
 

 1 

Alternative stable states, nonlinear behavior, and 1 

predictability of microbiome dynamics 2 

 3 

Hiroaki Fujita1*, Masayuki Ushio1,2, Kenta Suzuki3, Masato S. Abe4, Masato Yamamichi5,6, 4 

Koji Iwayama7, Alberto Canarini1, Ibuki Hayashi1, Keitaro Fukushima8, Shinji Fukuda9,10,11, 5 

E. Toby Kiers12, and Hirokazu Toju1* 6 

 7 

1Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan 8 

2Hakubi Center, Kyoto University, Kyoto 606-8501, Japan 9 

3Integrated Bioresource Information Division, BioResource Research Center, RIKEN, 10 

Tsukuba, Ibaraki 305-0074, Japan 11 

4Center for Advanced Intelligence Project, RIKEN, Tokyo 103-0027, Japan 12 

5School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 13 

4072, Australia 14 

6Department of International Health and Medical Anthropology, Institute of Tropical 15 

Medicine, Nagasaki University, Nagasaki 852-8523, Japan 16 

7Faculty of Data Science, Shiga University, Hikone 522-8522, Japan 17 

8Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, 18 

Fukushima, Fukushima 960-1296, Japan. 19 

9Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan. 20 

10Gut Environmental Design Group, Kanagawa Institute of Industrial Science and 21 

Technology, Kawasaki, Kanagawa 210-0821, Japan. 22 

11Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, 23 

Japan. 24 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.23.505041doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.505041
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

12Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, the 25 

Netherlands 26 

 27 

Correspondence and requests for materials should be addressed to H.F. (email: 28 

fujita.h@ecology.kyoto-u.ac.jp) or H.T. (email: toju.hirokazu.4c@kyoto-u.ac.jp). 29 

 30 

This article includes 6 Figures, and 10 Extended Data Figures.  31 

 32 

Abstract  33 

Microbiome dynamics are both crucial indicators and drivers of human health, agricultural 34 

output, and industrial bio-applications. However, predicting microbiome dynamics is 35 

notoriously difficult because communities often show abrupt structural changes, such as 36 

“dysbiosis” in human microbiomes. We here integrate theoretical and empirical bases for 37 

anticipating drastic shifts of microbial communities. We monitored 48 experimental 38 

microbiomes for 110 days and observed that various community-level events, including 39 

collapse and gradual compositional changes, occurred according to a defined set of 40 

environmental conditions. We then confirmed that the abrupt community changes observed 41 

through the time-series could be described as shifts between “alternative stable states“ or 42 

dynamics around complex attractors. Furthermore, collapses of microbiome structure were 43 

successfully anticipated by means of the diagnostic threshold defined with the energy 44 

landscape analysis of statistical physics or that of a stability index of nonlinear mechanics. 45 

These results indicate that abrupt microbiome events in complex microbial communities can 46 

be forecasted by extending classic ecological concepts to the scale of species-rich microbial 47 

systems.   48 

 49 

Optimizing biological functions of species-rich systems is a major challenge in both basic and 50 

applied sciences1–7. Managing the compositions of human gut microbiomes, for example, is 51 

essential for preventing diabetes8,9, infectious disease10, and neuropsychiatric disorders11. 52 

Likewise, soil and plant-associated microbiomes drive nutrient cycling and pest/pathogen 53 

outbreaks in agroecosystems5,6, while highly controlled microbiomes facilitate stable and 54 
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resource-efficient management in biofuel production7 and water purification12. Nonetheless, it 55 

remains generally difficult to control microbial ecosystem functions because species-rich 56 

microbial communities often show drastic structural (compositional) changes13,14. Thus, 57 

predicting such community-scale events remains an essential task.  58 

 Drastic changes in biological community structure have been theoretically framed as 59 

transient dynamics towards a global equilibrium15,16, shifts between alternative equilibria16,17, 60 

or dynamics around complex forms of attractors18–20. Within a state space with a sole 61 

equilibrium point, drastic community compositional changes may be observed in the course 62 

of convergence to the global equilibrium15. In contrast, if multiple equilibria exist within a 63 

state space, abrupt community changes can be described as shifts between alternative stable 64 

states17. In other words, fluctuations in population densities of constituent species (variables) 65 

or changes in environments (parameters) can cause shifts of community states from a stable 66 

state to the other ones16,17. Meanwhile, drastic community changes may be depicted as well in 67 

terms of dynamics around periodic/quasi-periodic attractors (i.e., limit cycle or torus) or 68 

dynamics around attractors with non-integer dimensions18,21–23 (i.e., chaos).  69 

  In analyzing empirical time-series data of microbiome structure, these concepts of 70 

community dynamics are implemented with two lines of frameworks (Fig. 1a). One is the 71 

framework of energy landscape analyses in statistical physics24–26, in which 72 

stability/instability of possible community states (compositions) are evaluated in the metric of 73 

“energy”. In energy landscape analyses, stable states within a state space are defined as 74 

community compositions whose energy values are lower than those of adjacent community 75 

compositions24. Thus, based on the reconstruction of energy landscapes, large community 76 

compositional changes are interpreted as transient dynamics towards an equilibrium or shifts 77 

between alternative equilibria (Fig. 1a). The other framework for describing abrupt 78 

community changes is based on nonlinear mechanics, which allows us to assume the presence 79 

of complex forms of attractors19,20,22,27. The framework of empirical reconstruction of 80 

attractors (“empirical dynamics modeling28,29”), in particular, provides a platform for 81 

interpreting community dynamics as deterministic processes around any forms of attractors 82 

(Fig. 1a). The two frameworks are potentially useful for framing microbial community 83 

processes. Nonetheless, it remains to be examined whether drastic changes in microbiome 84 

dynamics, such as dysbiosis in human-associated microbiomes14,30,31, could be predicted with 85 

either or both of the frameworks.  86 

 The major constraint preventing the comparison of the two frameworks is the lack of 87 
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empirical datasets that simultaneously meet the basic requirements of energy landscape 88 

analyses and empirical dynamic modeling. Therefore, by developing a monitoring system of 89 

experimental microbiomes, we compile a series of microbiome time-series data with 90 

substantial community-compositional changes. By implementing an energy landscape 91 

analysis and empirical dynamic modeling, we examine whether the substantial community 92 

changes could be anticipated as transient dynamics towards global equilibria, shifts between 93 

stable states, or dynamics around complex attractors. Based on the results, we discuss how we 94 

can integrate empirical and theoretical studies for predicting and controlling species-rich 95 

microbial systems.  96 

 97 

Results 98 

Experimental microbiome dynamics 99 

To obtain time-series datasets of diverse microbiome dynamics, we constructed six types of 100 

microbiomes based on the combinations of two inoculum sources (soil and pond water 101 

microbiomes; hereafter, Soil and Water) and three media differing in chemical properties 102 
(oatmeal, oatmeal-peptone, and peptone; hereafter, Medium-A, B, and C, respectively), each 103 

with eight replicates (Extended Data Fig. 1). We kept the experimental system at a constant 104 

temperature condition and sampled a fraction of each microbiome and added fresh media 105 

every 24 hours for 110 days. For each of the six experimental treatment, 880 community 106 

samples were obtained (in total, 110 time points ´ 8 replicates ´ 6 treatments = 5,280 107 
community samples), providing rich information for exploring stable states of community 108 

structure by means of energy landscape analyses. In total, the dataset represented population 109 

dynamics of 264 prokaryote amplicon sequence variants (ASVs) belonging to 108 genera. 110 

Using quantitative amplicon sequencing32 for estimating 16S ribosomal RNA gene (16S 111 

rRNA) copy concentrations of respective microbes in each microbiome, we determined the 112 

dynamics of both “relative” and “absolute” ASV abundance (Fig. 1b; Extended Data Figs. 1-113 

3). By estimating not only relative but also absolute abundance, we were able to reconstruct 114 

respective ASVs’ population dynamics (increase/decrease), satisfying the requirements for 115 

applying empirical dynamic modeling19,20,22. 116 

The experimental microbiomes exhibited various types of dynamics depending on 117 

source inocula and culture media (Fig. 1b; Extended Data Figs. 2-3). Specifically, sharp 118 

decline of taxonomic diversity33 and abrupt (sudden and substantial) community structural 119 
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changes (see “abruptness” index in Fig. 1b) were observed in Water/Medium-A, 120 

Soil/Medium-A, and Water/Medium-B treatments (abruptness > 0.5). Within these treatments, 121 

taxonomic compositions and timing of abrupt shifts in community structure varied among 122 

replicate communities (Extended Data Fig. 3). Large shifts of community compositions 123 

through time were observed as well in Soil/Medium-B treatment, albeit the community shifts 124 

were more gradual (maximum abruptness through time-series, 0.36 ~ 0.57; Extended Data 125 

Fig. 3). In contrast, Medium-C condition yielded relatively steady microbiome dynamics with 126 

continuously low taxonomic diversity (e.g., dominance of Aeromonas in Water/Medium-C 127 

treatment), although shifts of dominant taxa were observed latter in the experiment in some 128 

replicate communities (Extended Data Fig. 3). In all the six treatments, the a-diversity 129 
(Shannon diversity) of ASVs displayed fluctuations, but not monotonic decrease, through 130 

time (Extended Data Fig. 1e).  131 

 132 

Framework 1: energy landscape analysis 133 

By compiling the microbiome time-series data, we examined the distributions of stable states 134 

within the multidimensional space of community structure based on an energy landscape 135 

analysis24. Because no variation in environmental conditions was introduced through the 136 

time-series in our experiment, a fixed “energy landscape” of community states was assumed 137 

for each of the six treatments. On this assumption, shifts between alternative stable states are 138 

attributed to perturbations to variables (i.e., population density of microbial ASVs) but not to 139 

“regime shifts34–36”, which, by definition, requires energy landscape reorganization caused by 140 

changes in environmental parameters (i.e., temperature).  141 

 In each experimental treatment, multiple stable states were estimated to exist (Fig. 2; 142 

Extended Data Fig. 4), indicating that the observed abrupt changes in community 143 

compositions could be described as shifts between alternative stable states. Therefore, in this 144 

approach of statistical physics24–26, community dynamics are divided into phases of 145 

fluctuations around local equilibrium points and those of shifts into adjacent equilibria. In 146 

other words, the presence of multiple equilibrium points (Extended Data Fig. 4), by 147 

definition, means that the observed dynamics of the experimental microbiomes are not 148 

described as transient dynamics towards a sole equilibrium point.  149 

  150 

Framework 2: empirical dynamic modeling 151 
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We next analyzed the time-series data based on the framework of empirical dynamic 152 

modeling. We first focused on the population dynamics (increase/decrease) of the microbial 153 

ASVs constituting the microbial communities. In ecology, population dynamics data have 154 

often been analyzed with methods assuming linear dynamics (i.e., without considering “state 155 

dependency37”). Meanwhile, a series of empirical dynamics modeling approaches applicable 156 

to nonlinear time-series processes, such as simplex projection20 and sequential locally 157 

weighted global linear maps19 (S-map), have been increasingly adopted to capture key 158 

properties lost with linear dynamic assumptions (Fig. 3a). We found that ca. 85 % of the 159 

microbial populations in our experiments exhibited nonlinear behavior (i.e., nonlinearity 160 

parameter q > 0; Fig. 3b). This result suggests the predominance of nonlinear dynamics over 161 
linear dynamics in microbial populations32, in line with populations of other organismal 162 

groups such as fish38 and plankton21.  163 

We then reconstructed the attractors of nonlinear dynamics based on Takens’ embedding 164 

theorem39 (Fig. 3a). To examine the performance of the attractor reconstruction, we conducted 165 

forecasting of the population dynamics of respective microbial ASVs by means of simplex 166 

projection and S-map (Fig. 3c). The population density (16S rRNA copy concentration) of an 167 

ASV in a target replicate community at time point t + p (p represents time steps in 168 

forecasting) was forecasted based on the ASV’s population density at time point t and time-169 

series data of other replicate communities (hereafter, reference replicate communities; see 170 

Methods for details; Fig. 3a). For many microbial ASVs, predicted population densities was 171 

positively correlated with observed ones (Fig. 3c-d; Extended Data Fig. 5). As expected, 172 

correlation between predicted and observed population size increased with increasing number 173 

of reference replicate communities, suggesting dependence of forecasting skill on the size of 174 

state-space reference databases (Extended Data Fig. 6). 175 

By assembling the forecasting results of respective ASVs at the community level, we 176 

further conducted forecasting of microbiome compositions (Fig. 4a; Extended Data Fig. 7). 177 

The forecasting precision of community-level dynamics varied depending on culture media 178 

and the dissimilarity (b-diversity) of community structure between target and reference 179 
replicates (Fig. 4b). Despite the utility of the forecasting platform, we observed high 180 

prediction error immediately after the peak of abrupt community changes (Fig. 4c; Extended 181 

Data Fig. 8). Although the nonlinear method (S-map with optimized q) captured the observed 182 

abrupt shifts of community compositions within a narrower time window than the linear 183 

method (S-map with q = 0) (Fig. 4c), quantitative forecasting of abrupt community changes 184 
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seemed inherently difficult.  185 

Nonetheless, even if precise forecasting of community compositional dynamics remains 186 

challenging, prediction of the occurrence of abrupt community changes per se may be 187 

possible. Thus, we next examined whether potential of abrupt community changes could be 188 

evaluated through microbiome dynamics. 189 

 190 

Anticipating abrupt community shifts 191 

Based on the frameworks of the energy landscape analysis and empirical dynamic modeling, 192 

we explored ways for anticipating abrupt events in community dynamics. In the former 193 

framework roach, the reconstructed energy landscapes were used to estimate “energy gap” 194 

and “stable-state entropy” indices, which represented stability/instability of community 195 

states24 (Fig. 5a). In the latter framework, the inferred Jacobian matrices of the multi-species 196 

time-series dynamics (see Methods) were used to calculate “local Lyapunov stability40” and 197 

“local structural stability41”. We examined how these indices could help us forecast large 198 

community-compositional shifts such as those observed in Medium-A and Medium-B 199 

treatments (Fig. 1b).  200 

Among the signal indices examined, energy gap or stable-state entropy of community 201 

states (Fig. 5a) was significantly correlated with the degree of future community changes in 202 

Medium-A and Medium-B treatments (FDR < 0.05 for all treatments; Fig. 5b; Extended Data 203 

Fig. 9). In the seven-day-ahead forecasting of abrupt community-compositional changes 204 

(abruptness > 0.5), for example, stable-state entropy showed relatively high diagnostic 205 

performance on the two-dimensional surface of detection rate (sensitivity) and false detection 206 

rate (1 – specificity) as represented by receiver operating characteristic (ROC) curve42. 207 

Specifically, although the small number of points with abruptness greater than 0.5 (Extended 208 

Data Fig. 10) precluded the application of the ROC analysis in Soil/Medium-B treatment, 209 

diagnostic performance as evaluated by area under the ROC curve (AUC) ranged from 0.726 210 

to 0.957 in other Medium-A and Medium-B treatments (Fig. 6a).  211 

Local Lyapunov or structural stability was correlated with the degree of community 212 

changes as well, but the correlations were less consistent among experimental treatments than 213 

energy gap and stable-state entropy (Fig. 5b; Extended Data Fig. 9). Meanwhile, local 214 

structural stability exhibited exceptionally high diagnostic performance in Water/Medium-A 215 

treatment (AUC = 0.788; Fig. 6a; Extended Data Fig. 10). Thus, local Lyapunov or structural 216 
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stability can be used as signs of future microbiome collapse, although further technical 217 

improvement in the state space reconstruction of species-rich communities (e.g., multi-view 218 

distance regularized S-map43) may be needed to gain consistent forecasting performance 219 

across various types of microbiomes.  220 

By further utilizing the frameworks of the energy landscape analysis and empirical 221 

dynamic modeling, we next examined the availability of diagnostic thresholds for anticipating 222 

community collapse. For this aim, we first focused on stable-state entropy because its 223 

absolute values in the unit of well-known entropy index (Fig. 5a) were comparable across 224 

diverse types of biological communities. Based on the ROC curve representing all the stable-225 

state entropy data of Medium-A and Medium-B treatments, the balance between detection and 226 

false-detection rates were optimized with the Youden index42. With a relatively high AUC 227 

score (0.848), the threshold stable-state entropy was set as 1.343 (Fig. 6b). In the same way, 228 

we calculated the threshold value for local Lyapunov stability because this index originally 229 

had a tipping value (= 1) for diagnosing community-level stability/instability40. Indeed, the 230 

estimated threshold of local Lyapunov stability on the ROC curve was 0.9802, close to the 231 

theoretically expected value (Fig. 6b).  232 

 233 

Discussion 234 

By compiling datasets of experimental microbiome dynamics under various environmental 235 

(medium) conditions, we here tested whether two lines of ecological concepts could allow us 236 

to anticipate drastic compositional changes in microbial communities. Despite decades-long 237 

discussion on alternative stable/transient states of community structure15–17,35,36, the 238 

application of the concept to empirical data of species-rich communities has been made 239 

feasible only recently with the computationally intensive approach of statistical physics 240 

(energy landscape analyses24). On the other hand, the concept of dynamics around complex 241 

forms of attractors has been applicable with the emerging framework of nonlinear 242 

mechanics27,40,41 (e.g., empirical dynamic modeling), microbiome time-series data satisfying 243 

the requirements of the analytical frameworks remained scarce32. Thus, this study, which was 244 

designed to apply both frameworks, provided a novel opportunity for fuel feedback between 245 

empirical studies of species-rich communities and theoretical studies based on 246 

classic/emerging ecological concepts.    247 

 Our analysis showed drastic events in microbiome dynamics, such as those observed in 248 
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dysbiosis of human-gut microbiomes13,14, could be forecasted, at least to some extent, by 249 

framing microbiome time-series data as shifts between alternative stable states or dynamics 250 

around complex attractors. In the forecasting of abrupt community changes observed in our 251 

experimental microbiomes, the former concept (model) seemingly outperformed the latter 252 

(Figs. 5-6). This result is of particular interest, because concepts or models more efficiently 253 

capturing dynamics of empirical data are expected to provide more plausible planforms in not 254 

only prediction but also control of biological community processes. Nonetheless, given the 255 

ongoing methodological improvements of nonlinear mechanics frameworks for describing 256 

empirical time-series data43, further empirical studies comparing the two concepts are 257 

necessary.  258 

 A key next step for forecasting and controlling microbial (and non-microbial) 259 

community dynamics is to examine whether common diagnostic thresholds could be used to 260 

anticipate collapse of community structure. This study provided the first empirical example 261 

that the tipping value theoretically defined in noncolinear mechanics40 (local Lyapunov 262 

stability = 1) could be actually used as a threshold for alerting microbiome collapse. 263 

Likewise, although estimates of diagnostic thresholds can vary depending on the definition of 264 

community collapse (e.g., abruptness > 0.5 in this study), stable-state entropy scores greater 265 

than 1.3 can be used to anticipate undesirable community events (dysbiosis) across medical, 266 

agricultural, and industrial applications.  267 

 Given that changes in environmental parameters were not incorporated into our 268 

experimental design, it remains another important challenge to reveal how distributions of 269 

stable states or forms of attractors are continually reshaped by changes in environmental 270 

parameters through community dynamics17,34,35. Experimental manipulation of “external” 271 

environmental parameters in microcosms, for example, will expand the target of research into 272 

microbiome systems potentially driven by regime shifts34–36. Likewise, environmental 273 

alternations caused by organisms per se44–46 deserve further investigations as potential drivers 274 

of drastic community shifts.  275 

 Controlling biological functions at the ecosystem level is one of the major scientific 276 

challenges in the 21st century5,47,48. Interdisciplinary approaches that further integrate 277 

microbiology, ecology, and mathematics are becoming indispensable for maximizing and 278 

stabilizing microbiome-level functions, and for providing novel solutions to a broad range of 279 

humanity issues spanning from human health to sustainable industry and food production.  280 
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Methods 430 

Continuous-culture of microbiome 431 

To set up experimental bacterial communities, we prepared two types of source inocula (soil 432 

and aquatic microbiomes) and three media (oatmeal, oatmeal-peptone, and peptone): for each 433 

combination of source media and inocula (six experimental treatments), eight replicate 434 

communities were established (in total, two source microbiomes ´ three media ´ eight 435 
replicates = 48 experimental communities; Extended Data Fig. 1a). We used natural microbial 436 

communities including diverse species, rather than “synthetic” communities with pre-defined 437 

diversity, as source microbiomes of the experiment. One of the source microbiomes derives 438 

from the soil collected from the A layer (0-10 cm in depth) in the research forest of Center for 439 

Ecological Research, Kyoto University, Kyoto, Japan (34.972 ºN; 135.958 ºE). After 440 

sampling, 600 g of the soil was sieved with a 2-mm mesh and then 5 g of the sieved soil was 441 

mixed in 30 mL autoclaved distilled water. The source microbiome was further diluted 10 442 

times with autoclaved distilled water. The source aquatic microbiome was prepared by 443 

collecting 200 mL of water from a pond (“Shoubuike”) near Center for Ecological Research 444 

(34.974 ºN, 135.966 ºE). In the laboratory, 3 mL of the collected water was mixed with 27 mL 445 

of distilled water in a 50 mL centrifuge tube. We then introduced the source soil or aquatic 446 

microbiomes into three types of media: oatmeal broth [0.5% (w/v) milled oatmeal (Nisshoku 447 

Oats; Nippon Food Manufacturer); Medium-A], oatmeal-peptone broth [0.5% (w/v) milled 448 

oatmeal + 0.5% (w/v) peptone (Bacto Peptone; BD; lot number: 7100982); Medium-B], and 449 

peptone broth [0.5% (w/v) peptone; Medium-C]. In our preliminary experiments, 450 

microbiomes cultured with Medium-A (oatmeal) tended to show high species diversity, while 451 

those cultured with Medium-C (peptone) were constituted by smaller number of bacterial 452 

species. Thus, we expected that diverse types of microbiome dynamics would be observed 453 

with the three medium conditions. Among the three media, Medium-B had the highest 454 

concentrations of non-purgeable organic carbon (NPOC) and total nitrogen (TN), while 455 

Medium-A was the poorest both in NPOC and TN: Medium-C had the intermediate properties 456 

(Extended Data Fig. 1b).  457 

In each well a of 2-mL deep well plate, 200 µL of a diluted source microbiome and 800 458 

µL of medium were installed. The deep-well plate was kept shaken at 1,000 rpm using a 459 

microplate mixer NS-4P (AS ONE Corporation, Osaka) at 23 ºC for five days. After the five-460 

day pre-incubation, 200 µL out of 1,000-µL culture medium was sampled from each of the 48 461 

deep wells after mixing (pipetting) every 24 hours for 110 days. In each sampling event, 200 462 
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µL of fresh medium was added to each well so that the total culture volume was kept constant. 463 

In total, 5,280 samples (48 communities/day ´ 110 days) were collected. Note that on Day 82, 464 

200-µL of fresh Medium-B was accidentally added to samples of Medium-A but not to those 465 
of Medium-B. While the microbiomes under Medium-A treatments experienced increase in 466 

total DNA copy concentrations late in the time-series, relative abundance remained relatively 467 

constant from Day 60 to 110 (Extended Data Figs. 2-3), suggesting limited impacts of the 468 

accidental addition of the medium on microbial community compositions.  469 

To extract DNA from each sample, 25 µL of the collected aliquot was mixed with 50 µL 470 

lysis buffer (0.0025 % SDS, 20 mM Tris (pH 8.0), 2.5 mM EDTA, and 0.4 M NaCl) and 471 

proteinase K (×1/100). The mixed solution was incubated at 37 ºC for 60 min followed by 95 472 

ºC for 10 min and then the solution was vortexed for 10 min to increase DNA yield. 473 

 474 

Quantitative 16S rRNA sequencing 475 

To reveal the increase/decrease of population size for each microbial ASV, a quantitative 476 

amplicon sequencing method32,49 was used based on Illumina sequencing platform. While 477 

most existing microbiome studies were designed to reveal the “relative” abundance of 478 

microbial ASVs or operational taxonomic units (OTUs), analyses of population dynamics, in 479 

principle, require the time-series information of “absolute” abundance. In our quantitative 480 

amplicon sequencing, five standard DNA sequence variants with different concentrations of 481 

artificial 16S rRNA sequences (0.1, 0.05, 0.02, 0.01, and 0.005 nM) were added to PCR 482 

master mix solutions (Extended Data Fig. 1a). The DNA copy concentration gradient of the 483 

standard DNA variants yielded calibration curves between Illumina sequencing read numbers 484 

and DNA copy numbers (concentrations) of the 16S rRNA region in PCR reactions, allowing 485 

estimation of original DNA concentrations of target samples32,49 (Extended Data Fig. 1c-d). 486 

The five standard DNAs were designed to be amplified with a primer set of 515f50 and 487 

806rB51 but not to be aligned to the V4 region of any existing prokaryote 16S rRNA. Note 488 

that the number of 16S rRNA copies per genome generally varies among prokaryotic taxa52 489 

and hence 16S rRNA copy concentration is not directly the optimal proxy of cell or biomass 490 

concentration. However, in our study, estimates of 16S rRNA copy concentrations are used to 491 

monitor increase/decrease of abundance (i.e., population dynamics) within the time-series of 492 

each microbial ASV: hence, variation in the number 16S rRNA copy numbers among 493 

microbial taxa had no qualitative effects on the subsequent population- and community-494 
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ecological analyses. Even if the concentrations of PCR inhibitor molecules in DNA extracts 495 

vary among time-series samples, potential bias caused by such inhibitors can be corrected 496 

based on the abovementioned method using internal standards (i.e., standard DNAs within 497 

PCR master solutions). 498 

Prokaryote 16S rRNA region was PCR-amplified with the forward primer 515f fused 499 

with 3–6-mer Ns for improved Illumina sequencing quality and the forward Illumina 500 

sequencing primer (5’- TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG- [3–6-501 

mer Ns] – [515f] -3’) and the reverse primer 806rB fused with 3–6-mer Ns for improved 502 

Illumina sequencing quality53 and the reverse sequencing primer (5’- GTC TCG TGG GCT 503 

CGG AGA TGT GTA TAA GAG ACA G [3–6-mer Ns] - [806rB] -3’) (0.2 µM each). The 504 

buffer and polymerase system of KOD One (Toyobo) was used with the temperature profile 505 

of 35 cycles at 98 ºC for 10 s, 55 ºC for 30 s, 68 ºC for 50 s. To prevent generation of chimeric 506 

sequences, the ramp rate through the thermal cycles was set to 1 ºC/sec54. Illumina sequencing 507 

adaptors were then added to respective samples in the supplemental PCR using the forward 508 

fusion primers consisting of the P5 Illumina adaptor, 8-mer indexes for sample identification55 509 

and a partial sequence of the sequencing primer (5’- AAT GAT ACG GCG ACC ACC GAG 510 

ATC TAC AC - [8-mer index] - TCG TCG GCA GCG TC -3’) and the reverse fusion primers 511 

consisting of the P7 adaptor, 8-mer indexes, and a partial sequence of the sequencing primer 512 

(5’- CAA GCA GAA GAC GGC ATA CGA GAT - [8-mer index] - GTC TCG TGG GCT 513 

CGG -3’). KOD One was used with a temperature profile: followed by 8 cycles at 98 ºC for 514 

10 s, 55 ºC for 30 s, 68 ºC for 50 s (ramp rate = 1 ºC/s). The PCR amplicons of the samples 515 

were then pooled after a purification/equalization process with the AMPureXP Kit (Beckman 516 

Coulter). Primer dimers, which were shorter than 200 bp, were removed from the pooled 517 

library by supplemental purification with AMpureXP: the ratio of AMPureXP reagent to the 518 

pooled library was set to 0.6 (v/v) in this process. The sequencing libraries were processed in 519 

an Illumina MiSeq sequencer (271 forward (R1) and 231 reverse (R4) cycles; 10% PhiX 520 

spike-in).  521 

 522 

Bioinformatics 523 

In total, 67,537,480 sequencing reads were obtained in the Illumina sequencing. The raw 524 

sequencing data were converted into FASTQ files using the program bcl2fastq 1.8.4 525 

distributed by Illumina. The output FASTQ files were then demultiplexed with the program 526 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.23.505041doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.505041
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 19 

Claident v0.2. 2018.05.2956. The sequencing reads were subsequently processed with the 527 

program DADA257 v.1.13.0 of R 3.6.0 to remove low-quality data. The molecular 528 

identification of the obtained ASVs was performed based on the naive Bayesian classifier 529 

method58 with the SILVA v.132 database59. In total, 399 prokaryote (bacterial or archaeal) 530 

ASVs were detected. We obtained a sample ´ ASV matrix, in which a cell entry depicted the 531 
concentration of 16S rRNA copies of an ASV in a sample. In this process of estimating 532 

original DNA copy numbers (concentrations) of respective ASVs from sequencing read 533 

numbers in each sample, the samples in which Pearson’s coefficients of correlations between 534 

sequencing read numbers and standard DNA copy numbers (i.e., correlation coefficients 535 

representing calibration curves) were less than 0.7 (in total, 430 samples out of 5,280 536 

samples) were removed as those with unreliable estimates. Samples with less than 350 reads 537 

were discarded as well. Because missing values within time-series data are not tolerated in 538 

some of the downstream analyses (e.g., empirical dynamic modeling), they were substituted 539 

by interpolated values, which were obtained as means of the time points immediately before 540 

and after focal missing time points. The ASVs that appeared 5 or more samples in any of the 541 

replicate communities were retained in the following analyses: 264 ASVs representing 108 542 

genera remained in the dataset. From the sample ´ ASV matrix, we calculated a-diversity 543 

(Shannon’s H¢) of the ASV compositions in each experimental replicate on each day. We also 544 

evaluated dissimilarity of community compositions in all pairs of sampling days in each 545 

replicate community using Bray-Curtis metric of b-diversity as implemented in the vegan 546 

2.5.5 package60 of R. For each ASV in each replicate community, a parameter representing the 547 

nonlinearity of the population dynamics19,38 (q) was estimated based on S-map analysis of 548 
absolute abundance as detailed below in order to evaluate the overall nature of the time-series 549 

data.   550 

 551 

Community dynamics 552 

We evaluated the degree of community-compositional changes for time point t based on the 553 

Bray-Curtis b-diversity through time. To remove effects of minor fluctuations and track only 554 

fundamental changes of community structure, average community compositions from time 555 

points t – 4 to t and those from t + p to t + p + 4 (i.e., 5-day time-windows) were calculated 556 

before evaluating degree of community changes for time point t and time step p in each 557 

replicate community. Dissimilarity of community compositions between the time windows 558 

before (from t – 4 to t) and after (t + p to t + p + 4) each target time point t with a given time 559 
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lag p was calculated based on Bray-Curtis b-diversity as a measure of abrupt (sudden and 560 

substantial) community changes (hereafter, “abruptness” of community-compositional 561 

changes). A high value of this index indicates that abrupt community-compositional changes 562 

occurred around time point t, while a low value represents a (quasi-)stable mode of 563 

community dynamics. We also evaluated temporal changes of community compositions using 564 

nonmetric multidimensional scaling (NMDS) with the R package vegan. 565 

 566 

Energy landscape analysis 567 

On the assumption that drastic changes in microbiome dynamics are described as shifts 568 

between local equilibria (i.e., alternative stable states), we reconstructed the structure of the 569 

“energy landscape24,25“ in each experimental treatment (tutorials of energy landscape analyses 570 

are available at https://community.wolfram.com/groups/-/m/t/2358581). Because external 571 

environmental conditions (e.g., temperature) was kept constant in the experiment, a fixed 572 

“energy landscape” of community states was assumed for each of the six experimental 573 

treatments. Therefore, probabilities of community states p 𝝈 𝒌 	are given by 574 

p 𝝈 𝒌 = 𝒆'𝑯(𝝈 𝒌 )/𝑍 575 

𝑍 = 𝒆'𝑯(𝝈 𝒍 )
𝟐𝑺

𝒍0𝟏
, 576 

where 𝝈 𝒌 = (𝜎4
(5), 𝜎6

(5), … , 𝜎8
(5)) is a community state vector of k-th community state and S 577 

is the total number of taxa (e.g., ASVs, species, or genera) examined. 𝜎9
(5) is a binary 578 

variable that represents presence (1) or absence (0) of taxon i: i.e., there are a total of 28 579 

community states. Then, the energy of the community state 𝝈 𝒌  is given by 580 

𝐻(𝝈 𝒌 ) = 	− ℎ𝒊𝝈𝒊
𝒌 − 𝑱𝒊𝒋𝝈𝒊

𝒌𝑺
𝒋0𝟏 𝝈𝒋

𝒌 /𝟐𝑺
𝒊0𝟏

𝑺
𝒊0𝟏 , 581 

where ℎA is the net effect of implicit abiotic factors, by which i-th taxon is more likely to 582 
present (hi > 0) or not (hi < 0), and 𝐽AC represents a co-occurrence pattern of i-th and j-th taxa. 583 

Since the logarithm of the probability of a community state is inversely proportional to 584 

𝐻(𝝈 𝒌 ), a community state having lower H is more frequently observed. To consider 585 
dynamics on an assembly graph defined as a network whose 28 nodes represent possible 586 

community states and the edges represents transition path between them (two community 587 

states are adjacent only if they have the opposite presence/absence status for just one species), 588 
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we assigned energy to nodes with the above equation, and so imposed the directionality in 589 

state transitions. Then, we identified the stable state communities as the energy minima of the 590 

weighted network (nodes having the lowest energy compared to all its neighbors), and 591 

determined their basins of attraction based on a steepest descent procedure starting from each 592 

node. The data of ASV-level compositions were used in the calculation of community state 593 

energy using Mathematica v12.0.0.0. The “energy” estimates were then plotted against the 594 

NMDS axes representing community states of the microbiome samples in each experimental 595 

treatment. Spline smoothing of the landscape was performed with optimized penalty scores 596 

using the mgcv v.1.8-40 package61 of R.  597 

 598 

Empirical dynamic modeling 599 

In parallel with the energy landscape analysis assuming the presence of local equilibria, we 600 

also analyzed the microbiome time-series data by assuming the presence of complex 601 

attractors. In this aim, we applied the framework of “empirical dynamic modeling19,20,29,40”. In 602 

general, biological community dynamics are driven by a number of variables (e.g., abundance 603 

of respective species and abiotic environmental factors). In the analysis of a multi-variable 604 

dynamic system in which only some of variables are observable, state space constituted by 605 

time-lag axes of observable variables can represent the whole system as shown in Takens’ 606 

embedding theorem39. Thus, for each ASV in each experimental treatment, we conducted 607 

Takens’ embedding to reconstruct state space which consisted of time-delayed coordinates of 608 

the ASV’s absolute abundance (e.g., 16S rRNA copy concentration estimates). The optimal 609 

number of embedding dimensions29,39 (E) was obtained by finding E giving the smallest root-610 

mean-square error (RMSE) in pre-run forecasting with simplex projection20 or S-map19 as 611 

detailed below. Taking into account a previous study examining embedding dimensions62, 612 

optimal E was explored within the range from 1 to 20. Prior to the embedding, all the 613 

variables were z-standardized (i.e., zero-mean and unit-variance) across the time-series of 614 

each ASV in each replicate community.  615 

 616 

Population-level forecasting 617 

Based on the state space reconstructed with Takens’ embedding, simplex projection20 was 618 

applied for forecasting of ecological processes in our experimental microbiomes. For each 619 
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target replicate community, univariate embedding of each ASV was performed using the data 620 

of the seven remaining replicate communities. Therefore, the reference databases for the 621 

embedding did not include the information of the target replicate community (Fig. 2a), 622 

providing platforms for evaluating forecasting skill.  623 

In simplex projection, a coordinate within the reconstructed state space was explored at 624 

a focal time point (t*) within the population dynamics of a focal ASV in a target replicate 625 

community (e.g., replicate community 8): the coordinate can be described as [xtarget_rep(t*), 626 

xtarget_rep(t* – 1), xtarget_rep(t* – 2)] when E = 3. For the focal coordinate, E + 1 neighboring 627 

points are explored from the reference database consisting of the seven remaining replicate 628 

communities (e.g., replicate communities 1–7; Fig. 2a). For each of the neighboring points, 629 

the corresponding points at p-time-step forward (p-days ahead) are identified. The abundance 630 

estimate of a focal ASV in the target replicate community at p-time-step forward [e.g., 631 

𝑥target_rep(t* + p)] is then obtained as weighted average of the values of the highlighted p-time-632 

step-forward points within the reference database (Fig. 2a). The weighting was decreased with 633 

Euclidean distance between xtarget_rep(t*) and its neighboring points within the reference 634 

database. This forecasting of population dynamics was performed for each ASV in each target 635 

replicate community at each time point. The number of time steps in the forecasting (i.e., 𝑝) 636 

was set at 1 (one-day-ahead forecasting) and 7 (seven-day-ahead forecasting).  637 

While simplex projection explores neighboring points around a target point, S-map19 638 

uses all the data points after weighting contributions of each point within a reference database 639 

using a parameter representing nonlinearity of the system. In Takens’ embedding, the state 640 

space of a target replicate for forecasting at time t is defined as  641 

𝑧GHIJKG_IKM 𝑡 = 𝑧4,GHIJKG_IKM 𝑡 , 𝑧6,GHIJKG_IKM 𝑡 , … , 𝑧O,GHIJKG_IKM 𝑡 	 , 642 

where E is embedding dimension. Values on the second and higher dimensions 643 

{𝑧6,GHIJKG_IKM 𝑡 , … , 𝑧O,GHIJKG_IKM 𝑡 } are represented by time-delayed coordinates of a focal 644 

ASV. Likewise, the state space of the remaining replicates (i.e., the reference database) is 645 

defined as  646 

𝑧IKP 𝑡¢	 = 𝑧4,IKP 𝑡¢	 , 𝑧6,IKP 𝑡¢	 , … , 𝑧O,IKP 𝑡¢	 	 , 647 

where t¢ represents each of non-overlapping time points within the reference database [e.g., 648 

{10001, 10002, …, 10110} and {20001, 20002, …, 20110} for reference replicate 1 and 2, 649 

respectively]. For a target time point 𝑡∗ within the time-series data of a target replicate 650 
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community, a local linear model 𝑪 is produced to predict the future abundance of a focal 651 
ASV [i.e., 𝑧4,GHIJKG_IKM 𝑡∗ + 𝑝 ] from the state-space vector at time point 𝑧GHIJKG_IKM 𝑡∗  as 652 

follows: 653 

	𝑧4,GHIJKG_IKM4 𝑡∗ + 𝑝 = 𝐶U + 𝑪C	𝑧CO
C04 (𝑡∗). 654 

This linear model is fit to the vectors in the reference databases. In the regression analysis, 655 

data points close to the target point 𝑧GHIJKG_IKM 𝑡∗  have greater weighting. The model 𝑪 is 656 

then the singular value decomposition solution to the equation	𝑏 = 𝐴𝑪. In this equation, 𝑏 is 657 
set as an n-dimensional vector of the weighted future values of 𝑧4,IKP 𝑡A¢	  for each point (𝑡A¢) 658 

in the reference database (n is the number of points in the set of 𝑡A¢):   659 

𝑏A = 𝑤( 𝑧IKP 𝑡A¢	 − 𝑧GHIJKG_IKM 𝑡∗ )𝑧4,IKP(𝑡A¢	 + 𝑝). 660 

Meanwhile, 𝐴 is an n ´ E dimensional matrix given by 661 

𝐴AC = 𝑤( 𝑧IKP 𝑡A¢	 − 𝑧GHIJKG_IKM 𝑡∗ )𝑧C,IKP(𝑡A¢	). 662 

The weighting function 𝑤 is defined as 663 

𝑤 𝑑 = 𝑒𝑥𝑝 −
𝜃𝑑
𝑑

	, 664 

where q is the parameter representing the nonlinearity of the data, while mean Euclidean 665 

distance between reference database points and the target point in the target experimental 666 

replicate is defined as follows: 667 

𝑑 = 4
\

𝑧IKP 𝑡A¢	 − 𝑧GHIJKG_IKM 𝑡∗G¢	∈	^_`a , 668 

where Tref denotes the set of 𝑡A¢	. In our analysis, the optimal value of q was explored among 669 

eleven levels from 0 (linearity) and 8 (strong nonlinearity) for each ASV in each target 670 

replicate based on the RMSE of forecasting (optimal q was selected among 0, 0.001, 0.01, 671 

0.05, 0.1, 0.2, 0.5, 1, 2, 4, and 8). The local linear model 𝑪 was estimated for each time point 672 

in the target replicate data.  673 

 We then performed direct comparison between linear and nonlinear approaches of 674 

forecasting based on empirical dynamics modeling. Specifically, to assume linear dynamics in 675 

S-map method, the nonlinearity parameter q was set 0 for all the ASVs. We then compared 676 

forecasting results between linear (q = 0) and nonlinear (optimized q) approaches. For the 677 

forecasting of ASVs in a target replicate community, the data of the remaining seven 678 
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communities (reference databases) were used as mentioned above. 679 

 For each ASV in each of the 48 experimental replicates, Spearman’s correlation 680 

coefficients between predicted and observed abundance (16S rRNA copy concentrations) 681 

were calculated for each of the nonlinear/linear forecasting methods [simplex projection, S-682 

map with optimized q, and S-map assuming linearity (q = 0)]. We also examined null model 683 

assuming no change in community structure for a given time step. The time points (samples) 684 

excluded in the data-quality filtering process (see Bioinformatics sub-section) were excluded 685 

from the above evaluation of forecasting skill. 686 

 687 

Reference database size and forecasting skill 688 

To evaluate potential dependence of forecasting skill on the size of reference databases, we 689 

performed a series of analyses with varying numbers of reference replicate communities. For 690 

replicate community for a target replicate community, a fixed number (from 1 to 7) of other 691 

replicate communities within each experimental treatment were retrieved as reference 692 

databases: all combinations of reference communities were examined for each target replicate 693 

community. For each microbial ASV in each target replicate community, forecasting of 694 

population size was performed based on S-map with optimized q as detailed above. 695 
Spearman’s correlation between predicted and observed population size across the time-series 696 

was then calculated for each ASV in each target replicate community. The correlation 697 

coefficients were compared between different numbers of reference database communities 698 

based on Welch’s t-test in each experimental treatment.  699 

 700 

Community-level forecasting 701 

The above population-level results based on empirical dynamics modeling were then used for 702 

forecasting community-level dynamics. For a focal time point (day) in a target experimental 703 

replicate, the 16S rRNA copy concentration estimates (predicted abundance) of respective 704 

ASVs were compiled, yielding predicted community structure (i.e., predicted relative 705 

abundance of ASVs). The predicted and observed (actual) ASV compositions (relative 706 

abundance) of respective target replicates were then plotted on a NMDS surface for each of 707 

the six experimental treatments. In addition, we evaluated dependence of community-level 708 

forecasting results on experimental conditions (source inocula and media), a-diversity 709 
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(Shannon’s H¢) of ASVs, and mean b-diversity against other replicates in a multivariate 710 

ANOVA model of predicated vs. observed community dissimilarity.  711 

 712 

Anticipating abrupt community shifts 713 

We then examined whether indices derived from the energy landscape analysis and/or 714 

empirical dynamics modeling could be used to anticipate drastic changes in community 715 

structure. 716 

 In the framework of energy landscape analysis, we calculated two types of indices 717 

based on the estimated landscapes of microbiome dynamics (Fig. 3a). One is deviation of 718 

current community-state energy from the possible lowest energy within the target basins 719 

(hereafter, energy gap; Fig. 3a): this index represents how current community states are 720 

inflated from local optima (i.e., “bottom” of basins). The other is “stable-state entropy24”, 721 

which is calculated based on the random-walk-based simulation from current community 722 

states to bottoms of any energy landscape basins (i.e., alternative stable states). A starting 723 

community state is inferred to have high entropy if reached stable states are variable among 724 

random-walk iterations: the stable-state entropy is defined as the Shannon’s entropy of the 725 

final destinations of the random walk24. Therefore, communities approaching abrupt structural 726 

changes are expected to have high stable-state entropy because they are inferred to cross over 727 

“ridges” on energy landscapes. For an analysis of a target replicate community, energy 728 

landscapes were reconstructed based on the data of the remaining seven replicate 729 

communities.  730 

 In the framework of empirical dynamics modeling (nonlinear mechanics), we calculated 731 

“local Lyapunov stability40” (local dynamic stability) and “local structural stability41” based 732 

on Jacobian matrices representing movements around reconstructed attractors27. Specifically, 733 

based on convergent cross-mapping22,32 and multivariate extension of S-map63, local 734 

Lyapunov stability and structural stability were estimated, respectively, as the absolute value 735 

of the dominant eigenvalue and trace (sum of diagonal elements) of the Jacobian matrices 736 

representing the time-series processes40. For a target replicate community, the remaining 737 

seven replicate communities were used for inferring Jacobian matrices. Note that a high score 738 

of local Lyapunov/structural stability represents a potentially unstable community state. In 739 

particular, local Lyapunov scores reflect whether trajectories at any particular time are 740 

converging (local Lyapunov score < 1) or diverging (1 < local Lyapunov score)40.     741 
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 For each of the above indices, linear regression of abruptness scores of community-742 

compositional changes was performed for each replicate sample in each experimental 743 

treatment (seven-day-ahead forecasting). The time points (samples) excluded in the data-744 

quality filtering process (see Bioinformatics sub-section) were excluded from this evaluation 745 

of signal indices.  746 

 We also examined the diagnostic performance of the signal indices based on the 747 

receiver operating characteristic (ROC) analysis. In seven-day-ahead forecasting, detection 748 

rates (sensitivity) and false detection rates (1 – specificity) of large community-compositional 749 

changes (abruptness > 0.5) were plotted on a two-dimensional surface for each experimental 750 

treatment, yielding area under the ROC curve (AUC) representing diagnostic performance42. 751 

The optimal threshold value of each signal index for anticipating abrupt community-752 

compositional changes (abruptness > 0.5) was then calculated with the Youden index42 for 753 

each experimental treatment. In addition, for stable-state entropy and local Lyapunov stability, 754 

we calculated optimal threshold values after assembling all the data of Medium-A and 755 

Medium-B treatments.  756 

   757 

Data availability 758 

The 16S rRNA sequencing data are available from the DNA Data Bank of Japan (DDBJ) with 759 

the accession number DRA013352, DRA013353, DRA013354, DRA013355, DRA013356, 760 

DRA013368 and DRA013379. The microbial community data are deposited at the figshare 761 

repository (DOI : 10.6084/m9.figshare.20653440).  762 

 763 

Code availability 764 

All the scripts used to analyze the data are available at the figshare repository (DOI : 765 

10.6084/m9.figshare.20653440).  766 
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785 

Fig. 1 | Experimental microbiome dynamics. a, Assumptions. Drastic structural changes in 786 

microbiome time-series data are interpreted as transient dynamics towards a global 787 

equilibrium, shifts between local equilibria (alternative stable states), or dynamics around 788 

complex forms of attractors. The former two concepts/models can be examined with an 789 

energy landscape analysis and the latter can be explored based on empirical dynamic 790 

modeling. b, Time-series data of microbial abundance (top left), community compositions 791 

(relative abundance; bottom left), and Bray-Curtis dissimilarity (b-diversity) of community 792 
structure between time points (right) are shown for a representative replicate community of 793 

each experimental treatment. The green lines within the relative abundance plots represent the 794 

speed and magnitude of community compositional changes (hereafter, “abruptness”) around 795 

each target time point (time window = 5 days; time lag = 1 day; see Methods). Note that an 796 

abruptness score larger than 0.5 represents turnover of more than 50 % of microbial ASV 797 

compositions. See Extended Data Figs. 2-3 for the time-series data of all the 48 communities 798 

(8 replicates ´ 6 treatments).   799 
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 800 

801 

Fig. 2 | Energy landscapes of community structure. The community structure of respective 802 

time points on NMDS axes (left) and reconstructed energy landscape on the NMDS surface 803 

(right) are shown for each experimental treatment. Community states (ASV compositions) 804 

located at lower-energy regions are inferred to be more stable on the energy landscapes. The 805 

shapes of the landscapes were inferred based on a smoothing spline method with optimized 806 

penalty parameters. On the energy landscapes, community states of Day 1 and Day 110 are 807 

respectively shown in red and blue numbers representing replicate communities.  808 
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810 
Fig. 3 | Forecasting population-level dynamics based on attractor reconstruction. a, 811 

Workflow of forecasting. For a target replicate community, the reference database of state 812 

space is reconstructed based on the time-series data of other replicate communities (i.e., 813 

reference replicate communities). Future abundance of each ASV in a target replicate 814 

community was then predicted using the state-space reference databases (see Methods for 815 

details). b, Nonlinearity parameters (q). Proportions of microbial ASVs showing linear (q = 0) 816 

and nonlinear (q > 0) population dynamics are shown. c, Example of population-level 817 
forecasting. Predicted and observed abundance through the time-series are shown for simplex 818 

projection, S-map with optimized nonlinearity parameter (optimized q), and S-map assuming 819 

linearity (q = 0). For each target replicate community, the remaining seven replicate 820 
communities were used as references. Results are shown for one-day-ahead and seven-day-821 

ahead forecasting of an ASV (X_0003) in replicate nos. 1-3 of Water/Medium-A treatment. 822 

See Extended Data Fig. 5 for detailed results. d, Spearman’s correlation between predicted 823 

and observed population size is shown for each microbial ASV in each replicate community.  824 
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826 

Fig. 4 | Forecasting community-level dynamics based on attractor reconstruction. a, 827 

Community-level forecasting. Predicted and observed community structure is linked for each 828 

day on the axes of NMDS (prediction based on S-map with optimized q; one-day-ahead 829 

forecasting). Results of Soil/Medium-A treatment are shown: see Extended Data Fig. 7 for 830 

full results). b, Factors explaining variation in community-level prediction results. A 831 

generalized linear mixed morel (GLMM) of dissimilarity between predicted and observed 832 

community structure was constructed (one-day-ahead forecasting). c, Detailed comparison of 833 

nonlinear and linear forecasting approaches. S-map results with optimized nonlinearity 834 

parameter were compared with results of S-map assuming linear dynamics for all ASVs.  835 
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 838 

 Fig. 5 | Anticipating abrupt community shifts. a, Energy gap index. In the framework of 839 

the energy landscape analysis, difference between the energy of a current community state 840 

from that of the local energy minimum is defined as the “energy gap” index for anticipating 841 

drastic community changes. b, Stable-state entropy index. Shannon’s entropy estimates based 842 

on random-walk simulations towards alternative stable states are expected to represent 843 

instability of current community states on energy landscapes (see Methods for details). c, 844 

Relationship between the degree of community-compositional changes (abruptness) and each 845 

signal index. Note that a high score of energy gap, stable-state entropy, or local 846 

Lyapunov/structural stability potentially represents an unstable state. Significant/non-847 

significant regressions within respective replicates are shown with solid/dashed lines for each 848 

panel [false discovery rate (FDR)]. See Extended Data Fig. 9 for detailed results. 849 
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851 
Fig. 6 | Thresholds for anticipating drastic community events. a, ROC analysis of 852 

diagnostic performance. On the two-dimensional surface of detection- and false-detection 853 

rates of abrupt community-compositional changes (abruptness > 0.5), area under the ROC 854 

curve (AUC) and optimal detection rate (asterisk) were calculated for each warning signals 855 

(seven-day-ahead forecasting). A high AUC value indicates a high detection rate of abrupt 856 

community events with a relatively low false detection rate (maximum AUC value = 1). Note 857 

that the low AUC values may be attributed to the small number of points with abruptness > 858 

0.5 in Soil/Medium-B treatment. See Extended Data Fig. 10 for full results. b, Optimal 859 

thresholds for anticipating community collapse. For stable-state entropy (top) and local 860 

Lyapunov stability (bottom), diagnostic threshold for warning abrupt community changes was 861 

obtained based on the Youden index after compiling all the data of Medium-A and Medium-B 862 

treatments.   863 
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 864 

 865 

 866 

Extended Data Fig. 1 | Experimental setting and microbiome data formats. a, Laboratory 867 
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culture system. Source microbiomes from forest soil and pond water were respectively 868 

introduced into three types of media [Medium-A, 0.5% (w/v) milled oatmeal; Medium-B, 869 

0.5% (w/v) milled oatmeal + 0.5% (w/v) peptone; Medium-C, 0.5% (w/v) peptone] with eight 870 

replicates. A fraction of the culture fluid was sampled every 24 hours and equivalent volume 871 

of fresh medium was added to the continual culture system throughout the 110-day 872 

experiment. After DNA extraction, five “standard DNA” variants with different 873 

concentrations were introduced into the amplicon sequencing analysis of the 16S rRNA 874 

region, yielding DNA copy number estimates of each prokaryote ASV in each replicate 875 

sample. b, Concentrations of non-purgeable organic carbon (NPOC) and total nitrogen (TN) 876 

in each of the three types of fresh media. The bars represent ranges of triplicate 877 

measurements. c, Example of calibration of 16S rRNA copy concentration. In most 878 

microbiome studies, only proportions of respective microbe’s sequencing reads to total 879 

sequencing reads (relative abundance; Extended Data Fig. 3) have been analyzed, while 880 

calibrated abundance information (absolute abundance; Extended Data Fig. 2) allows us to 881 

reconstruct population dynamics (i.e., increase/decrease through time-series) of respective 882 

ASVs in microbiomes. Five standard DNA sequences varying in concentration were added to 883 

PCR master mix solutions to infer relationship between DNA copy concentration and the 884 

number of sequencing reads in each sample. d, Calibration of DNA copy concentration with 885 

the standard DNA gradients. The number of sequencing reads of each microbial ASV 886 

(boxplots and circles; black) was compared with that of standard DNA sequences (range of 887 

five standard DNA variants; red) in each sample. e, a-diversity (Shannon’s H¢) of ASVs 888 

through the time-series. 889 
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Extended Data Fig. 2 | Dynamics of absolute abundance. For each replicate community of 893 

each experimental treatment, the changes of 16S rRNA gene copy concentrations (See 894 

Extended Data Fig. 1) are shown for each genus throughout the time-series. Note that each 895 

genus displayed in this figure can represent multiple microbial ASVs in the original dataset.  896 

 897 
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 899 

Extended Data Fig. 3 | Dynamics of relative abundance. For each replicate community of 900 
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each experimental treatment, the changes of the relative abundance of the 16S rRNA region 901 

are shown for each genus throughout the time-series. Note that each genus displayed in this 902 

figure can represent multiple microbial ASVs in the original dataset. 903 

 904 
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906 

Extended Data Fig. 4 | Distribution of stable states on the energy landscapes. The 907 

community structure of respective time points on NMDS axes (left) and reconstructed energy 908 

landscape on the NMDS surface (right) are shown for each experimental treatment. 909 

Community states (ASV compositions) located at lower-energy regions are inferred to be 910 

more stable on the energy landscapes. On the energy landscape of each experimental 911 

treatment, community states (data points) belonging to the basin of the same stable states are 912 

indicated with the same colors. The shapes of the landscapes were inferred based on a 913 

smoothing spline method with optimized penalty parameters. Within the energy landscape, 914 

community states of Day 1 and Day 110 are respectively shown in red and blue numbers 915 

representing replicate communities.  916 
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Extended Data Fig. 5 | Examples of population-level forecasting results. For each 920 

microbial ASV in each experimental treatment, correlations between predicted and observed 921 

abundance through the time-series (one-day-ahead and seven-day-ahead forecasting; top left), 922 

decay of correlation between predicted and observed abundance (top right), and details of the 923 

time-series are shown. The prediction was based on simplex projection, S-map with optimized 924 

nonlinearity parameter (optimized q), and S-map assuming linearity (q = 0). For each target 925 

replicate community, the remaining seven replicate communities were used as references. Due 926 

to the large number of ASVs in the dataset, four ASVs in Water/Medium-B treatment are 927 

shown here as examples: the full results are available at the figshare repository (DOI : 928 

10.6084/m9.figshare.20653440). 929 
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932 
Extended Data Fig. 6 | Dependence of population-level forecasting results on reference 933 
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database size. The population size of each microbial ASV in a target replicate community 934 

was forecasted with S-map (optimized q) based on reference databases (Fig. 2a). The 935 

forecasting was performed for each number of reference databases defined on the horizontal 936 

axis. Spearman’s correlations between predicted and observed population size (Fig. 2c) were 937 

calculated for each microbial ASV in each replicate community. An asterisk represents 938 

significant differences in forecasting skill (forecasting performance) between different 939 

numbers of reference databases in each experimental replicate: i.e., false discovery rate (FDR) 940 

based on Welch’s t-tests.  941 
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 943 

Extended Data Fig. 7 | Comparison of predicted and observed community structure. By 944 

compiling the forecasting results of respective ASVs (Fig. 3; Extended Data Fig. 5), 945 

community compositions are predicted through the time-series. Predicted and observed 946 

community structure is linked for each day on the axes of NMDS (prediction based on S-map 947 

with optimized q; one-day-ahead forecasting). 948 
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951 
Extended Data Fig. 8 | Comparison of nonlinear and linear forecasting approaches. 952 

Throughout the time-series, S-map nonlinear forecasting results are shown with observed 953 

community compositions and linear forecasting results (seven-day-ahead prediction). For the 954 

direct comparison of nonlinear and linear forecasting methods, S-map results with optimized 955 

nonlinearity parameter were compared with results of S-map assuming linear dynamics for all 956 
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ASVs (q = 0). Note that forecasting is inapplicable to the beginning of the time-series 957 

depending on embedding dimensions and forecasting time steps. A vertical line represents the 958 

timing of the greatest community compositional change in each replicate community.  959 

 960 
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962 

Extended Data Fig. 9 | Candidates of signal indices for anticipating abrupt community 963 

changes. Relationships between signal index values and observed community-compositional 964 

changes are shown for seven-day-ahead forecasting. For each index of potential early-warning 965 

signals, Spearman’s correlation with the degree of community-compositional changes 966 

(abruptness scores) was examined for each time lag between signal indices and observed 967 

abruptness. The indices examined were the energy gap and stable-state entropy of the energy 968 

landscape analysis and the local Lyapunov stability and local structural stability of empirical 969 

dynamic modeling. Significant/non-significant regressions within respective replicates are 970 

shown with solid/dashed lines for each panel.  971 
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Extended Data Fig. 10 | ROC analysis of diagnostic performance. On the two-dimensional 975 

surface of detection- and false-detection rates of abrupt community changes (abruptness > 976 

0.5), area under the curve (AUC) and optimal detection rate (asterisk) were calculated (top 977 

panels) for local structural stability or energy gap. Optimal diagnostic threshold of local 978 

structural stability or energy gap for warning abrupt community changes was then obtained 979 

for each treatment based on the Youden index (bottom panels). Not that abrupt community 980 

changes were absent in Medium-C treatments and that the threshold for Soil/Medium-B 981 

treatment was unreliable due to the small number of time points with abruptness > 0.5 982 

(Extended Data Figs. 3 and 9).  983 
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