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Abstract

Recent theoretical work on phylogenetic birth-death models offers differing viewpoints
on whether they can be estimated using lineage-through-time data. Louca and Pennell
(2020) showed that the class of models with continuously differentiable rate functions
is nonidentifiable: any such model is consistent with an infinite collection of alternative
models, which are statistically indistinguishable regardless of how much data are collected.
Legried and Terhorst (2021a) qualified this grave result by showing that identifiability
is restored if only piecewise constant rate functions are considered.

Here, we contribute new theoretical results to this discussion, in both the positive
and negative directions. Our main result is to prove that models based on piecewise
polynomial rate functions of any order and with any (finite) number of pieces are
statistically identifiable. In particular, this implies that spline-based models with an
arbitrary number of knots are identifiable. The proof is simple and self-contained,
relying only on basic algebra. We complement this positive result with a negative
one, which shows that even when identifiability holds, rate function estimation is still
a difficult problem. To illustrate this, we prove some rates-of-convergence results for
hypothesis testing procedures on birth-death histories. These results are information-
theoretic lower bounds, which apply to all potential estimators of birth-death models.

1 Introduction

The linear birth-death (BD) process (Feller, 1939; Kendall, 1948) has been used to study
population growth in a variety of settings. Recently, in phylogenetics, it has also served
as a model of tree formation, by viewing the surviving lineages of a tree as members of
population, which randomly give birth to other lineages, or go extinct. Often, the rates at
which these “births” and “deaths” occur in a phylogeny touch on important evolutionary
questions. For example Nee et al. (1994); Quental and Marshall (2010); Morlon et al. (2011)
used phylogenetic BD models to study extinction and speciation dynamics; Gernhard (2008);
Heath et al. (2014) used them to calibrate divergence times; and Stadler (2009, 2010); Stadler
et al. (2013) investigated the dynamics of pathogens in an infection tree. Estimating the
rate at which lineages are born and die in an observed phylogeny is not trivial: deaths are
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not recorded at all, and the apparent rate of births will also be biased downwards, because
some species went extinct before the present, or were simply not sampled. The birth-death
model of tree formation provides a principled way to correct these biases.

Despite its widespread use, serious questions have recently been raised about whether it
is even possible to estimate this model from phylogenetic data. Stadler (2009) showed that
even when the birth and death rates are assumed constant over time, the birth-death model
with present-day sampling fails to be identifiable if the sampling probability is not known in
advance. That is, multiple distinct models produce exactly the same distribution over the
observable data. Other studies have incorporated time-varying per capita birth and death
rates in attempting to be more biologically realistic (Stadler et al., 2013). However, Louca
and Pennell (2020) have recently shown that birth-death models with smoothly varying rate
functions are unidentifiable from extant timetrees, meaning they cannot be reliably estimated
using any amount of data.

In Legried and Terhorst (2021a), this grave finding was partly qualified by showing
that a smaller class of candidate models, consisting of birth and death rates which are
piecewise constant, is identifiable given a sufficiently large timetree. This sample size is small
enough for many applications, such as the phylodynamic analysis of pathogens. A potential
objection is that the class of piecewise-constant models considered by Legried and Terhorst
(2021a) might not be sufficiently large if one believes that the birth and death rates could be
continuous or satisfy other smoothness criteria. A partial response to this issue is given in
their Theorem 5. Broadly speaking, that result states that any unidentifiable, but reasonably
smooth, model can be approximated by an identifiable one. However, there is a sampling size
requirement to have provable identifiability that diverges as the approximation error goes to
zero. In their Conjecture 6, they suggest that their results extend to models with piecewise-
polynomial (or spline) birth and death rates, with a similar sampling requirement to the
piecewise-constant case. Resolution of this conjecture would give a sampling requirement
for polynomial birth and death rates to be identifiable, but mathematical difficulty left the
question open.

In this paper, we prove the following stronger version of their Conjecture 6: piecewise-
polynomial models defined on an arbitrary (but finite) number of pieces are identifiable from
extant timetree data. Further, the sample size requirement is removed, as we now possess
a refined view of what constitutes a sample in this model. Besides removing the sampling
requirement, our results demonstrate that it is not the presence of jump discontinuities
that leads to identifiability. Indeed, our main result (Theorem 1) establishes the existence of
identifiable model classes containing smooth (C∞) birth and death rate functions. The proof
relies on the fact that polynomials, uniquely and by definition, have finite power series. In
contrast, the proof technique of Legried and Terhorst (2021a) depends on solving a certain
differential equation satisfied by the rate functions, which is difficult to extend to functions
that are not constant.

Identifiability is a minimal regularity criterion which must be possessed by any useful
statistical model. Even when it holds, estimating rate functions from an extant time-tree
is often difficult. Using methods from survival analysis (and following techniques developed
by Kim et al., 2015; Legried and Terhorst, 2021b) we go on to show that hypothesis testing
for constant rates requires substantial data, given quantitatively in the upcoming Theorems.
This is an information-theoretic result, which extends to all potential estimators of the
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model. Moreover, as these results assume perfect knowledge of the underlying time-tree, the
problem could in fact be much harder given limited or error-prone data.

2 Background

Let an extant timetree with N ≥ 2 leaves be given. Under this assumption, there are N − 1
branching times. The timetree is extant in that it traces out the observed ancestry of the
sample. The branching times are denoted τ1 > ... > τN−1 > 0 where τi is the time of the
ith branching point. These times are expressed looking backwards, with time 0 being the
present and any positive time being the amount of time in the past. All N leaves are taken
to be sampled in the present; that is, at time 0. There is also a source node called the origin,
whose age is τo. In practice, extant timetrees are observed conditionally on non-extinction
of the birth-death process up to the present. Taking τo as either random or deterministic,
we condition on survival of the population for a period of length τo.

Extant timetrees are modeled using a linear birth-death (BD) process. Three parameters
determine the dynamics. Two of them are the per-capita birth and death rate functions
λ : R≥0 → R>0 and µ : R≥0 → R>0. At each time looking in the past, λ and µ give
the instantaneous rate that a given lineage gives birth to a new lineage or dies. The third
parameter ρ ∈ (0, 1] is the sampling probability. Each lineage surviving to the present is
considered extant with probability ρ independently of all other surviving lineages. The triple
(λ, µ, ρ) determines a BD process.

Next, we describe the function space where the birth and death rate functions come from.
In this work, we study the case where they are given by piecewise-polynomial functions over
the interval [0, τo]. Let P denote the set of all polynomials with real coefficients, i.e.

f ∈ P ⇐⇒ ∃n ∈ Z≥0, a ∈ Rn+1 such that f(x) = a0 + a1x+ · · · anxn.

Definition 1. Let P(⊕K)[0, τo] be the collection of piecewise polynomials with K internal
breakpoints defined over [0, τo]:

P(⊕K)[0, τo] =

{
K∑
k=1

pk(t)1[tk−1,tk)(t) : pk ∈ P , 0 = t0 < t1 < ... < tK = τo

}
.

(The breakpoints t0, . . . , tK may vary between members of P(⊕K)[0, τo].) Let P(⊕)[0, τo] =⋃∞
K=1 P(⊕K)[0, τo] be the set of piecewise polynomials with any finite number of pieces.

Similarly, we define the positive subset of these polynomials, P(⊕)
+ [0, τo] ⊂ P(⊕)[0, τo], by

P(⊕)
+ [0, τo] =

{
p ∈ P(⊕)[0, τo] : inf

t∈[0,τo]
p(t) > 0

}
.

We now define the corresponding collection of models consisting of piecewise-polynomial
birth and death rates. In the results that follow, we assume that ρ is known. If ρ is left to be
estimated, then the triple (λ, µ, ρ) fails to be identifiable even in the case where λ and µ are
assumed constant (Stadler, 2009; Stadler and Steel, 2019). Thus, the model class of interest
supposes the sampling probability ρ is known in advance. There are several equivalent ways
to define the phylogenetic BD model. In this paper, we find it convenient to work in the
following parameterization.
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Definition 2. Let

Iρ =
{
(λ, r, ρ) : λ ∈ P(⊕)

+ [0, τo], r ∈ P(⊕)[0, τo], λ− r ≥ 0
}

be the space of all piecewise-polynomial BD parameterizations with birth rates λ ∈ P(⊕)
+ [0, τo],

net diversification rates r ∈ P(⊕)[0, τo], and fixed sampling fraction ρ ∈ (0, 1].

Note that elements of the model class Iρ are in 1–1 correspondence with models defined
by the more common birth/death rate parameterization, via the identity r = λ − µ. The
function r is commonly referred to as the net diversification rate (Rabosky, 2010).

Louca and Pennell (2020) consider a new quantity called the pulled speciation rate λp,
defined as

λp(t) = λ(t) [1− E(t)] , (1)

where E is the probability that a lineage that exists at time t goes extinct by the present.
The extinction probability E satisfies the differential equation

dE

dt
= µ− (λ+ µ)E + λE2,

with initial condition E(0) = 1− ρ (Morlon et al., 2011). This Bernoulli-type equation has
the solution

E(t) = 1− eR(t)

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

, (2)

where

R(t) =

∫ t

u=0

r(u) du (3)

is the cumulative net speciation rate. Thus,

λp(t) =
λ(t)eR(t)

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

. (4)

The cumulative integral Λp is given by

Λp(t) =

∫ t

u=0

λp(u) du.

Finally, we write the likelihood of a timetree. For the phylogenetic BD process, the
likelihood depends only on the number and timing of branching events, and is independent
of the tree topology (Nee et al., 1994; Morlon et al., 2011). Given that the number of tips
is N and the process survives to the present over a period of length τo, (Louca and Pennell,
2020, supp. eqn. 34) show that the likelihood of a tree with bifurcation times τ1, ..., τN−1 is

L(λp)(τ1, ..., τN−1|τo) ∝
N−1∏
i=1

λp(τi)e
−Λp(τi), τo > τ1 > · · · > τN−1. (5)
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From the preceding display, it is clear that a sample of merger times (τ1, . . . , τN−1) from an
extant timetree can be equivalently viewed as the order statistics of N − 1 i.i.d. draws from
a distribution with density

f(x) ∝ λp(x)e
−Λp(x) (6)

supported on [0, τo], and that λp is the hazard rate function of this distribution. (See Section
5.2.1 for additional discussion.) Thus, λp completely characterizes the distribution of merger
times in a timetree, and different BD models have different likelihoods if and only if their
respective pulled rate functions are not equal almost everywhere on [0, τo]. Moreover, subject
to standard regularity conditions on hazard rate functions, λp (at least) can be consistently
estimated from a timetree as the number of leaves N tends to infinity.

3 Results

We first show that piecewise polynomial phylogenetic birth-death models are identifiable from
time-tree data, meaning that that different models in Iρ have different likelihood functions.
As noted in the preceding section, it suffices to prove that different models possess different
pulled rate functions.

Theorem 1 (Identifiability of piecewise polynomial BD models). Let M1 = (λ(1), r(1), ρ)

and M2 = (λ(2), r(2), ρ) be two models in Iρ. Then λ
(1)
p = λ

(2)
p if and only if M1 = M2.

1

Theorem 1 is the main result of this paper, and should be contrasted with that of Louca
and Pennell (2020). There, it is shown that, within the model class consisting of continuously
differentiable birth and death rate functions, there are infinitely (in fact, uncountably) many
pairs of such functions which all map to the same pulled rate function. Hence, statistical
estimates of λp, even if they were somehow uncontaminated by error, do not automatically
translate into accurate estimates of the underlying rate functions. The best one can hope
for is to estimate an equivalence or “congruence” class of rate functions, whose members
can be qualitatively quite different, as Louca and Pennell exhibit. Theorem 1 asserts
that this unfortunate situation cannot occur if one places additional and somewhat mild
assumptions on the model class: different models in Iρ have different pulled rate functions,
and conversely. This is a fairly strong result, for it asserts that every unique piecewise-
polynomial rate parameterization corresponds to a different pulled rate function. Hence, the
number and placement of break points, as well as the underlying rates themselves, can, at
least in principle, all be estimated given a sufficiently large time tree.

However, this seemingly positive outlook does not paint the full picture. In Section 4,
we demonstrate that phylogenetic BD models can fail to be “practically” identifiable, in the
sense that it may be impossible to ascertain the correct model given a realistic amount of
data. To formalize this, we consider a testing problem where the task is to choose between
two competing models which are hypothesized to have generated the data. One hypothesis is
H1 : (λ, r, ρ), where now the rate functions λ and r can be arbitrary, and are not restricted in
form as in Theorem 1. The second hypothesis differs from the first by only a multiplicative

1Throughout the paper, we take f = g to mean that the rate functions f and g are equal almost everywhere
with respect to Lebesgue measure.
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perturbation of the birth-rate function, H2 : ((1 + η)λ, r, ρ), where η > 0 is a constant.
Intuitively, if η is too small relative to the amount of data that has been collected, then it is
difficult to distinguish between H1 and H2. Our next result quantifies this intuition.

Theorem 2. Consider the hypothesis testing problem where H1 states that the birth-death
model over [0,∞) is (λ, r, ρ) while H2 states that the birth-death model is ((1 + η)λ, r, ρ),
where η > 0 is a constant. If an extant timetree on N leaves is observed, then for sufficiently
small η, the Bayes error rate for distinguishing between H1 and H2 is at least (1 − Υ)/2,
where

Υ ≤
√
Nη

2
. (7)

We prove a complementary result for when the net diversification rate r is scaled.
However, for technical reasons, we are forced to make the strong assumption that λ and
r are constant when proving this theorem.

Theorem 3. Consider the hypothesis testing problem where H1 states that the birth-death
model over [0,∞) is (λ, r, ρ) while H2 states that the birth-death model is (λ, (1 + η)r, ρ),
where both λ and r are constant over time, and η > 0 is a constant. If an extant time tree
on N leaves is observed, the for sufficiently small η, the Bayes error rate for any classifier is
at least (1−Υ)/2, where

Υ ≤
√
Nη

2
.

Since the Bayes error rate lower bounds classification accuracy, the theorems imply that
the probability of correctly determining whether the timetree was generated by H1 or H2 is
at most (1+Υ)/2 using any method. The key feature of the bounds is that they degrade in
only the square root of the size of the time-tree N . Hence, unless N ≫ 1/η2, no procedure
can distinguish between H1 and H2 with high probability.

4 Discussion

In this paper, we have derived new theoretical results concerning estimation of phylogenetic
birth-death models using time-tree data. Our main result, Theorem 1, establishes identifiability
of phylogenetic BD models parameterized by piecewise polynomial rate functions. One
implication that may be surprising is that there exist identifiable classes of birth-death models
with smoothly varying birth and death rates that are not purely constant. In particular,
spline rate functions are identifiable. Splines are piecewise polynomials with additional
smoothness constraints, and are widely used to model natural systems.

Theorem 1 improves on an earlier result of Legried and Terhorst (2021a), who established
identifiability of piecewise constant BD models; we obtain their result as a special case.
However, the sampling models underlying the two results are slightly different. Legried and
Terhorst (2021a) assume access to a finite collection of moments of merger times (τ1, . . . , τN),
the number of which increases with the number of piecesK of the rate functions. Conceivably,
these could be estimated using a large collection of independent time trees all of size N .
Here, we assume access to the complete distribution of (τ1, . . . , τN), which, as noted above,
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Figure 1: Identifiable versus unidentifiable models. The top row contains four unidentifiable
models shown in Figure 1 of Louca and Pennell (2020). Each color-coded (λ, µ) pair in
the top maps to the same pulled rate function; hence they are indistinguishable. In the
bottom row, we approximated these functions using interpolating cubic splines, with knots at
t = 15, 14, . . . , 0. According to Theorem 1, these models have different pulled rate functions,
and may be distinguished in the infinite-data limit.

is given essentially by the density f(x) in equation (6). This scheme is more in keeping with
the model studied by Louca and Pennell (2020), where there is a single time-tree tending in
size to infinity.

To better understand the relationship between Theorem 1 and the non-identifiability
result of Louca and Pennell, consider Figure 1. The top row is adapted from Figure 1 of
their paper, and depicts four pairs of (λ, µ) rate functions which all have the pulled sampling
rate λp. In the bottom row, we approximated each of these functions using a cubic spline,
with sixteen knots placed at t = 15, . . . , 0. The models shown in the bottom row are
identifiable; the ones in the top are not. Note that there are some visual differences between
the two panels; for example the speciation rates of the rate and green models intersect in
the top row, whereas the spline smoothness constraints prevent them from doing so in the
bottom. (For illustrative purposes, we used a very simple interpolating spline with equispaced
knots; a closer approximation could be obtained using a more complex fitting procedure.)
Practitioners must decide if the spline model class (or a related class of identifiable models)
can faithfully model population dynamics in their application.

The results we present here restore to some extent the mathematical footing beneath
the many published studies that have utilized the linear birth-death process to describe
evolution. However, identifiability is a minimal regularity condition one can impose on a
statistical model, and estimation remains challenging. To see this, consider now Figure 2,
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Figure 2: The pulled rates of speciation and net diversification for each of the spline models
shown in the bottom row of Figure 1. The sampling fraction was ρ = 0.5 in each model.

which plots the pulled speciation and net diversification rates for each of the spline-based
models from Figure 1. By Theorem 1, these functions are necessarily different—but in terms
of estimation, the important question is how different they are. It is evident from Figure 2
that distinguishing the green model from the other three is probably feasible. In contrast,
the red and orange models appear almost identical in terms of λp, and identifying which of
them generated a particular data set is likely to be difficult given a realistic amount of data.

This leads to our second set of results, Theorems 2 and 3, which study the hardness of
distinguishing between competing BD hypothesis using only a finite amount of data. We
prove that even answering the relatively simple question of whether the data are generated
by a particular model, or one in which its rate function(s) are a scalar multiple of it, scales
poorly in the time-tree size N . (This theoretical limitation is also found in coalescent models,
see Kim et al., 2015.) As Figure 2 already suggests, the question of when practical estimation
is possible is likely to be quite subtle even in identifiable model classes. Much more deserves
to be said, and this is an important area for future research.

Finally, an obvious caveat to the results we have presented is that it may not be possible
to estimate λp in the first place. As noted in Section 1, inferring λp is tantamount to
estimating the hazard rate function of the distribution shown in (5). If it were possible to
directly sample from this distribution, estimation of λp would be routine, however this is
not possible in practice. Rather, one must first estimate the time-tree itself, and then treat
the estimated merger times as though they were samples from (5). Tree inference is itself a
difficult problem, and often these estimates contain considerable error, so it is not obvious
that such a procedure leads to accurate downstream estimates of the underlying BD model,
even in the infinite-data limit.

The assumption that λp is known colors our results as follows. First, it implies that the
lower bounds derived in Theorems 2 and 3 are likely not sharp, even for identifiable model
classes, and that inferring phylogenetic BD models can be even harder than is indicated by
theorems. Conversely, it qualifies Theorem 1 somewhat, since the theorem does not resolve
the question of whether phylogenetic BD models are identifiable on the basis of the observed
data. In this sense, unidentifiability results like those derived in Stadler (2009); Louca and
Pennell (2020) are stronger, since they imply that the model cannot be estimated even if
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we somehow had direct access to the underlying time-tree. We note in closing that there is
a growing literature on phylogenetic identifiability (e.g., Rhodes and Sullivant, 2012; Mossel
and Roch, 2013), which derives conditions under which it is possible to consistently estimate
an underlying phylogeny given character data evolving along its branches. If it can be shown
that an asymptotically expanding time tree of the variety considered here is estimable,
it would, together with our results, automatically imply identifiability of polynomial rate
functions from character data.

5 Proofs

This section contains the proofs of Theorems 1, 2 and 3.

5.1 Polynomial identifiability

In this subsection, we prove Theorem 1. We start with the case of polynomial models.

Lemma 1. Consider two models (λ(1), r(1), ρ) and (λ(2), r(2), ρ) where λ(i), r(i) ∈ P are
polynomials with inft∈[0,τo] λ

(i)(t) > 0, and define

p = λ(2)
[
λ(1)

]′ − λ(1)
[
λ(2)

]′
+ λ(1)λ(2)(r(1) − r(2)) ∈ P . (8)

If u is a limit point of the set {t : λ(1)
p (t) = λ

(2)
p }, then p(u) = 0. In particular, if there are

infinitely many such points, then p ≡ 0.

Proof. For any such u, we have by continuity

0 = λ(1)
p (u)− λ(2)

p (u) =
d

dt

[
log λ(1)

p (t)− log λ(2)
p (t)

]∣∣
t=u

.

By (4),

d

dt
log λp(t) =

λ′(t)

λ(t)
+ r(t)− d

dt
log

(
ρ−1 +

∫ t

u=0

λ(u)eR(u) du

)
=

λ′(t)

λ(t)
+ r(t)− λp(t).

Thus [
λ(1)

]′
(u)

λ(1)(u)
+ r(1)(u)−

[
λ(2)

]′
(u)

λ(2)(u)
− r(2)(u) = 0.

Clearing denominators gives p(u) = 0. If there are infinitely many limit points, then p has
infinitely many zeros and is hence identically zero.

Our main new technical result is the following sufficient condition for equality of two
polynomial models, which works by an algebraic argument.

Proposition 1. Let (λ(1), r(1), ρ), (λ(2), r(2), ρ), and p be as defined in Lemma 1. If p ≡ 0,
then (λ(1), r(1)) = (λ(2), r(2)).
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Proof. By assumption, for i ∈ {1, 2} there exist non-negative degrees deg λ(i) = mi and

deg r(i) = ni and real coefficients λ
(i)
j and r

(i)
j , with λ

(i)
mi ̸= 0 such that

λ(i)(t) =

mi∑
j=0

λ
(i)
j tj

r(i)(t) =

ni∑
j=0

r
(i)
j tj.

We first establish r(1) = r(2). Define n = max(n1, n2). If n = −∞ then r(1) = r(2) ≡ 0 and
there is nothing left to show. Otherwise, let

q(t) = r(1) − r(2) =
n∑

j=0

(
r
(1)
j − r

(2)
j

)
tj =:

n∑
j=0

qjt
j, (9)

where we set r
(i)
j = 0 for all j > ni. In order to prove r(1) = r(2), it suffices to show that the

coefficients qj = 0 for all j ∈ {0, . . . , n}.
Next, define the polynomials

p1 = λ(2)
[
λ(1)

]′
p2 = −λ(1)

[
λ(2)

]′
p3 = qλ(1)λ(2), (10)

so that
p1 + p2 + p3 = p ≡ 0. (11)

We observe that deg(p1 + p2) ≤ m1 +m2 − 1, and that p3 is a polynomial of degree at most
m1 +m2 + n:

p3(t) =

m1+m2+n∑
j=0

γjt
j,

for some γ0, . . . , γm1+m2+n ∈ R. Hence, by (11),

γm1+m2+n = γm1+m2+n−1 = · · · = γm1+m2 = 0. (12)

We proceed to establish that qn−j = 0 for 0 ≤ j ≤ n by induction on j. For the base case
j = 0, we have by (10) that the leading coefficient of p3 equals the product of the leading
coefficients of λ(1), λ(2), and q:

γm1+m2+n = qnλ
(1)
m1

λ(2)
m2

. (13)

Since λ
(i)
mi ̸= 0, it must be that qn = 0.

Now suppose the claim is true for all 0 ≤ j < k. By the convolution rule for polynomial
multiplication, we have

γm1+m2+n−k =
∑

(u,v,w)∈S

quλ
(1)
v λ(2)

w ,

10
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where the summation is over the index set

S =
{
(u, v, w) ∈ Z3 : u+ v + w = m1 +m2 + n− k, u ∈ [0, n], v ∈ [0,m1], w ∈ [0,m2]

}
.

We partition S into disjoint subsets

S ′ = {(u, v, w) ∈ S : u > n− k}
S ′′ = {(u, v, w) ∈ S : u = n− k} = {(n− k,m1,m2)}.

By the inductive hypothesis, ∑
(u,v,w)∈S′

quλ
(1)
v λ(2)

w = 0,

so that
γm1+m2+n−k =

∑
(u,v,w)∈S′′

quλ
(1)
v λ(2)

w = qn−kλ
(1)
m1

λ(2)
m2

.

This together with (12) implies that qn−k = 0. Hence q = 0, so r(1) = r(2).
We conclude by showing that λ(1) = λ(2). Since q = 0, we have p1 = −p2 by (11).

Therefore,

d

dt
log λ(1) =

[
λ(1)

]′
λ(1)

=

[
λ(2)

]′
λ(2)

=
d

dt
log λ(2) =⇒ λ(1) = Cλ(2)

for some constant C > 0. Define

e(t) =

∫ t

0

λ(2)(s)eR
(2)(s) ds,

and let z ∈ [0, τo] be a zero of λ
(1)
p − λ

(2)
p . Noting that e′(z) > 0, we have that

Ce′(z)

ρ−1 + Ce(z)
= λ(1)

p (z) = λ(2)
p (z) =

e′(z)

ρ−1 + e(z)

implies C = 1.

The preceding results immediately yield the following corollary on identifiability for
polynomial models.

Proposition 2. Let (λ(1), r(1), ρ) and (λ(2), r(2), ρ) be as defined in Lemma 1. If (λ(1), r(1)) ̸=
(λ(2), r(2)), then λ

(1)
p (t) ̸= λ

(2)
p (t) almost everywhere on [0, τo].

Proof. By Lemma 1 and Proposition 1, the set {t : λ
(1)
p (t) = λ

(2)
p (t)} contains at most a

finite number of limit points, so it is null. Therefore, its relative complement in [0, τo] has
full measure.

Using Proposition 2, to we can prove Theorem 1 for piecewise-polynomial birth and
death rates on an arbitrary number of pieces. The proof is an extension of Proposition A.5
in Legried and Terhorst (2021a).
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Proof of Theorem 1. The “if” direction is immediate. To establish the “only if” direction,
we show its contrapositive:

(
λ(1), r(1)

)
̸=

(
λ(2), r(2)

)
implies λ

(1)
p ̸= λ

(2)
p on a set of positive

measure. We may assume that the two models are defined on the same set of breakpoints,
0 = t0 < · · · < tK = τo, since this can always be achieved by increasing K. Then there exists
a non-empty interval [u, v) ⊂ [0, τo] such that

1.
(
λ(1)(s), r(1)(s)

)
=

(
λ(2)(s), r(2)(s)

)
for all 0 < s < u;

2.
(
λ(1)(s), r(1)(s)

)
̸=

(
λ(2)(s), r(2)(s)

)
for all s ∈ [u, v); and

3. [u, v) ⊂ [tk, tk+1) for some k.

(We could have u = 0, rendering the first condition vacuous.) Let the birth and net

diversification rates for the two models over [u, v) be denoted λ
(i)
k and r

(i)
k , respectively.

Recall the function E(t) defined in equation (2). Because E is continuous and E(1)(0) =
E(2)(0) = 1− ρ, condition (1) above implies that E(1)(u) = E(2)(u) = 1− ϵ ∈ (0, 1) for some
ϵ. Define the shifted models (π(i), q(i), ϵ) for i ∈ {1, 2}, where

π(i)(t) = λ
(i)
k (t+ u)

q(i)(t) = r
(i)
k (t+ u).

Denote the corresponding pulled rate functions π
(i)
p , so that π

(i)
p (t) = λ

(i)
p (t + u) for t ∈

[0, v − u). By Proposition 2, π
(1)
p ̸= π

(2)
p almost everywhere on [0, v − u). The same is

therefore true of λ
(1)
p and λ

(2)
p on [u, v).

5.2 Lower bounds

In this section, we prove Theorems 2 and 3. Subsections 5.2.1 and 5.2.2 contain some
necessary background and definitions, and can be omitted if the reader is already familiar
with them. The results of this section use techniques developed by Kim et al. (2015) and,
later, Legried and Terhorst (2021b).

5.2.1 The pulled speciation rate as a hazard rate

Let the origin time τo have an (improper) uniform prior distribution on (0,∞). Then the
likelihood of τo > τ1 > ... > τN−1 is given by

L(λp)(τo, τ1, ..., τN−1) = L(λp)(τ1, ..., τN−1|τo).

The likelihood formula holds, in particular, when we take τo → ∞. Then for any sequence
τ1 > τ2 > ... > τN−1 > τN = 0, the likelihood is

L(λp)(τ1, ..., τN−1) = (N − 1)!
N−1∏
i=1

λp(τi)e
−Λp(τi) = (N − 1)!

N−1∏
i=1

λp(τi)e
−i[Λp(τi)−Λp(τi+1)].
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This shows that λp is a hazard rate function. To ensure that the integral of the likelihood
function converges, we assume that

lim
t→∞

Λp(t) =

∫ ∞

u=0

λp(u) du = ∞,

so this requirement is satisfied. Since λp is a hazard rate, it corresponds to a probability
density function fp(t) = λp(t)e

−Λp(t).

5.2.2 Bounding the Hellinger distance

Here, we recall the total variation distance and Hellinger distance between measures, borrowing
from the explanation in Legried and Terhorst (2021b). Consider a measurable space (Ω,F)
with two possible probability measures P and Q on it. The two probability spaces (Ω,F , P )
and (Ω,F , Q) then have corresponding probability density functions fP and fQ. The total
variation distance between P and Q is defined as

dTV (P,Q) := sup
A∈F

|P (A)−Q(A)|,

which equals 1
2

∫
|fP − fQ|. As this integral is itself a metric, one might abuse notation and

write dTV (fP , fQ) to mean the same thing.
Suppose a datum D has been generated under P or Q and we want to decide which

measure was used, assuming both choices are equally likely. The total variation distance
between P and Q bounds the ability of any classifier to decide the measure correctly. Let χ
be the true data generating distribution (from the set {P,Q}), and let χ̂(D) ∈ {P,Q} be a
putative classifier. The probability that χ̂ correctly classifies D, i.e. χ̂ = χ, is

P(χ̂ = χ) =
1 + Υ

2
,

where Υ is a positive number, because the error of any binary classifier can be made less
than 1/2. Another way to write Υ is

Υ = P(χ̂ = χ)−P(χ̂ ̸= χ).

It can be shown that the best possible classification rule is the likelihood ratio: set χ̂ = P if
and only if P (D) > Q(D). In that case, we have

Υ =
1

2

[∫
fP>fQ

fP +

∫
fQ>fP

fQ −
∫
fQ>fP

fP −
∫
fP>fQ

]
= dTV (P,Q).

The likelihood ratio is said to achieve the minimal error rate or Bayes error rate. If multiple
data samples D1, ..., DL are given, then similarly Υ equals dTV (P

⊗L, Q⊗L), where P⊗L

denotes the product measure over the L samples.
In our problem setting, we find it easier to work with the Hellinger distance, which is

given defined as

d2H(P,Q) =
1

2

∫ (√
fP −

√
fQ

)2

.
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The Hellinger distance is related to total variation via

d2TV (P,Q) ≤ 2d2H(P,Q) = 2

(
1−

∫ √
fPfQ

)
, (14)

and it also possess the following subadditivity property: if P = ⊗N
i=1Pi and Q = ⊗N

i=1Qi are
product measures, then

d2H(P,Q) ≤
N∑
i=1

d2H(Pi, Qi).

By bounding the right-hand side above by a quantity converging to 0 quickly, it follows that
the total variation distance also converges to 0 quickly.

We will prove Theorems 2 and 3 by computing the Hellinger distance of competing joint
distributions of (τ1, ..., τN−1). For this, we need to establish precise two-sided bounds of λ

(2)
p

in terms of λ
(1)
p . We start in the setting of Theorem 2, where λ is the birth rate corresponding

to λ
(1)
p and (1 + η)λ is the birth rate corresponding to λ

(2)
p . The two-sided bound of λ

(2)
p (t)

is expressed in the following Lemma.

Lemma 2. Let t > 0 and η > 0 be arbitrary. Then

λ(1)
p (t)

[
1 + a(t)η − 1

2
b(t)η2

]
≤ λ(2)

p (t) ≤ λ(1)
p (t)

[
1 + a(t)η +

1

2
b(t)η2

]
,

where

a(t) =
ρ−1

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

b(t) = −
2ρ−1

∫ t

u=0
λ(u)eR(u) du[

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

]2 .
Proof. The quotient is

λ
(2)
p (t)

λ
(1)
p (t)

=
(1 + η)λ(t)eR(t)

ρ−1 + (1 + η)
∫ t

u=0
λ(u)eR(u) du

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

λ(t)eR(t)

= (1 + η)
ρ−1 +

∫ t

u=0
λ(u)eR(u) du

ρ−1 + (1 + η)
∫ t

u=0
λ(u)eR(u) du

=
ρ−1 +

∫ t

u=0
λ(u)eR(u) du

ρ−1(1 + η)−1 +
∫ t

u=0
λ(u)eR(u) du

.

The coefficients a(t) and b(t) are obtained by differentiating the above expression with respect
to η and evaluating at 0. The first derivative is

ρ−1(ρ−1 +
∫ t

u=0
λ(u)eR(u) du)

(1 + η)2
[
ρ−1(1 + η)−1 +

∫ t

u=0
λ(u)eR(u) du

]2
14
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which evaluates at 0 to

a(t) = 1−
∫ t

u=0
λ(u)eR(u) du

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

=
ρ−1

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

.

Note that the right-hand side is a positive number between 0 and 1. The second derivative
is

b(η, t) = −
2ρ−1

∫ t

u=0
λ(u)eR(u) du

(
ρ−1 +

∫ t

u=0
λ(u)eR(u) du

)
(1 + η)3

[
ρ−1(1 + η)−1 +

∫ t

u=0
λ(u)eR(u) du

]3
= −

2ρ−1
∫ t

u=0
λ(u)eR(u) du

(
ρ−1 +

∫ t

u=0
λ(u)eR(u) du

)
[
ρ−1 + (1 + η)

∫ t

u=0
λ(u)eR(u) du

]3 ,

which is always negative. We now apply Taylor’s theorem, observing that

λ
(2)
p (t)

λ
(1)
p (t)

= 1 + a(t)η +R2 (η; 0) ,

where the remainder term R2 (η; 0) is

R2 (η; 0) =
b(c, t)

2
η2

for some c ∈ (0, η). Since ∂|b(c, t)|/∂c < 0, we have |R2(η; 0)| < b(t)η2/2, where

b(t) := |b(0, t)| =
2ρ−1

∫ t

u=0
λ(u)eR(u) du[

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

]2 .
Then ∣∣∣∣∣λ(2)

p (t)

λ
(1)
p (t)

− 1− a(t)η

∣∣∣∣∣ ≤ 1

2
b(t)η2,

which implies the result.

To use the Lemma to prove Theorem 2, we show that a(t) and b(t) are each bounded by
constants over t ≥ 0.

Proof of Theorem 2. From (14), the squared error rate satisfies

Υ2 ≤ 2d2H(f1, f2).

Starting with the case of N = 2, we have d2H(f1, f2) = 1 − I(f1, f2) where I(f1, f2) =∫∞
t=0

√
f1(t)f2(t) dt. Defining the probability density function

g(t) = exp

[
−
∫ t

y=0

h1(y) + h2(y)

2
dy

]
h1(t) + h2(t)

2
,
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we have

I(f1, f2) =

∫ ∞

t=0

g(t)
2
√

h1(t)h2(t)

h1(t) + h2(t)
dt.

Now we use an upper bound on h1+h2 and a lower bound on h1h2 from Lemma 2 to obtain
a lower bound for 2

√
h1h2/(h1 + h2). We have

2
√
h1(t)h2(t)

h1(t) + h2(t)
≥

2λ
(1)
p (t)

√
1 + a(t)η − 1

2
b(t)η2

λ
(1)
p (t)

[
2 + a(t)η + 1

2
b(t)η2

] .

The power series expansion of the right-hand side is

1− 1

8
[a(t)]2 η2 +R3(η; 0)

with the remainder term satisfying

|R3(η; 0)| ≤
∣∣∣∣18 [a(t)]2 (a(t)− b(t))η3

∣∣∣∣
for some t ∈ [0, η). Both functions a(t) and b(t) are bounded in t. So for η close enough to
0, independently of t, we have

1− 1

8
[a(t)]2 η2 +R3(η; 0) ≥ 1− 1

8
η2 +Dη3

where D is a non-zero constant independent of t. So since g(t) is a density,

I(f1, f2) ≥
(
1− 1

8
η2 +Dη3

)∫ ∞

t=0

g(t) dt = 1− 1

8
η2 +Dη3

for η sufficiently close to 0. Putting it together, for such η the Hellinger distance is bounded
as

d2H(f1, f2) ≤
1

8
η2,

and the Theorem follows in the N = 2 case.
Now we derive the bound for an arbitrary number N of extant individuals. There are

N − 1 independent coalescent times with identically distributed arrival times. As f1 and f2
are product measures of N − 1 independent random variables, the subadditivity property
implies

d2H(f1, f2) ≤ (N − 1)
η2

8
≤ N

η2

8
.

Then Theorem 2 follows from (14).

For Theorem 3, we compare hypothetical models with the same birth rate and sampling
probability, but R(1)(t) = R(t) and R(2)(t) = (1 + η)R(1)(t) for all t. Although we prove
Theorem 3 in the case where R(1) is constant over time, the analogue to Lemma 2 can be
proved for general λ(1) and R(1).
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Lemma 3. Let t be fixed and η be a positive number close to 0. Then

λ
(2)
p (t)

λ
(1)
p (t)

= 1 + a(t)η +
1

2
b(t)η2 +O(η3)

as η → 0, where

a(t) = R(t)−
∫ t

u=0
λ(u)R(u)eR(u) du

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

b(t) =

{
−

R(t)
∫ t

u=0
λ(u)R(u)eR(u) du

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

−
∫ t

u=0
λ(u)[R(u)]2eR(u) du

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

+
2
[∫ t

u=0
λ(u)R(u)eR(u) du

]2
[
ρ−1 +

∫ t

u=0
λ(u)eR(u) du

]2}+ a(t)R(t)

Proof. The quotient is

λ
(2)
p (t)

λ
(1)
p (t)

=
λ(t)e(1+η)R(t)

ρ−1 +
∫ t

u=0
λ(u)e(1+η)R(u) du

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

λ(t)eR(t)

As before, the coefficients a(t) and b(t) are obtained by differentiating the above expression
with respect to η and evaluating at 0. The first derivative is R(t)

ρ−1 +
∫ t

u=0
λ(u)e(1+η)R(u) du

−
∫ t

u=0
λ(u)R(u)e(1+η)R(u) du[

ρ−1 +
∫ t

u=0
λ(u)e(1+η)R(u) du

]2


× eηR(t)

(
ρ−1 +

∫ t

u=0

λ(u)eR(u) du

)
,

which evaluates at η = 0 to

a(t) = R(t)−
∫ t

u=0
λ(u)R(u)eR(u) du

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

.

The second derivative is{
−

R(t)
∫ t

u=0
λ(u)R(u)e(1+η)R(u) du[

ρ−1 +
∫ t

u=0
λ(u)e(1+η)R(u) du

]2 −
∫ t

u=0
λ(u)[R(u)]2e(1+η)R(u) du[

ρ−1 +
∫ t

u=0
λ(u)e(1+η)R(u) du

]2
+

2
[∫ t

u=0
λ(u)R(u)e(1+η)R(u) du

]2
[
ρ−1 +

∫ t

u=0
λ(u)e(1+η)R(u) du

]3}eηR(t)

(
ρ−1 +

∫ t

u=0

λ(u)eR(u) du

)

+

 R(t)

ρ−1 +
∫ t

u=0
λ(u)e(1+η)R(u) du

−
∫ t

u=0
λ(u)R(u)e(1+η)R(u) du[

ρ−1 +
∫ t

u=0
λ(u)e(1+η)R(u) du

]2


×R(t)eηR(t)

(
ρ−1 +

∫ t

u=0

λ(u)eR(u) du

)
,
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which evaluates at η = 0 to{
−

R(t)
∫ t

u=0
λ(u)R(u)eR(u) du

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

−
∫ t

u=0
λ(u)[R(u)]2eR(u) du

ρ−1 +
∫ t

u=0
λ(u)eR(u) du

+
2
[∫ t

u=0
λ(u)R(u)eR(u) du

]2
[
ρ−1 +

∫ t

u=0
λ(u)eR(u) du

]2}
+ a(t)R(t).

The proof of Theorem 3 is similar. However, because the R(t) function appears inside
exponents, bounding a(t) and b(t) is more complicated. This is why we assume that R(t) =
Rt is linear in the theorem.

Proof of Theorem 3. Going forward, we assume that the rates are constant, implying there
exists a real number R such that R(t) = Rt for all t. Then we use Taylor’s theorem:

λ
(2)
p (t)

λ
(1)
p (t)

= 1 + a(t)η +R2(η; 0),

where now

a(t) =
λρ(eRt − 1) +R2t− λρRt

λρ(eRt − 1) +R

by Lemma 3. If R > 0, then |a(t)| ≤ 1 for all t ≥ 0. If R < 0, then the limit of a(t) as
t → +∞ is −∞, which is not usable. So we proceed with R > 0. The remainder term
R2(η; 0) has the same structure as before, but

b(c, t) =
ecRtR(R + λρ(eRt − 1))

[(1 + c)R + λρ(e(1+c)Rt − 1)]
3

[
(1 + c)3R3t2

+ λ2ρ2t
(
2 + (1 + c)Rt+ e(1+c)Rt((1 + c)Rt− 2)

)
− λρ

{
e(1+c)Rt(2− 4(1 + c)Rt+ (1 + c)2R2t2) + 2(−1 + (1 + c)Rt+ (1 + c)2R2t2)

} ]
.

(As R > 0, there is no possibility of division by 0.) Now we derive c-independent bounds
for the bracketed expression. The negative terms are dropped and the remaining polynomial
terms are replaced with exponentials:

(1 + c)3R3t2 + λ2ρ2t
(
2 + (1 + c)Rt+ e(1+c)Rt((1 + c)Rt− 2)

)
− λρ

(
e(1+c)Rt(2− 4(1 + c)Rt+ (1 + c)2R2t2) + 2(−1 + (1 + c)Rt+ (1 + c)2R2t2)

)
≤ e2(1+c)Rt

[
(1 + c)3R3 + λ2ρ2(2 + 2(1 + c)R) + λρ(4(1 + c) + 2)

]
≤ Me2(1+c)Rt.

On the right-hand side, the factor M can be taken to depend only on λ as ρ ≤ 1, R ≤ λ,
and c ∈ (0, η] ⊂ (0, 1). The companion lower bound for this polynomial is

e2(1+c)Rt
[
−2λ2ρ2 − 2λρ− (1 + c)2R2 − 2(1 + c)R− 2(1 + c)2R2

]
≥ −M ′e2(1+c)Rt
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for a factor M ′ depending only on λ. Going back to b(c, t), we drop the negative term in the
numerator to get

|b(c, t)| ≤ ecRtR(R + λρ(eRt − 1))

[(1 + c)R + λρ(e(1+c)Rt − 1)]
3 max{M,M ′}e2(1+c)Rt

≤ max{M,M ′}(R2 +Rλρ)e3(1+c)Rt

[(1 + c)R + λρ(e(1+c)Rt − 1)]
3 . (15)

The proof is completed by using Lemma 4, below, to bound |b(c, t)|. By the lemma, we

have maxi supt |M
(i)
t | < ∞ for the functions M

(i)
t defined in the statement below. Therefore,

|b(c, t)| is bounded above by some constant independent of c and t. So b(t) = b(0, t) is
bounded in t. Since a(t) and b(t) are bounded in t, we can prove the analogous result for
scaling R. This is sufficient to ensure I(f1, f2) ≥ 1− 1

8
η2 as in Theorem 2.

Lemma 4. Letting M ′′ = max{M,M ′}, we have |b(c, t)| ≤ max{M (1)
t ,M

(2)
t ,M

(3)
t } where

M
(1)
t =

e3RtM ′′R(R + λρ)

(R + λρ(eRt − 1))3

M
(2)
t =

e3+3λρtM ′′R(R + λρ)t3

(1 + λρe1+λρtt)3

M
(3)
t =

M ′′R(R + λρ)

λ3ρ3
.

Proof. In the two-sided bound (15), we optimize over c ∈ (0,∞) for a fixed t. The partial
derivative in c is

3e3(1+c)RtM ′′R2(R + λρ)(−1 + (1 + c)Rt− λρt)

[(1 + c)R + λρ(e(1+c)Rt − 1)]
4 ,

yielding the critical point

c∗ =
1−Rt+ λρt

Rt
.

Since the function is bounded, the global maximum is obtained either at a critical point or
an end point of the interval c ∈ [0,∞). Evaluating the original bound at c = 0 and c∗ and

taking the limit c → +∞ yields M
(1)
t ,M

(2)
t , and M

(3)
t , respectively.
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