Abstract
The human leukocyte antigen (HLA) locus is associated with more human complex diseases than any other locus. In many diseases it explains more heritability than all other known loci combined. Investigators have now demonstrated the accuracy of in silico HLA imputation methods. These approaches enable rapid and accurate estimation of HLA alleles in the millions of individuals that are already genotyped on microarrays. HLA imputation has been used to define causal variation in autoimmune diseases, such as type I diabetes, and infectious diseases, such as HIV infection control. However, there are few guidelines on performing HLA imputation, association testing, and fine-mapping. Here, we present comprehensive statistical genetics guide to impute HLA alleles from genotype data. We provide detailed protocols, including standard quality control measures for input genotyping data and describe options to impute HLA alleles and amino acids including a web-based Michigan Imputation Server. We updated the HLA imputation reference panel representing global populations (African, East Asian, European and Latino) available at the Michigan Imputation Server (n = 20,349) and achived high imputation accuracy (mean dosage correlation r = 0.981). We finally offer best practice recommendations to conduct association tests in order to define the alleles, amino acids, and haplotypes affecting human traits. This protocol will be broadly applicable to the large-scale genotyping data and contribute to defining the role of HLA in human diseases across global populations.
Competing Interest Statement
B.H. is a CTO of Genealogy Inc. T.L.L. is a co-inventor on a patent application for using HED in predicting cancer immunotherapy success.