were followed up with Tukey’s post-hoc test to adjust for multiple comparisons. All data are presented 178 

as mean + standard error of the mean (SEM). Statistical tests were performed using a significance level 179 

(P) of 0.05. 180 

3 Results  181 

Cerebral blood flow in offspring after ischemic stroke  182 

In 3.5-month-old offspring, there was a statistically significant difference in blood flow velocity within 183 

the posterior cerebral artery between maternal dietary groups (Figure 2B; F [2, 15] = 4.07, p = 0.04). 184 

Female offspring of ChDD mothers had significantly impaired blood flow velocity in the PCA 185 

compared to offspring from the CD group (p = 0.04). A maternal FADD reduced blood flow velocity 186 

in female offspring, but this did not reach significance (p = 0.14). In 11.5-month-old offspring, no 187 

statistically significant differences in cerebral blood flow velocity were observed between maternal 188 

diet groups (Figure 2C; F [2, 13] = 4.07, p = 0.08). 189 

 190 

 191 

Figure 2. (A) Visual 192 

representation of mouse 193 

cerebral vasculature, 194 

posterior cerebral artery 195 

(PCA) and location of 196 

ischemic stroke. Blood 197 

flow velocity in the 198 

PCA after ischemic 199 

stroke in 3.5- (B) and 200 

11.5- (C) month-old 201 

female offspring from 202 

control (CD), folic acid 203 

(FADD) and choline 204 

(ChDD) deficient diet 205 

mothers. Scatter plot 206 

with mean ± SEM of 5 207 

to 7 mice per group. * p 208 

< 0.05, Tukey’s 209 

pairwise comparison. 210 

 211 

 212 
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 213 

Cardiac/Aortic (Peripheral) hemodynamics in offspring after ischemic stroke 214 

In 3.5-month-old offspring, no differences in cardiac/aortic (peripheral) hemodynamics were observed 215 

between maternal diet groups (Table 2). In 11.5-month-old offspring, there was a statistically 216 

significant difference in the coronary artery velocity ratio between maternal diet groups (Table 3; F (2, 217 

13) = 4.07, p = 0.08). Female offspring of FADD mothers had a significantly increased 218 

systolic/diastolic ratio in the coronary artery compared to controls.  219 

Table 2. Descriptive statistics (Mean ± SEM) of peripheral hemodynamics in 3.5-month-old female 220 

mouse offspring by maternal diet. Maternal diets included a control diet (CD), a folic acid deficient 221 

diet (FADD), and a choline deficient diet (ChDD). Mean ± SEM of 5 to 7 mice per group. 222 

 Maternal Diet  

Measurement CD FADD ChDD p-value 

Average Heart Rate (BPM) 494.2 ± 13.23 504.5 ± 12.68 513.0 ± 9.55 0.57 

Average Stroke Volume (uL) 24.04 ± 2.54 28.67 ± 2.17 25.26 ± 2.06 0.33 

Average Ejection Fraction (%) 86.57 ± 4.24 84.68 ± 3.09 86.46 ± 2.3 0.90 

Average Fractional Shortening (%) 57.94 ± 6.28 53.89 ± 3.67 54.89 ± 3.13 0.81 

Average Cardiac Output (mL/min) 11.77 ± 1.04 14.43 ± 1.08 12.94 ± 1.03 0.22 

Coronary Artery Velocity Ratio (S/D) 0.34 ± 0.05 0.29 ± 0.02 0.36 ± 0.14 0.40 

Aortic Pulse Wave Velocity (mm·s−1) 1.23 ± 0.24 3.52 ± 1.95 4.24 ± 3.28 0.57 

Left Internal Diameter in Systolic (IVSs) 173.7 ± 28.62 163.7 ± 18.58 125.4 ± 19.83 0.42 

Left Internal Diameter in Diastolic (IVSd) 531.2 ± 83.17 574.5 ± 45.33 361.9 ± 53.26 0.11 

 223 

Table 3. Descriptive statistics (Mean ± SEM) of peripheral hemodynamics in 11.5-month-old female 224 

mouse offspring by maternal diet. Maternal diets included a control diet (CD), a folic acid deficient 225 

diet (FADD), and a choline deficient diet (ChDD). Mean ± SEM of 5 to 7 mice per group. 226 

 Maternal Diet 

Measurement CD FADD ChDD p-value 

Average Heart Rate (BPM) 524.8 ± 8.82 531.4 ± 4.02 531.3 ± 6.02 0.64 

Average Stroke Volume (uL) 23.55 ± 4.55 37.47 ± 5.56 38.24 ± 2.08 0.05 

Average Ejection Fraction (%) 84.88 ± 3.55 85.05 ± 2.85 74.93 ± 4.24 0.10 

Average Fractional Shortening (%) 53.65 ± 4.18 53.92 ± 3.88 43.70 ± 4.04 0.11 

Average Cardiac Output (mL/min) 20.32 ± 0.78 19.91 ± 2.97 20.28 ± 0.96 0.90 

Coronary Artery Velocity Ratio (S/D) 0.27 ± 0.02 0.39 ± 0.04 0.28 ± 0.02 0.04* 

Aortic Pulse Wave Velocity (mm·s−1) 3.28 ± 0.46 5.52 ± 2.83 6.11 ± 2.28 0.52 

Left Internal Diameter in Systolic (IVSs) 90.72 ± 29.49 159.3 ± 27.05 167.5 ± 26.45 0.18 

Left Internal Diameter in Diastolic (IVSd) 663.0 ± 72.03 427.8 ± 62.76 545.6 ± 58.14 0.10 
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 227 

The impact of aging on cerebral blood flow and cardiac/aortic hemodyamics 228 

We compared the 3.5 and 11.5-month female cerebral and cardiac/aortic (peripheral) hemodynamics 229 

measurements (Table 4).  For fractional shortening and end systole septal diameter, no differences were 230 

observed between experimental groups. However, further analysis revealed significant effects on other 231 

peripheral hemodynamic measures. Main effects of diet (p = 0.03) and offspring age (p = 0.001) were 232 

observed for average heart rate. While exclusively offspring age effects were observed for ejection 233 

fraction (p = 0.01), cardiac output (p < 0.0001), and pulse wave velocity (p < 0.0001). Finally, 234 

significant interaction effects were observed for stroke volume (p = 0.03), coronary artery velocity 235 

ratio (p = 0.02), and end diastole septal diameter (p = 0.04).  236 

  237 
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Table 4. Descriptive statistics (Mean ± SEM) of central and peripheral blood flow in 3.5 and 11.5-238 

month-old female mouse offspring. Maternal diets included a control diet (CD), a folic acid deficient 239 

diet (FADD), and a choline deficient diet (ChDD). Mean ± SEM of 5 to 7 mice per group. 240 

  Offspring Age p-values 

Measurement Maternal Diet 3.5 months 11.5 months Diet Age Diet x Age 

Posterior 

Cerebral 

Artery 

(mm/s) 

CD 

FADD 

ChDD 

147.74 +10.24 

 

136.43 + 8.78 

109.74 + 4.38 

122.37 _ 9.24 

146.27 + 21.01 

99.62 + 8.4 

0.009 0.37 0.30 

Average Heart 

Rate (BPM) 

CD 474.53 ± 15.19 524.78 ± 8.82 

0.03* 0.001* 0.1374 FADD 515.96 ± 5.84 531.42 ± 4.02 

ChDD 511.16 ± 11.30 531.30 ± 6.02 

Average 

Stroke Volume 

(uL) 

CD 24.04 ± 2.54 23.55 ± 4.55 

0.2744 0.2319 0.03* FADD 28.67 ± 2.17 37.47 ± 5.56 

ChDD 25.26 ± 2.06 38.24 ± 2.08 

Average 

Ejection 

Fraction (%) 

CD 86.58 ± 4.24 84.88 ± 3.55 

0.1638 0.009* 0.2929 FADD 84.68 ± 3.09 73.10 ± 4.61 

ChDD 86.46 ± 2.30 74.05 ± 2.49 

Average 

Fractional 

Shortening 

(%) 

CD 57.94 ± 6.28 53.65 ± 4.18 

0.3924 0.1811 0.4998 FADD 53.89 ± 3.67 53.92 ± 3.88 

ChDD 54.89 ± 3.13 43.70 ± 4.04 

Average 

Cardiac 

Output 

(mL/min) 

CD 11.77 ± 1.04 20.32 ± 0.78 

0.7197 <0.0001* 0.5400 FADD 14.43 ± 1.08 19.91 ± 2.94 

ChDD 12.94 ± 1.03 20.28 ± 0.96 

Coronary 

Artery 

Velocity Ratio 

(S/D) 

CD 0.32 ± 0.04 0.27 ± 0.02 

0.3813 0.9454 0.02* FADD 0.29 ± 0.02 0.39 ± 0.04 

ChDD 0.36 ± 0.07 0.28 ± 0.02 

Pulse Wave 

Velocity 

(mm·s−1) 

CD 1.23 ± 0.24 3.29 ± 0.46 

0.8061 <0.0001* 0.1498 FADD 1.58 ± 0.18 2.71 ± 0.36 

ChDD 0.97 ± 0.18 3.92 ± 0.74 

Left Internal 

Diameter in 

Systolic 

(IVSs) 

CD 173.72 ± 28.62 180.53 ± 24.50 

0.4980 0.4745 0.6540 FADD 163.72 ± 18.58 159.27 ± 27.05 

ChDD 125.35 ± 19.83 167.50 ± 26.45 

Left Internal 

Diameter in 

Diastolic 

(IVSd) 

CD 531.18 ± 83.17 662.98 ± 72.03 

0.1063 0.3048 0.03* FADD 574.46 ± 45.33 427.78 ± 62.76 

ChDD 361.92 ± 53.26 545.59 ± 58.14 

 241 
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4. Discussion 242 

The Developmental Origins of Health and Disease (DOHaD) theory suggests that prospective chronic 243 

diseases are programmed in utero- giving rise to programming of offspring cardiovascular, metabolic, 244 

and neuroendocrine dysfunction (8–11). Despite impressive evidence of the importance of the maternal 245 

environment for fetal growth and development, there have been few investigations surrounding the 246 

effects of maternal nutrition on cerebrovascular function in fully developed or adult offspring. Using 247 

an experimental model of ischemic stroke, our study aimed to determine the impact of perinatal 248 

maternal nutritional deficiencies in 1C metabolites on measures of cerebral and peripheral blood flow 249 

and cardiac function in offspring, following ischemic injury. Our results demonstrate a significant 250 

impairment in cerebral blood flow velocity following stroke in 3.5-month-old, but not 11.5-month-old 251 

offspring from choline-deficient mothers. However, 11.5-month-old offspring from folic acid-deficient 252 

mothers did display a significant increase in peripheral hemodynamic measures, including the coronary 253 

artery velocity ratio. Effects of both diet and offspring age, as well as interactions between these 254 

variables were observed for numerous peripheral indices.  255 

The neurovascular unit (NVU) is comprised of a number of unique neuronal, glial, and endothelial cell 256 

types, and recent findings indicate unique cross-talk between neurons and the cerebral vasculature (69–257 

72), emphasizing the complex, pivotal role the NVU plays during development and in the progression 258 

of neurovascular pathologies like ischemic stroke and neurodegenerative disorders (73–78). Further, 259 

the NVU is responsible for the maintenance of a highly selective blood–brain barrier (BBB) and 260 

cerebral homeostasis, as well as the control of cerebral blood flow (CBF) (79). The impact of maternal 261 

diet on the NVU, modulating integrity of cerebral blood vessels and closure of the neural tube, has 262 

been established (15,16,80–82). Our study adds to these investigations by assessing the hemodynamic 263 

response of blood flow within the posterior cerebral artery (PCA) in both young and aged offspring. 264 

The contralesional PCA was selected as an index of cerebral blood flow due to its spatial and functional 265 

independence from the sensorimotor cortex targeted during photothrombotic stroke (83), and evident 266 

correlation to measures of the Middle Cerebral Artery (MCA) (84).  267 

In line with studies detailing the impact of maternal choline on neurovascular development (16), our 268 

results suggest that maternal choline levels during pregnancy and lactation impair cerebral blood flow 269 

in young mice following ischemic stroke. In rodent models, the importance of choline for optimal 270 

neurodevelopment is well-established (85,86). Recent work has examined the role of choline in 271 

neurovascular interactions as well, modulating levels of anti-angiogenic factors during gestation (87), 272 

fetal hippocampal angiogenesis (37), and promoting the proliferation of rat endothelial cells following 273 

hypoxic injury in cerebral vessels (88). In this way, choline has been shown to influence neurovascular 274 

health across the lifespan and may be implicated in both neurovascular structure and functional 275 

response to injury. The cardiovascular system has also demonstrated effects of choline deficiency, 276 

including heart defects (89,90), while higher intake of choline was associated with reduced risk of adult 277 

cardiovascular disease (91) and amelioration of impaired vagal activity and inflammation in 278 

hypertensive rodents (92). Our study revealed a diet effect of both maternal choline and folic acid, 279 

where deficiencies in either nutrient significantly increased offspring heart rate, regardless of offspring 280 

age. While heart rate is a well-known risk factor for cardiovascular disease, our results align well with 281 

recent findings associating low heart rate with better functional and cognitive outcomes following 282 

ischemic stroke (93) and high heart rate with impaired endothelial function and increased ischemic 283 

lesion size following stroke (94), as well as death due to vascular diseases (93). Overall, maternal diet 284 

has an established developmental influence on basic measures of cardiovascular and neurovascular 285 

health, and may impact offspring programming of the NVU, thereby influencing stroke protection via 286 

endothelial homeostasis via endothelial NO synthase (eNOS) (95,96). 287 
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We did not observe an effect of maternal diet on cerebral blood flow in 11.5-month-old offspring. This 288 

could be due to the well-investigated aging-associated changes in the structural and functional integrity 289 

of the vasculature (97–101). Therefore, we propose that the difference in effect between young 290 

(3.5m.o.) and old (11.5m.o.) offspring is a result of the aging of the control mice. In addition, the 291 

presumed damage or endothelial dysfunction induced by the deficient diets is long-lasting and may 292 

contribute to premature aging, generating a mathematically significant difference when compared to 293 

young, healthy controls, but only a minor difference when compared to senescent offspring displaying 294 

similar levels of vascular dysfunction. This result is supported by the interaction effect of diet and 295 

offspring age and requires further investigation. In addition, unique mechanisms drive vascular 296 

senescence in males and females (102), so our results may be obscured by our study of exclusively 297 

female mice. Another interesting result from our study is the significance of the coronary artery 298 

velocity (S/D) ratio in 11.5-month-old offspring. In this assessment, folic acid significantly increased 299 

the ratio, as occurs with moderate coronary atherosclerosis (103). This result may indicate 300 

cardiovascular impairment related to a maternal diet deficient in choline. However, because the 301 

incidence of coronary artery disease (CAD), valvular disease, rhythm disorders, and heart failure 302 

increases with age (104), it appears that folic acid may play a role in programming resistance to this 303 

age-related dysfunction.  304 

Outside of heart rate, which is discussed above, age effects were observed for offspring ejection 305 

fraction, cardiac output, and pulse wave velocity. Ejection fraction, an index of the left ventricular 306 

output, has recently been used as a measure of cardiac mortality risk (105), with lower percentages 307 

indicating cardiac dysfunction. In our study, older mice displayed a significantly reduced ejection 308 

fraction, indicating cardiovascular impairment. In a similar manner, our cardiac output data indicate 309 

the expected increased cardiac dysfunction as a product of aging (106). Aortic pulse wave velocity 310 

(PWV) was also found to be significantly increased on the older cohort, in line with clinical findings 311 

(107). Finally, interactions between maternal folic acid deficiency and offspring age were found for 312 

the coronary artery velocity S/D ratio, an indicator of coronary atherosclerosis, and interventricular 313 

septal end diastole (IVSd), an indicator of ventricular hypertrophy.  314 

Overall, our data points to the need for rodent models spanning a variety of ages for research in age-315 

related diseases such as stroke and vascular dysfunction. We recognize that the exclusion of male 316 

subjects in this study may limit our ability to draw conclusions with respect to the impact of sex 317 

hormone in observed phenomenon. In future studies, we plan to include male animals, and design 318 

experiments that would allow us to investigate the role of paternal dietary effects. Additionally, we 319 

plan to further age animals to ~20mo after ischemic stroke as well as investigate the role of over 320 

supplementation on blood flow after stroke. A detailed analysis of angiogenesis after ischemic stroke 321 

might also be prudent. In conclusion, 1C metabolism metabolites have potentially compensatory, but 322 

unique roles. Maternal nutrition during pregnancy and lactation has effects, even after infancy and 323 

childhood. Our work demonstrated an age effect in animal models encourages further comprehensive 324 

longitudinal time-point studies that includes older age animals.  325 
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