New Results
Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data
Ruohan Wang, View ORCID ProfileJianping Wang, View ORCID ProfileShuai Cheng Li
doi: https://doi.org/10.1101/2022.08.26.505382
Ruohan Wang
1City University of Hong Kong, Department of Computer Science, Hong Kong, 999077, China
Jianping Wang
1City University of Hong Kong, Department of Computer Science, Hong Kong, 999077, China
Shuai Cheng Li
1City University of Hong Kong, Department of Computer Science, Hong Kong, 999077, China

Article usage
Posted August 26, 2022.
Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data
Ruohan Wang, Jianping Wang, Shuai Cheng Li
bioRxiv 2022.08.26.505382; doi: https://doi.org/10.1101/2022.08.26.505382
Subject Area
Subject Areas
- Biochemistry (10729)
- Bioengineering (8006)
- Bioinformatics (27168)
- Biophysics (13930)
- Cancer Biology (11079)
- Cell Biology (15984)
- Clinical Trials (138)
- Developmental Biology (8757)
- Ecology (13228)
- Epidemiology (2067)
- Evolutionary Biology (17308)
- Genetics (11663)
- Genomics (15877)
- Immunology (10986)
- Microbiology (25979)
- Molecular Biology (10600)
- Neuroscience (56314)
- Paleontology (416)
- Pathology (1727)
- Pharmacology and Toxicology (2998)
- Physiology (4528)
- Plant Biology (9583)
- Synthetic Biology (2668)
- Systems Biology (6956)
- Zoology (1507)