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Abstract10

The cattle tracing databases set up over the past decades in Europe have become major resources for11

representing demographic processes of livestock and assessing potential risk of infections spreading by12

trade. The herds registered in these databases are parts of a network of commercial movements, which13

can be altered to lower the risk of disease transmission. In this study, we developed an algorithm aimed at14

reducing the number of infected animals and herds, by rewiring specific movements responsible for trade15

flows from high- to low-prevalence herds. The algorithm was coupled with a generic computational model16

describing infection spread within and between herds, based on data extracted from the French cattle17

movement tracing database (BDNI). This model was used to simulate a wide array of infections, with18

either a recent outbreak (epidemic) or an outbreak that occurred five years earlier (endemic), on which the19

performances of the rewiring algorithm were explored. Results highlighted the effectiveness of rewiring20

in containing infections to a limited number of herds for all scenarios, but especially if the outbreak was21

recent and if the estimation of disease prevalence was frequent. Further analysis revealed that the key22

parameters of the algorithm affecting infection outcome varied with the infection parameters. Allowing23

any animal movement from high to low-prevalence herds reduced the effectiveness of the algorithm in24

epidemic settings, while frequent and fine-grained prevalence assessments improved the impact of the25

algorithm in endemic settings. Overall, our approach, which focuses on a few commercial movements,26

has led to substantial improvements in the control of a targeted disease, although changes in the network27
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structure should be monitored for potential vulnerabilities to other diseases. Due to its generality, the28

developed rewiring algorithm could be applied to any network of controlled individual movements liable29

to spread disease.30

Keywords31

Control strategy; Epidemiology; Data-based; Network; Stochastic model32

Abbreviation33

BDNI: Base de données nationale d’identification animale34

Introduction35

Following bovine spongiform encephalopathy and classical swine fever epidemics in the 1990s, the Euro-36

pean Union initiated the mandatory identification and registration of cattle in Europe (EU, 2000). This37

decision led to the creation of national identification databases, such as the cattle tracing system in the38

United Kingdom (Kao et al., 2006, Vernon, 2011), the French national bovine identification database39

(BDNI) (Rautureau et al., 2011, Dutta et al., 2014), the Italian national bovine database (Natale et al.,40

2009, Bajardi et al., 2011) and the database of the Swedish board of agriculture (Nöremark et al., 2009,41

2011). These animal tracing systems have enabled the monitoring of infectious livestock diseases and42

the development of strategies to prevent their spread (Gilbert et al., 2005, Moslonka-Lefebvre et al.,43

2016, Beaunée et al., 2017), since animal trade is a major transmission pathway between herds. Indeed,44

commercial exchanges are not only recorded comprehensively, but also controlled by farmers, unlike an-45

imal mobility in the wild. These databases, whose reliability has increased over time since their creation46

(Green and Kao, 2007), are therefore powerful tools for simulating infectious diseases in cattle (Ezanno47

et al., 2020) and assessing the impact of livestock movements on epidemics (Ezanno et al., 2021).48

The information provided by these commercial animal movements can be used as a basis for repre-49

senting comprehensively the demographic processes and trades between cattle farms located in a given50

region, using a metapopulation framework (Liu et al., 2007, Courcoul and Ezanno, 2010). To this end,51

disease transmission between individuals within a defined set of herds can be modelled, by combining an52

epidemiological model with existing data on births, deaths and movements. This type of models accounts53

at least for two ways of spreading the infection: by contact within a herd, or by actually moving animals54

between herds. This is for instance the case for paratuberculosis, a cattle disease mainly spread by trade55

(Beaunée et al., 2015, Biemans et al., 2021). Manipulating the structure of cattle movement is expected56

to have a direct impact on the latter and an indirect impact on the former.57
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The structure of these trade movements can be understood through the prism of graph theory: herds58

are the vertices of a commercial exchange network, whose edges are the movements of livestock (Dubé59

et al., 2009). Thus, each herd can be characterized using graph metrics, e.g. its in- and out-degree, i.e.60

the number of herds it has respectively bought animals from and sold animals to. Network-based control61

strategies then aim to modify the structure of the network to reduce infection risks. Removing vertices62

(Rautureau et al., 2011, Büttner et al., 2013) or edges (Yang et al., 2013, Green et al., 2009) through63

trade ban or slaughtering is often considered to slow down epidemics. In a context of cattle exchange64

however, preventing farmers from buying or selling livestock entails high economic costs. Therefore, this65

strategy cannot be used routinely, and is likely better suited to the management of regulated diseases,66

the consequences of which are also very costly.67

Edge rewiring is a less radical approach able to balance the trade-off between health risks and economic68

costs. This method corresponds to the modification of one or both vertices that an edge connects (Gross69

et al., 2006, Piankoranee and Limkumnerd, 2020, Britton et al., 2016, Ball and Britton, 2020). Although70

most of the theoretical literature on the subject rather considers rewiring in the context of human contact71

networks, it has also been used to study epidemic spread in cattle movement networks (Gates and72

Woolhouse, 2015, Mohr et al., 2018, Ezanno et al., 2021). For instance, Gates and Woolhouse (2015)73

present a rewiring method that creates an entirely new movement network disconnecting large buyers74

from large sellers, while retaining the total number of animals bought or sold by each herd. This method75

requires information at the network level, the criteria used being the distributions of in- and out-degrees76

of all vertices. Global-level information is also generally required for most rewiring methods in contact77

networks, although Piankoranee and Limkumnerd (2020) proposed a method based on local information.78

In their study, rewiring is decided at the vertex level, according to its status and those of its direct79

neighbours. Controlling cattle movements depending on the sanitary status of their origin has been80

proposed in previous studies, e.g. by Hidano et al. (2016). Their study presents different scenarios81

regarding farmers’ practices, especially their tendency to avoid buying cattle from regions with a higher82

incidence of bovine tuberculosis. The approach presented here is similar, albeit at a finer grain: preventing83

farmers from buying cattle from herds with a higher prevalence of the target disease.84

This study presents a new rewiring method to reduce the spread of infections in a cattle movement85

network. To do this, we developed a rewiring algorithm in conjunction with a simulation model. The86

simulation model coupled demography based on a dataset from the French cattle tracing system (BDNI)87

with a SIRS epidemiological model. The use of such a generalist epidemiological model made it possible88

to simulate a wide range of epidemiological settings, only by varying its parameters. The algorithm89

worked by preventing movements from high- to low-prevalence herds, while maintaining the number of90

animals bought and sold by each farm. It was based on an edge-level criterion: the estimated difference91

in prevalence between the herd of origin and the herd of destination of the movement considered. The92
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following presents the cattle movement network concerned by this study, as well as the model and the93

algorithm. Then, we consider various outputs of runs of the model with or without rewiring, concerning94

the the functioning of the algorithm itself, its impact on the propagation of the infection, and its impact95

on the structure of the network of commercial movements.96

Data and methods97

Cattle movement network98

The dataset used for this study corresponded to an extraction from the French national bovine identifi-99

cation database (BDNI). It concerned all cattle herds in Brittany (a French region) that sold or bought100

at least one animal during the year 2014. This set of 21,548 herds is referred to as the ‘metapopulation’101

thereafter. The database also included commercial exchanges as well as demographic events, all of which102

were referred to as ’movements’ hereafter. Three types of commercial exchanges were considered: (i)103

‘internal movements’ had an origin and a destination among the herds in the dataset, (ii) ‘imports’ had104

only a destination in the dataset and (iii) ‘exports’ had only an origin in the dataset. They represented105

respectively 64%, 16% and 20% of the commercial exchanges involving at least one herd of the dataset.106

Each commercial exchange of animals was assumed to take place directly from one herd to another, ne-107

glecting intermediaries. This means that markets and sorting centres were not considered for this study.108

They differ from herds in that they tend to concentrate a large number of animals, but for a limited109

period of time (less than a day for markets, a few days for sorting centres). Two types of demographic110

events were considered: (iv) births had only a destination, corresponding to the herd where the animal111

was born, and (v) deaths had only an origin, corresponding to the herd where the animal died.112

The dataset was represented as a network with herds and internal movements corresponding to the113

vertices and edges, respectively. This network was (i) dynamic, i.e. movements were characterized by114

the date at which they occurred, (ii) weighted, i.e. a single edge represented the set of all movements115

from herd A to herd B, with a weight corresponding to the number of movements, and (iii) directed,116

i.e. movements from herd A to herd B were accounted for separately from movements from herd B to117

herd A. The network therefore included 21,548 vertices and 100,088 edges. The total number of internal118

movements over 2014 was 206,640, thus the average edge weight was 2.06.119

Epidemiological model: within and between-herd dynamics and infection settings120

The model developed aimed to simulate pathogen transmission within herds, and infection spread between121

herds through cattle movements. A full description of the model is available in Supplementary material 1.122

The model is stochastic in discrete time – each time-step corresponding to a day of 2014 – and in discrete123

space – by integrating the network of herds and movements described above. Commercial exchanges and124
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demography were data-based: movement m was characterized by its origin Om, its destination Dm, its125

date according to the dataset T ∗
m and the date at which it was simulated Tm. By default, movements were126

simulated according to the dataset, i.e. Tm = T ∗
m. Within-herd dynamics were based on a SIRS model127

with three parameters: the infection rate β, the recovery rate γ – therefore the average infection duration128

was 1/γ – and the rate of return to susceptibility δ. At each time-step t, herd h was characterized129

by its number of susceptible, infected and recovered individuals, noted respectively Sh(t), Ih(t) and130

Rh(t). The total herd size Nh(t) was defined as the sum of these three values and infection prevalence as131

Ph(t) = Ih(t)/Nh(t).132

Each simulated infection began with an initial outbreak in a metapopulation without infection, i.e.133

with only susceptible individuals. At t = tI , the date of the outbreak, 10% of all herds in the metapopu-134

lation were infected, by replacing 1 susceptible individual with 1 infected individual in each of the herds.135

The probability of a herd being part of this 10% was proportional to the number of imports in the herd136

according to the 2014 dataset. The rationale was that herds receiving the most individuals from herds137

outside of the metapopulation were the most likely to introduce a new infection.138

Two types of infections were considered for the study: epidemic and endemic. An infection was139

defined as ’epidemic’ if it started at the outbreak, i.e. if t0 = tI . The initial state of the infection was140

then as described above. An infection was defined as ’endemic’ if its start date was five years after the141

outbreak, i.e. t0 = tI+1825 days. The initial state of infection was then the result of a five-year infection,142

simulated using the same epidemiological model and an extraction from the BDNI over Brittany between143

01/01/2009 and 31/12/2013. Endemic simulations for which the infection went extinct before t0 were144

discarded, so that only initial states that were not disease-free were considered.145

Developed rewiring algorithm146

The algorithm developed aimed at preventing movements of cattle from high-prevalence herds to low-147

prevalence herds. Its functioning was based on prevalence classes, numbered from 1 to c. Class i corre-148

sponded to prevalences between bi and bi+1, with the lowest boundary b1 = 0 and the highest boundary149

bc+1 = 1. Each herd was assigned a ‘real’ and an ‘observed’ prevalence status, corresponding to one of150

these classes. The real prevalence status V r
h (t) of herd h at time t was equal to the prevalence class i if151

Ph(t) ∈ [bi; bi+1[, with V r
h (t) = c if Ph(t) = 1. The observed prevalence status was updated periodically,152

every q time-step. If the real status of herd h was observed at time tobs, then its observed status V o
h (t)153

remained the same for q time-steps, i.e. V o
h (t) = V r

h (tobs) for any tobs ∈ [t; t+ q[. No additional errors on154

the status were assumed, so that V r
h (t) always corresponded to the correct prevalence class.155

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 27, 2022. ; https://doi.org/10.1101/2022.08.24.505123doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.24.505123
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sequential rewiring156

The algorithm was executed at each time-step, before the simulation of the epidemiological model. Sup-157

plementary material 2 describes its functioning for a single time-step in pseudo-code. First, the algorithm158

defined all possible quadruplets of prevalence classes {cOR, cDR, cON , cDN}, so that 1 < cON ≤ cDR <159

cOR ≤ cDN < c. The quadruplets were arranged primarily in ascending order of cDR, secondarily in160

descending order of cOR, thirdly in ascending order of cON and fourthly in descending order of cDN . The161

algorithm followed this order, which ensured that no potential rewiring was missed. For each quadruplet,162

the algorithm selected two lists of internal movements set to occur at time t, based on the status of their163

origin and destination. A movement mR was in the first set if V o
OmR

(t) = cOR and V o
DmR

(t) = cDR. This164

movement was considered ‘at risk’ because, as cOR > cDR, the observed prevalence status of their origin165

was greater than that of their destination. A movement mN was in the second set if V o
OmN

(t) = cON166

and V o
DmN

(t) = cDN . This movement was considered ‘normal’, i.e. not at risk, since cON < cDN . For167

k the size of the shortest of the two movement sets, the algorithm permuted the origins of the first k168

movements of each set, so that V o
OmR

(t) = cON and V o
OmN

(t) = cOR. Since cOR ≤ cDN and cON ≤ cDR,169

neither movement was at risk after the permutation.170

Once permutations were performed for each quadruplet, the management of remaining movements at171

risk, i.e. whose origin had a greater observed prevalence status than their destination, depended on two172

parameters: the maximal delay ∆MAX and the prohibition of movements at risk. Remaining movement173

m was postponed, i.e. Tm was increased by 1, if Tm − T ∗
m < ∆MAX . Otherwise, it was tagged as174

‘problematic’. If movements at risk were not completely prohibited, problematic movement m would not175

be modified further. If they were, m would be replaced by an import with Dm as its destination and176

by an export with Om as its origin. Overall, four algorithm parameters had to be defined a priori: the177

number of classes c, the update period q, the maximal delay ∆MAX and whether the movements at risk178

were prohibited.179

Simulations180

Simulations were performed on the dataset between 01/01/2014 (defined as t = 0) and 01/01/2015181

(t = 365). Different epidemiological settings were explored by manipulating the SIRS model parameters182

(β, γ and δ) and infection type (epidemic or endemic). Two clustering analyses were performed on183

the preliminary simulations to define six epidemiological settings (Supplementary material 3): weak,184

moderate and strong epidemic settings and weak, moderate and strong endemic settings (Fig. S2).185

The effectiveness of the algorithm was tested by running simulations with 3× 3× 3× 2 combinations186

of the algorithm parameters, respectively (i) the number of prevalence classes c (2, 3 or 4 classes), (ii) the187

update period q (1, 28 or 91 days), the maximum delay ∆MAX (1, 3 or 7 days) and (iv) the prohibition of188

movements at risk (yes or no). Each combination, as well as a control without rewiring, were simulated189
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Outcomes related to Notation Description
Algorithm nrew(t) Number of movements rewired at time t

ndel(t) Number of delayed movements at time t
nprob(t) Number of problematic movements at time t
nrisk(t) Number of movements at risk at time t
nerr(t) Number of movements undetected as at risk at time t

Infection ninf Number of herd infections
next Number of herds in which the infection goes extinct
adur Average duration of infection
cinc(t) Cumulated incidence at time t
nherd(t) Number of infected herds at time t
nind(t) Number of infected individuals in the metapopulation at time t
aprev(t) Average prevalence in the infected herds at time t

Network nSCC Number of strongly connected components
maxSCC Size of the largest strongly connected component
indh In-degree of herd h
outdh Out-degree of herd h

Table 1: List of the outcomes computed from the simulations. The infection-related outcomes were
computed for each simulation separately. The algorithm and network-related ones were computed for
each simulation with the algorithm.

100 times for each of the six epidemiological settings.190

Preliminary simulations were also carried out for each epidemiological setting between 01/01/2009191

(t = −1825) and 31/12/2013 (t = −1), with an initial outbreak at tI = −1825. On the one hand,192

the number of susceptible, infected and recovered individuals of each herd at t = −1 were used as the193

starting numbers for the endemic simulations (starting at t = 0). On the other hand, the boundaries194

of the prevalence classes bi used by the algorithm were set as quantiles of the distribution of prevalence195

values. If fewer than 1/c herds had a null prevalence, bi was the ((i− 1)/c)
th quantile of the distribution.196

If it was greater than 1/c, b1 = b2 = 0 and bi was the ((i− 2)/(c− 1))
th quantile of the distribution.197

Outcomes and analyses of numerical explorations198

The simulations outcomes are listed in Table 1. They were related either (i) to the functioning of the199

algorithm, (ii) to the infection or (iii) to the network of internal movements modified by the algorithm.200

The algorithm-related outcomes nrew(t), ndel(t) and nprob(t) were computed each time-step after201

rewiring, while nrisk(t) and nerr(t) were computed before. These latter outcomes were computed by202

using the real prevalence status of the herds, rather than the observed ones. A movement m was included203

in nrisk(t) if V r
Om

(t) > V r
Dm

(t), and also included in nerr(t) if V o
Om

(t) ≤ V o
Dm

(t) at the same time. The204

proportion of undetected movements at risk was computed on a weekly basis, to account for intra-week205

variability in the number of livestock movements. Over week w, this proportion perr(w) was :206

perr(w) =

∑7w
t=7(w−1)+1 nerr(t)∑7w
t=7(w−1)+1 nrisk(t)

.

The Spearman’s correlation coefficient ρ between perr(w) and the number of weeks since last update207
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(from 1 to 4 weeks if q = 28 days, from 1 to 13 weeks if q = 91 days) was also computed to assess the208

relationship between errors in herd prevalence status and time. The Spearman’s coefficient was preferred209

because it did not assume any particular distribution of the involved variables.210

The impact of the algorithm on the infection dynamic was estimated through cinc(t), i.e. the cu-211

mulated number of herds newly infected over the simulation. The variations in nherd(t) and nind(t)212

over time are also presented in Supplementary material 4. Besides, the overall impact of the algorithm213

on the infection was assessed using a global multivariate sensitivity analysis, following Lamboni et al.214

(2011) and using the multisensi package of the R software (Bidot et al., 2018). This method allows to215

perform a sensitivity analysis on a multivariate output. For this analysis, twelve variables were derived216

from the infection-related outcomes. The three outcomes computed once per simulation ninf , next and217

adur were used as such. In addition, the maximum, minimum and final values over the whole period218

simulated (respectively noted max(u(t)), min(u(t)) and u(365) for outcome u(t)) of nherd(t), nind(t) and219

aprev(t) were also computed. The analysis included a principal component analysis (PCA) on the scaled220

variables, which were used as the multivariate output for the analysis. The analysis allowed to compute221

two generalised sensitivity indices (GSI) for each algorithm parameter, which were weighted means of222

the sensitivity indices over all the dimensions of the PCA: the total index (tGSI) including interactions223

with other parameters, and the first-order index (mGSI), not including them. The first principal compo-224

nent of the PCA was also used to assess the distribution of the simulations depending on the algorithm225

parameters.226

The network-related outcomes were based on an static view of the network aggregating all the internal227

movements performed during the simulation, from t = 0 to t = 365. Therefore, they took into account the228

rewiring performed by the algorithm, and the potential removal of problematic movements if movements229

at risks were completely prohibited. The outcomes recorded for the modified networks were compared to230

the same metrics for the original network defined by the 2014 dataset. The strongly connected components231

– from which nSCC and maxSCC were computed – corresponded to groups of vertices linked to each other232

by a directed path. The percentiles of the distributions of indh and outdh of all herds in the static network233

were used to assess the in-degree and out-degree distributions, respectively.234

Results235

Outcomes related to the algorithm236

The number of movements rewired varied greatly depending on the date of the outbreak. It was negligible237

in the epidemic settings, with 80% of simulations with a total of rewired movements between 192 (fewer238

than 0.1% of all movements) and 2250 (1.1%). However, it was larger in the endemic settings, with239

80% of simulations with between 17,344 (8.4% of all movements) and 33,640 (16.3%) movements rewired.240
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Besides, increasing the value of ∆MAX logically increased the number of delayed movements (which was241

0 by definition for ∆MAX = 0) and decreased the number of problematic movements. In the endemic242

settings, the problematic movements represented a small proportion of the movements detected as high243

risk (median: 5.4%, 9th decile: 17.4%). In the epidemic settings however, they represented a larger part244

(median: 14.3%, 9th decile: 59.7%), although their absolute numbers remained low (median: 129, 9th245

decile: 651). Because of the overwhelming number of initially non-infected herds in these simulations, the246

movements at risk were likely more difficult to rewire, and thus more likely to be tagged as problematic247

by the algorithm.248

Increasing the herd status update period q was not associated with a decrease in the number of249

rewiring events (Fig. 1A, 1B). The value of q was even rather positively correlated with the number250

of rewiring events in epidemic settings. This suggests that the algorithm performed more erroneous251

rewiring as q increased. This was confirmed by the distributions of Spearman’s correlation coefficient252

between perr(w) and the number of weeks since last update ρ with q = 91 days (Fig. 1D), in endemic253

settings (80% of values of ρ between -0.01 and 0.50) and in endemic settings (80% of values of ρ between254

0.39 and 0.75). This was also somewhat the case with q = 28 days (1C), although the correlation were255

weaker, in endemic (80% of values of values between -0.09 and 0.79) as well as in epidemic settings (80%256

of values of values between -0.05 and 0.34).257

The average proportions of undetected movements at risk perr(w) all tended to increase with the258

Figure 1: Impact of the update period q on the undetected movements at risk, in epidemic (magenta)
or endemic settings (green), weak (light), moderate (medium) or strong (dark). First column: total
number of rewiring events as a function of the update frequency q, averaged over all simulations for
a same algorithm parameter combination, in epidemic (A) and endemic settings (B). Second column:
distribution of Spearman’s correlation coefficients (ρ), with q = 28 days (C) and q = 91 days (D). Third
column: average proportion of undetected movements at risk perr(w) as a function of the number of
weeks since the last update, with q = 28 days (E) and q = 91 days (F).
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number of weeks since the last update w (Fig. 1E, 1F). This increase was systematically greater for the259

largest value of q , up to perr(w) = 0.3. However, they also appeared to have reached a plateau after260

10 weeks. This suggests that a further increase in the update period q would not strongly increase the261

proportion of undetected movements at risk. As for Spearman’s correlation coefficient ρ, the increase was262

greater in endemic settings than in epidemic settings.263

Outcomes related to the infection264

Comparison of the results with and without rewiring showed the overall effectiveness of the algorithm265

in containing the infection (Fig. 2). Regardless of the epidemiological setting and the combination of266

parameters considered, cinc(t) remained systematically lower after rewiring. The algorithm was partic-267

ularly effective in weak and moderate epidemic settings, where very few herds were infected during the268

year. In other epidemiological settings, the impact of the algorithm varied more strongly depending on269

the scenario considered. Results for nherd(t) and nind(t) are presented in Supplementary material 4.270

The algorithm prevented the increase in the number of infected herds in the epidemic setting and even271

decreased their number in an endemic setting (Fig. S3). However, it had little impact on the number of272

infected individuals (Fig. S4).273

The sensitivity analysis showed differences in the relative importance of the algorithm parameters on274

the reduction of the infection (Fig. 3). Three different patterns of sensitivity to the algorithm parameters275

were observed. Firstly, simulations in weak and moderate epidemic settings exhibited an overwhelming276

Figure 2: Cumulated incidence cinc(t), in number of herd infections, as a function of time (t, in days), for
simulations with (colour) or without rewiring (black), in epidemic (1st row, magenta) or endemic settings
(2nd row, green), weak (1st column, light), moderate (2nd column, medium) and strong (3nd column,
dark). Each combination of algorithm parameters is represented by its mean over the repetitions (solid
line) and an interval of 80% of simulations (envelope).
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Figure 3: Generalised sensitivity indices (GSI) of the maximum delay ∆MAX (purple) the number of
prevalence classes c (cyan), the update period q (yellow) and the prohibition of movements at risk (blue),
in epidemic (1st row) or endemic settings (2nd row), weak (1st column), moderate (2nd column) and
strong (3rd column). The total indices (tGSI) are in solid colour and the first-order indices (mGSI) are
hatched.

sensitivity to the prohibition of movements at risk. Secondly, those in strong epidemic or endemic settings277

exhibited a strong sensitivity to the number of prevalence classes c. Finally, those in weak and moderate278

endemic settings exhibited a more balanced sensitivity to all parameters, with a substantial difference279

between total and first-order indices for the maximum delay ∆MAX , the number of classes and the280

prohibition of movements at risk. These differences suggest an interaction between the three algorithm281

parameters. Besides, simulations for every epidemiological setting were somewhat sensitive to the update282

period q.283

The PCA performed as a first step of the sensitivity analysis was used to explore further the way284

algorithm parameters impacted the infection-related outputs. Supplementary material 5 shows that the285

first principal component of the PCA was globally positively correlated with outputs describing the extent286

of the infection. The distributions of simulations along this first principal component therefore provided287

information about the way algorithm parameter values affected the extent of the infection. Supplementary288

material 6 presents these distributions for every epidemiological setting and every algorithm parameter,289

while Fig. 4 displays some of the most relevant distributions. Fig. 4A shows that, in the weak epidemic290

setting, simulations in which movements at risk were prohibited almost always scored lower on the first291

principal component than those in which they were not. The distribution was similar in thre moderate292

epidemic setting (Fig. S6), which had similar sensitivity indices (Fig. 3). Interestingly, distributions293

of simulations in strong epidemic or endemic settings showed that those with c = 2 scored higher on294

their respective first component, while those with c = 3 and c = 4 were not different (Fig. 4B, 4F). A295
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Figure 4: Distribution of the simulations on the first component of the PCA performed as a first step of
the sensitivity analysis, in the weak epidemic setting (A), the strong epidemic setting (B, C), the weak
endemic setting (D, E) and the strong endemic setting (F). The outputs are divided by maximum delay
(purple, D), management of problematic movements (blue, A), number of prevalence classes (cyan, B and
F) and herd status update period (yellow, C and E).

similar pattern was observed with the maximum delay in the weak endemic setting: only simulations296

with ∆MAX = 0 scored higher on the first principal component (Fig. 4D). In the strong epidemic setting,297

the two high-scoring peaks in the distribution according to c (Fig. 4B) corresponded to the simulations298

with q = 28 and q = 91 (Fig. 4C), highlighting an interplay between the number of classes c and the299

update period q. No interplay between ∆MAX and q was visible in the weak endemic setting, although300

Fig. 4E showed that the score of simulations on the first principal component was positively correlated301

with q. Distributions in the moderate endemic setting were similar to those in the weak endemic setting302

(Fig. S6).303

Outcomes related to the movement network304

In endemic settings, rewiring movements increased the in- and out-degrees of the herds, i.e. the number305

of different herds they were connected to (see Supplementary material 7). The increase was small but306

systematic, for every algorithm parameter value (Fig. S7). In addition, the algorithm also affected the307

strongly connected components of the network in endemic settings. On the one hand, the algorithm308

reduced their number, all the more that the infection was strong (Fig. 5). On the other hand, the size of309

the largest strongly connected component was increased in most, but not all simulations (64%, 67% and310
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Figure 5: Distributions of the differences in number of strongly connected components (A, nSCC) and
in size of the largest strongly connected component B, maxSCC) between rewired networks and the
original one from the dataset, for epidemic (magenta) and endemic (green) settings, weak(light), moderate
(medium) and strong (dark).

80% of simulations in low, moderate and high endemic settings, respectively). It should be noted that311

the lesser impact of the algorithm on the network in epidemic settings can be explained by a number of312

rewiring events 25 times smaller on average than in endemic settings.313

Discussion314

This study aimed at developing an algorithm preventing movements at risk in order to reduce the extent of315

infections. Our results show that the rewiring algorithm we developed provided an improvement regardless316

of the disease parameters (infection rate β, recovery rate γ or rate of return to susceptibility δ), although317

differences were observed in its effectiveness between epidemiological settings. Indeed, infections in weak318

or moderate epidemic settings were almost completely prevented for each combination of parameters of319

the algorithm. In the other epidemiological settings, the impact of the algorithm was still significant,320

although weaker for some parameter combinations. However, the decrease in the number of infected herds321

was not necessarily coupled with a decrease in the number of infected individuals. This result highlights322

the tendency of the algorithm to concentrate infected individuals in the already infected herds. The323

algorithm therefore performed a trade-off that was beneficial to the metapopulation as a whole – with324

fewer infected herds – but detrimental to the smaller number of already infected herds, in such a situation325

where movement rewiring is not combined with complementary on-farm measures to reduce within-herd326

infection prevalence.327

Sensitivity analysis on the infection-related outcomes revealed that all four parameters of the algorithm328

were important, but not for all epidemiological settings. Infections that were neither highly virulent329

nor already well established remained fully under control as long as movements at risk were completely330

prohibited, even if they could not be rewired. How these movements were managed seemed less important331

in other cases, in which infections could not be fully contained. The most virulent infections were strongly332
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influenced by the number of prevalence classes defined, which had to be greater than two for the algorithm333

to be effective. Because of the way boundaries between prevalence classes were computed, increasing the334

number of classes tended to limit the lowest prevalence class to (completely or almost) disease-free herds.335

Defining only two prevalence classes likely mixed those herds with somewhat infected ones, thus preventing336

the algorithm from effectively effectively protecting infection-free herds and thereby limiting the spread337

of the infection. Other endemic infections rather depended on an interaction between the parameters,338

but they were especially impacted by the frequency at which the prevalence status of herds were updated,339

as were simulations with a strong epidemic setting.340

The update period had a significant impact on the behaviour of the algorithm, making it more error-341

prone for high values of q. Indeed, the proportion of undetected movements at risk increased with the342

time since the last update, at least up to ten weeks. This result, together with the impact of q on343

infection-related outcomes, indicates that any increase in the update frequency of the status of herds344

should improve the effectiveness of the algorithm. This was not the case for other algorithm parameters.345

For instance, the sensitivity analysis showed that when ∆MAX played a role, reporting movements over346

only a few days – a rather minor constraint – was sufficient to improve the effectiveness of the algorithm.347

Similarly, considering only three prevalence classes reduced the extent of infections in strong epidemic348

or endemic settings. Conversely, increasing the frequency to daily updates was necessary for maximum349

algorithm effectiveness, but would likely entail significant costs. Bulk milk-based sampling systems could350

be used for some diseases in cattle (e.g. Garoussi et al., 2008, Humphry et al., 2012, with bovine viral351

diarrhoea), but daily prevalence estimation might be outright impossible for others.352

Concentrating the prevalence estimation efforts on a few selected herds is a potential way to reduce the353

sampling costs associated with the algorithm while maintaining its effectiveness. Although the network354

metrics were not used to drive the algorithm itself, they could be useful for this selection. Indeed, it is355

expected that the central herds in the network, i.e. those through which a large proportion of animal356

movements pass, will play a more important role in the spread of infection (Rautureau et al., 2011, Natale357

et al., 2011). This rationale is notably the one used for rewiring in the study of Gates and Woolhouse358

(2015). Recently, Hoscheit et al. (2021) reviewed different centrality measures in the BDNI, while taking359

into account the dynamic nature of the movement network. Among them, the TempoRank index would360

for example be a good candidate for selecting a subset of herds to be specifically monitored and to which361

to apply the rewiring algorithm. By targeting specific movements from or to specific herds, the impact362

on the network structure would be minimal, while potentially keeping a substantial impact on disease363

spread risks.364

It should be noted that the impact of the algorithm on the structure of the commercial network365

was already limited, as it targeted a few movements only: less than 20% of the movements for endemic366

infections and less than 2% of them for epidemic infections. Nevertheless, it seems that this rewiring367
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method tended to increase the overall connectedness of the herds during endemic infections. Indeed, the368

increases in degrees and size of the largest strong component indicate that the algorithm connected herds369

that were originally not so. These metrics are generally correlated with higher expected epidemic risks370

(Kiss et al., 2006, Dubé et al., 2009). This is however not the case in this context, as these changes371

result from a trade-off made by the algorithm to prevent the single simulated disease. However, such372

a rewiring in a real-world context would also have to take into account the potentially increased risks373

of other diseases, whose spread could be facilitated. The algorithm could be extended to assess several374

diseases at once, but the additional constraints would probably reduce its effectiveness.375

For this study, the network-related outcomes concerned only internal movements, i.e. between herds376

located in Brittany. However, the simulations also took into account interactions with herds located377

outside Brittany. More precisely, 20% of all movements whose destination was in the metapopulation had378

an origin outside the metapopulation, and 25% of all movements whose origin was in the metapopulation379

had a destination outside of it. On the one hand, this confirms that the movements at risk that could not380

be rewired could probably be replaced by an import and an export if necessary, since those movements381

are already rather common. On the other hand, all imports were presumed to never be movements382

at risk, i.e. that the prevalence status of their origin was never higher than that of their destination.383

This assumption is not trivial, as it assumes that imports did not create greater infection risks than384

internal movements. In a real-life context, the additional risk because of imports would also have to be385

taken into account and possibly managed in another way. More generally, the proportion of movements386

with an origin outside of the metapopulation is expected to decrease when the number of herds in the387

metapopulation increase. Extending the use of such an algorithm to a national scale, rather than a single388

region, could therefore mitigate this problem.389

The present study builds upon the results from Ezanno et al. (2021), and confirms the effectiveness390

of a rewiring method based on targeted movements beyond the specific case of bovine paratuberculosis.391

Indeed, the algorithm presented by Ezanno et al. (2021) was developed specifically to address the control392

of bovine paratuberculosis, notably characterized by an endemic status in France and a low detection393

rate. To do so, they used a specific age-structured epidemiological model (Camanes et al., 2018) and394

an algorithm calibrated to target the disease. This was also the case for instance of Mohr et al. (2018),395

which specifically targeted foot-and-mouth disease. Conversely, the present study aimed at assessing more396

comprehensively the effectiveness of the algorithm. Therefore, it was tested for different epidemiological397

settings – both endemic and epidemic – using a non-specific epidemiological model, and for broad range398

of parameter values. Ezanno et al. (2021) highlight the low effectiveness of rewiring for low evolving399

diseases, but our study shows its relevance in other types of infections.400

Although the study here show the effectiveness of rewiring on historical data from the BDNI, the401

algorithm could also be used prospectively as part of decision-making tools. Indeed, the rewiring method402
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could work without any simulation of infection, if herd statuses were provided otherwise. Given these403

statuses and the potential movements to occur, the algorithm would also suggest necessary changes to404

prevent movements at risk. In this context, the implementation of these changes would also depend on405

the actual decision of the informed farmers. Unless rewiring is enforced, it is expected that constraints406

other than sanitary ones would affect movements, which would impact the effectiveness of the algorithm.407

Coupling it with a decision-making model could provide additional insight on this impact. In order to408

make it easier to use as part of such decision-making tools, the algorithm has been specifically designed409

to be able to include additional, different constraints. Additional criteria, e.g. concerning the breed or410

sex of the animals, could be added easily by providing the algorithm with movements for individuals in411

each category separately. Depending on their number, however, such criteria would reduce the rewiring412

possibilities of the algorithm, which could reduce its efficiency.413

This study demonstrates the effectiveness of a rewiring method targeting specific movements to reduce414

infection risks. Our approach thus differs radically from that presented by Gates and Woolhouse (2015),415

as it also aims at generating minimal changes in the structure of the movement network. Although the416

algorithm was tested on a cattle movement network, it is applicable to a much wider range of networks417

in animal and plant populations, e.g. among seed exchange networks, which face similar infection risks418

(Jeger et al., 2007, Pautasso et al., 2010). While the need for controlled movements makes this method419

more relevant to agricultural systems, the spatial and temporal scales considered can also be adapted420

depending on the context. Indeed, the daily time-step and the region level were used here as they421

correspond to the BDNI data structure, but are not necessary for the algorithm to work. The usefulness422

of our rewiring method could therefore extend beyond cattle concerns, even though the effectiveness of423

the algorithm in other contexts remains to be tested.424
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