bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence to graph alignment using gap-sensitive
co-linear chaining

Ghanshyam Chandra and Chirag Jain

Department of Computational and Data Sciences, Indian Institute of Science,
Bangalore KA 560012, India
{ghanshyamc,chirag}@iisc.ac.in

Abstract. Co-linear chaining is a widely used technique in sequence
alignment tools that follow seed-filter-extend methodology. It is a math-
ematically rigorous approach to combine short exact matches. For co-
linear chaining between two sequences, efficient subquadratic-time chain-
ing algorithms are well-known for linear, concave and convex gap cost
functions [Eppstein et al. JACM’92|. However, developing extensions of
chaining algorithms for directed acyclic graphs (DAGs) has been chal-
lenging. Recently, a new sparse dynamic programming framework was
introduced that exploits small path cover of pangenome reference DAGs,
and enables efficient chaining [Makinen et al. TALG’19, RECOMB’18].
However, the underlying problem formulation did not consider gap cost
which makes chaining less effective in practice. To address this, we de-
velop novel problem formulations and optimal chaining algorithms that
support a variety of gap cost functions. We demonstrate empirically the
ability of our provably-good chaining implementation to align long reads
more precisely in comparison to existing aligners. For mapping simulated
long reads from human genome to a pangenome DAG of 95 human hap-
lotypes, we achieve 98.7% precision while leaving < 2% reads unmapped.
Implementation: https://github.com/at-cg/minichain

Keywords: Variation graph - Sparse dynamic programming - minimum
path cover - Pangenome.

1 Introduction

A significant genetic variation rate among genomes of unrelated humans, plus the
growing availability of high-quality human genome assemblies, has accelerated
computational efforts to use pangenome reference graphs for common genomic
analyses [24,40,41]. The latest version of industry-standard DRAGEN software
by Illumina now uses a pangenome graph for mapping reads in highly poly-
morphic regions of a human genome [14]. For surveys of the recent algorithmic
developments in this area, see [2,6,10,33]. Among the many computational tasks
associated with pangenome graphs, sequence-to-graph alignment remains a core
computational problem. Accurate alignments are required for variation analysis
and construction of pangenome graph from multiple genomes [9,22]. Sequence-to-
graph alignment is also useful in other applications including genome assembly
[13] and long-read error correction [39).

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

2 Chandra and Jain

Suppose a pangenome graph is represented as a character labeled DAG
G(V, E) where each vertex v € V is labeled with a character from alphabet
{A,C,G,T}. The sequence-to-DAG alignment problem seeks a path in G that
spells a string with minimum edit distance from the input query sequence. An
O(m|E|) time algorithm for this problem has long been known, where m is the
length of input sequence [29]. Conditioned on Strong Exponential Time Hy-
pothesis (SETH), the O(m/|E|) algorithm is already worst-case optimal up to
sub-polynomial improvements because algorithms for computing edit distance
in strongly sub-quadratic time cannot exist under SETH [3]. As a result, heuris-
tics must be used for alignment of high-throughput sequencing data against large
DAGs to obtain approximate solutions in less time and space.

All practical long read to DAG aligners that scale to large genomes rely on
seed—filter—extend methodology [8,22,25,27,34]. The first step is to find a set of
anchors which indicate short exact matches, e.g., k-mer or minimizer matches,
between substrings of a sequence to subpaths in a DAG. This is followed by
a clustering step that identifies promising subsets of anchors which should be
kept within the alignments. Different aligners implement this step in different
ways. Co-linear chaining is a mathematically rigorous approach to do cluster-
ing of anchors. It is well studied for the case of sequence-to-sequence alignment
[1,11,12,16,26,28,32|, and is widely used in present-day long read to reference
sequence aligners [18,21,35,37,38]. For the sequence-to-sequence alignment case,
the input to the chaining problem is a set of N weighted anchors where each
anchor is a pair of intervals in the two sequences that match exactly. A chain is
defined as an ordered subset of anchors such that their intervals appear in in-
creasing order in both sequences (Figure 1a). The desired output of the co-linear
chaining problem is the chain with maximum score where score of a chain is
calculated by the sum of weights of the anchors in the chain minus the penalty
corresponding to gaps between adjacent anchors. For linear gap costs, this prob-
lem is solvable in O(NV log N) time by using range-search queries [1].

Solving chaining problem for sequence-to-DAG alignment remained open un-
til Makinen et al. [27] introduced a framework that enables sparse dynamic pro-
gramming on DAGs. Suppose K denotes cardinality of a minimum-sized set of
paths such that every vertex is covered by at least one path. The algorithm in
[27] works by mimicking the sequence-to-sequence chaining algorithm on each
path of the minimum path cover. After a polynomial-time indexing of the DAG,
their algorithm requires O(K N log N + K|V|) time for chaining. Parameteriz-
ing the time complexity in terms of K is useful because K is expected to be
small for pangenome DAGs. This result was further improved in [25] with an
O(KNlog KN) time algorithm. However, the problem formulations in these
works did not include gap cost. Without penalizing gaps, chaining is less effec-
tive [16]. A challenge in enforcing gap cost is that measuring gap between two
loci in a DAG is not a simple arithmetic operation like in a sequence [20].

We present novel co-linear chaining problem formulations for sequence-to-
DAG alignment that penalize gaps, and we develop efficient algorithms to solve
them. We carefully design gap cost functions such that they enable us to adapt

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence to graph alignment using gap-sensitive chaining 3

Sequence 1 i @

Sequence 2 . Sequence

(a) (b)

Fig. 1: Tllustration of co-linear chaining for (a) sequence-to-sequence and (b)
sequence-to-DAG alignment. It is assumed that vertices of DAG are labeled
with strings. Pairs of rectangles joined by dotted arrows denote anchors (exact
matches). A subset of these anchors that form a valid chain are shown in gray.

the sparse dynamic programming framework of Makinen et al. [27], and solve
the chaining problem optimally in O(K N log KN) time. We implemented and
benchmarked one of our proposed algorithms to demonstrate scalability and ac-
curacy gains. Our experiments used human pangenome DAGs built by using 94
high quality de novo haplotype assemblies provided by the Human Pangenome
Reference Consortium [24] and CHM13 human genome assembly provided by the
Telomere-to-Telomere consortium [30]. Using a simulated long read dataset with
0.5x coverage, we demonstrate that our implementation achieves the highest
read mapping precision (98.7%) among the existing methods (Minigraph: 98.0%,
GraphAligner: 97.0% and GraphChainer: 95.1%). In this experiment, our imple-
mentation used 24 minutes and 25 GB RAM with 32 threads, demonstrating
that the time and memory requirements are well within practical limits.

2 Concepts and notations

2.1 Co-linear chaining on sequences revisited

Let R and @ be two sequences over alphabet X = {A,C,G,T}. Let M[1..N] be
an array of anchors. Each anchor is denoted using an interval pair ([x..y], [c..d])
with the interpretation that substring R[x..y| matches substring Qlc..d], xz,y, ¢, d €
N. Anchors are typically either fixed-length matches (e.g., using k-mers) or
variable-length matches (e.g., maximal exact matches). Suppose function weight
assigns weights to the anchors. The co-linear chaining problem seeks an ordered
subset S = 5152 - -5, of anchors from M such that

— for all 2 < j <p, sj_1 precedes (<) s;, i.e., s;_1.y < sj.z and s;_1.d < sj.c.

— S maximises chaining score, defined as 2521 weight(sj)—zg.):Q 9ap(S;—1,58;).
Define gap(sj_1, s;) as f(gapr(sj—1,5;), gapq(sj—1, s;)), where gapr(s;—1,5;) =
sj.x—S;—1.y — 1, gapg(sj_1,s;) = sj.c—sj_1.d—1 and f(g1,92) = g1 + go.

The above problem can be trivially solved in O(N?) time and O(N) space. First
sort the anchors by the component M[].z, and let T[1..N] be an integer ar-
ray containing a permutation of set [1..N] which specifies the sorted order, i.e.,

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

4 Chandra and Jain

M[T[1])}.x < M[T[2]).x < ... < M[T[N]].x. Define array C[1..N] such that C|[j]
is used to store a partial solution, i.e., the score of an optimal chain that ends at
anchor Mj]. Naturally, the final score will be obtained as max; C[j]. Array C
can be filled by using the following dynamic programming recursion: C[T'[j]] =
weight(M[T[4]]) + max (0, max;. pr; < mpry) (Cli) — gap(M[i], M[T[4]]))), in in-
creasing order of j. A straight-forward way of computing C[T[j]] will need an
O(N) linear scan of arrays C' and M, resulting in overall O(N?) time. However,
the O(N?) algorithm can be optimized to use O(N log N) time by using the
following search tree data structure (ref. [4]).

Lemma 1. Let n be the number of leaves in a balanced binary search tree, each
storing a (key,value) pair. The following operations can be supported in O(logn)
time:

— update(k,val): For the leaf w with key = k, value(w) < max(value(w),val).
— RMQ(l,7): Return max{value(w) |l < key(w) < r}. This is range maximum
query.

Moreover, given n (key,value) pairs, the balanced binary search tree can be con-
structed in O(nlogn) time and O(n) space.

The dynamic programming recursion for array C[1..N] can be computed more
efficiently using range maximum queries [1,11]. To achieve this, a search tree
needs to be initialized, updated and queried properly (Algorithm 1). Note that
argmax;. nr;)< v (Cli] — gap(M[i], M[j])) is equal to argmax;. psp;)<asp; (Cli] +
MTil.y + M]i].d). Accordingly, we compute optimal C[j] in Line 11 by using
an O(log N) time RMQ operation of the form M][i].d € (0, M[j].c) that returns
maximum C[i| + M[i].y + M[i].d from search tree 7. The algorithm performs
N update and N RMQ operations over search tree 7 of size at most N, thus
solving the problem in O(N log N) time and O(N) space.

Algorithm 1: O(N log N) time chaining between two sequences

Input: Array of weighted anchors M[1..N]
Output: Array C[1..N] such that C[j] = score of an optimal chain that ends at M|j]
1 Initialize search tree 7 using keys {M[j].d | 1 < j < N} and values —oo
2 Initialize C[j] as weight(M][j]), for all j € [1, N]
3 /* Create array Z that stores tuples of the form (pos, task, anchor), where pos € N,
anchor € [1, N] and task € {0,1}. task is either 0 or 1 for querying or updating the
search tree T respectively.*/

4 for j+ 1 to N do
5 Z.push(M[j].z,0, j)
6 Z.push(M[j].y,1,7)
7 end
8 for z € Z in lexicographically ascending order based on the key (pos,task) do
9 j « z.anchor, wt <+ weight(M]|j])
10 if z.task = 0 then
11 | Clj] + max(C[j], wt + T.RMQ(0, M[j].c) — M[jl.2 — M[j].c + 2)
12 else
13 | T .update(M[j].d, C[j] + M[j].y + M[j].d)

14 end

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence to graph alignment using gap-sensitive chaining 5

2.2 Sparse dynamic programming on DAGs using minimum path
cover

Our work builds on the work of Makinen et al. 27|, who provided a parameterized
algorithm to extend co-linear chaining on DAGs without considering gap costs.
In the following, we present useful notations and a summary of their algorithm.

In a weighted string-labeled DAG G(V, E, o), function o : V — X% labels
each vertex v € V with string o(v). Edge v — u has length |o(v)|. The length
of a path in GG is the sum of the lengths of the edges traversed in the path. Let
Q € X7 be a query sequence. Let M be an array of N anchors. An anchor is
denoted using a 3-tuple of the form (v, [x..y], [c..d]) with the interpretation that
substring o(v)[z..y] in DAG G matches substring Q[c..d], where z,y,c,d € N
and v € V (Figure 2). A path cover of DAG G(V,E) is a set of paths in G
such that every vertex in V' belongs to at least one path. A minimum path cover
(MPC) is one having the minimum number of paths. If K denotes the size of
MPC of DAG G, then MPC can be computed either in O(K|E|log|V|) [27] or
O(K3|V| + |E|) [5] time.

To extend co-linear chaining for sequence-to-DAG alignment, we can use a
search tree containing keys equal to the sequence coordinates of anchors, similar
to Algorithm 1. However, the order in which the search tree should be queried
and updated is not trivial with DAGs. Makinen et al. [27] suggested decomposing
the DAG into a path cover {Pi, ..., Pk}, and then performing the computation
only along these paths. The algorithm uses K search trees {71, ..., Tk}, one per
path. Search tree 7; maintains M|-].d as keys and partial solutions C|-] as values
of all the anchors that lie on path P;. Similar to Algorithm 1, the K search trees
need to be updated and queried in a proper order. Suppose R(v) C V denotes the
set of vertices which can reach v using a path in G. Set R(v) always includes v.
Define last2reach(v, i) as the last vertex on path P; that belongs to R(v), if one
exists. Also define paths(v) as {i : P; covers v}. Naturally last2reach(v,i) = v iff
i € paths(v). The main algorithm works by visiting vertices u of G in topological
order, and executing the following two tasks:

— Compute optimal scores of all anchors in vertex u: First, process all
the anchors for which M[j].v = u in the same order that is used for co-linear
chaining on two sequences (Algorithm 1). While performing an update task,
update all search trees 7, for all i € paths(u). Similarly, while performing a
range query, query search trees 7; to maximize C[j].

— Update partial scores of selected anchors outside vertex u: Next,
for all pairs (w,i), w € V,i € [1, K] such that last2reach(w,i) = u and
i ¢ paths(w), query search tree 7; to update score C[j] of every anchor M|j]
for which M[j].v = w.

Based on the above tasks, once the algorithm reaches v € V in the topological
ordering, the scores corresponding to anchors in vertex v would have been up-
dated from all other vertices that reach v. A well-optimized implementation of
this algorithm uses O(K N log K N) time [25]. This result assumes that the DAG
is preprocessed, i.e., path cover and last2reach information is precomputed in
O(K3|V| + K|E|) time.

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

6 Chandra and Jain

3 Problem formulations

We develop six problem formulations for co-linear chaining on DAGs with differ-
ent gap cost functions. In each problem, we seek an ordered subset S = s152--- s,
of anchors from array M such that

— for all 2 < j < p, sj_; precedes (<) s;, i.e., the following three conditions
are satisfied (i) s;_1.d < sj.c, (ii) sj_1.v € R(s;.v), and (iii) s;_1.y < s;.¢
if s;_1.v = s;.0.

— S maximizes the chaining score defined as 3 _7_ | weight(s;)—>__, gap(sj—1,5;)-
Define gap(sj_1,s;) as f(gapc(sj—1,5;), gaps(sj—1, s;)), where functions gapg
and gapg will be used to specify gap cost in the DAG and the query sequence
respectively.

\"
A7 Vq
DAG 9 1 V3 12
Me
M4 Ms
Vo 1

3
Vo Mg.v = v
97 =3 M1 M12
ATCGACGTA TCAGATCGGTAC
Mg.
9, 9-XT'Mo.y
GCATGCAGATCACC
M2 Mg M1

4

M+

Sequence Mg.c [Mg.d

[GTCGAACGACAACATGTCCATAACATATTCCATACACCTGATCGACTTCAGTACGGTACGCATAGCTATAGCAAGCATGCCAAAT]

Fig.2: An example showing multiple anchors as input for co-linear chaining.
The DAG has a minimum path cover of size two {(vg, v1,v3,v4), (vo, v2,v3,v5)}.
Anchors My, My, M5, Mg, My, M11, M5 form a valid chain. The interval coordi-
nates of anchor My in the sequence and the DAG are annotated for illustration.

gaps(sj—1,s;) equals sj.c — s;j_1.d — 1, i.e., the count of characters in se-
quence () that occur between the two anchors. However, defining gapg is not
as straightforward because multiple paths may exist from s;_;.v to s;.v, and
the correct alignment path is unknown. We formulate and solve the following
problems:

Problems la-1c: gapg(sj—1,s;) is computed by using the shortest path from
sj—1.v to sj.v. Suppose D(vy,v2) denotes the shortest path length from vertex
v1 to vy in G. We seek the optimal chaining score when

gapc(sj—1,8;) = D(sj_1.v,8;.0) + (sj.¢ — sj_1.y — 1).

The above expression calculates the count of characters in the string path be-
tween anchors s;_; and s;. Define Problems la, 1b and lc using f(g1,92) =

g1 + g2, f(91,92) = maz(g1,92) and f(g1,92) = |91 — g=| respectively. These

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence to graph alignment using gap-sensitive chaining 7

definitions of function f are motivated from the previous co-linear chaining for-
mulations for sequence-to-sequence alignment [1,28|.

Problems 2a-2c: gapg(s;—1,s;) is measured using a path from s;_;.v to s;.v
that is chosen based on path cover { Py, ..., Pk } of DAG G. For each i € paths(s;_1.v),
consider the following path in G that starts from source s;_;.v along the edges

of path P; till the middle vertex last2reach(s;.v,4), and finally reaches desti-
nation s;.v by using the shortest path from last2reach(s;.v,i) to s;.v. Among
|paths(sj_1.v)| such possible paths, measure gapg(s;—1, s;) using the path which
minimizes gap(s;—1,s;) = f(gapa(sj—1,5;),9aps(sj—1,s;)). More precisely,
gapa(sj—1,s;) equals the element of the set

{dist2begin(p, i) — dist2begin(sj_1.v,1) + D(p, s;.v) + s;.x
—sj_1.y — 1| i € paths(s;_1.v), p = last2reach(s;.v,1)}

which minimizes gap(s;_1, s;), where dist2begin(v, i) denotes the length of sub-
path of path P; from the start of P; to v. We will show that this definition
enables significantly faster parameterized algorithms with respect to K. Again,
define Problems 2a, 2b and 2c¢ with f(g1,92) = g1 + 92, f(91, 92) = max(g1,92)

and f(g1,92) = |91 — g2 respectively.

4 Proposed algorithms

Our algorithm to address Problems la-1c uses a brute-force approach that eval-
uates all O(NN?) pairs of anchors. We use single-source shortest distances com-
putations for measuring gaps.

Lemma 2. Problems la, 1b and 1c can be solved optimally in O(N(|V|+ |E|+
N)) time.

Proof. We will process anchors in array M[1..N] one by one in a topological
order of M[:|.v. If there are two anchors with equal component M]|-].v, then
the anchor with lower component M|-].z is processed first. Suppose DAG G’ is
obtained by reversing the edges of G. While processing anchor Mj], we will
compute partial score C[j], i.e., the optimal score of a chain that ends at an-
chor M{[j]. We identify all the anchors that precede M|j] using a depth-first
traversal starting from M[jl.v in G’. Next, we compute single-source short-
est distances from M|[j].v in G’ which requires O(|V| + |E]|) time for DAGs
[7]. Finally, C[j] is computed as weight(M|j]) + max (0, max;. nri;)<ny) (Cli] —
f(gapc (Mli], M(j]), gaps (M [i], M[5]))) in O(N) time. O

The above algorithm is unlikely to scale to a mammalian dataset. We leave
it open whether there exists a faster algorithm to solve Problems la-c. Next,
we propose O(K N log K N) time algorithm for addressing Problem 2a, assuming
O(K3|V|+K]|E)|) time preprocessing is done for DAG G. The preprocessing stage
is required to compute (a) an MPC {Pi,..., Pk} of G, (b) last2reach(v,1), (c)
D(last2reach(v,1),v) and (d) dist2begin(v,i), for all v € V, i € [1, K].

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

8 Chandra and Jain

Lemma 3. The preprocessing of DAG G(V, E,c) can be done in O(K3|V| +
K|E|) time.

Proof. An MPC {Py,..., Pk} can be computed in O(K?3|V|+ |E|) time [5]. To
compute the remaining information, we will use dynamic programming algo-
rithms that process vertices € V in a fixed topological order. Suppose function
rank : V. — [1,|V|] assigns rank to each vertex based on its topological or-
dering. Let A (v) denote the set of adjacent in-neighbors of v. Similar to [27],
last2reach(v,i) is computed in O(K|V| + K|E|) time for all v € V, i € [1, K].
Initialize last2reach(v,i) = 0 for all v and i. Then, use the following recursion:

rank(v) if i € paths(v)

last2reach(v,1) =
(v:9) {maxu:uej\/(v) last2reach(u,i) otherwise

At the end of the algorithm, last2reach(v,i) = 0 will hold for only those pairs

(v, 1) for which last2reach(v, i) does not exist. Next, we compute D(last2reach(v,i),v),
forallv € V, i € [1, K], also in O(K |V |+ K| E|) time. Initialize D(last2reach(v,i),v)

= oo for all v and i. Then, update D(last2reach(v,1),v)

0 if last2reach(v,i) = v
minu:uGN(v),last2reach(u,i):la5t2reach(v,i) D(la8t2r€a0h(u7 Z), u) + ’U(u)| otherwise

Finally, dist2begin(v,i), for allv € V, i € [1, K] is computed by linearly scanning
K paths in O(K|V]) time. O

Lemma 4. Assuming DAG G(V, E, o) is preprocessed, Problem 2a can be solved
in O(KNlog KN) time and O(KN) space.

Proof. The choice of gap cost definition in Problem 2a allows us to make efficient
use of range-search queries. Algorithm 2 gives an outline of the proposed dynamic
programming algorithm. Similar to the previously discussed algorithms (Section
2.1), it also saves partial scores in array C[1..N]. We use K search trees, one
per path. Search tree 7; maintains partial scores C| | of those anchors M [j]
whose coordinates on DAG are covered by path P;. Each search tree is initialized
with keys M [j].d, and values —oo. Subsequently, K search trees are queried and
updated in a proper order.

— If K =1, i.e., when DAG G is a linear chain, the condition in Line 6 is
always satisfied and the term D(v, M[j].v) (Line 17) is always zero. In this
case, Algorithm 2 works precisely as the co-linear chaining algorithm on two
sequences (Algorithm 1).

— For K > 1, we use last2reach information associated with vertex M|j].v
(Lines 9-11). This ensures that partial score C[j] is updated from scores of
the preceding anchors on path P; for all i € [1, K]\ paths(M]j].v).

All the query and update operations done in the search trees together use
O(K N log N) time because the count of these operations is bounded by O(K N),
and the size of each tree is < N. The sorting step in Line 14 requires O(K N log K N)
time to sort O(K N) tuples. The overall space required by K search trees and
array Z is O(KN). 0

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence to graph alignment using gap-sensitive chaining 9

Algorithm 2: O(K N log K N) time chaining algorithm for Problem 2a

Input: Array of weighted anchors M[1..N], preprocessed DAG G(V, E, o)
Output: Array C[1..N] such that C[j] = score of an optimal chain that ends at Mj]
1 Initialize search tree T;, for all ¢ € [1, K] using keys {M[j].d | 1 < j < N} and values —oo
Initialize C[j] as weight(M][j]), for all j € [1, N]
/* Create array Z that stores tuples of the form (v, pos, task, anchor, path), where v € V,
pos € N, task € {0,1}, anchor € [1, N] and path € [1, K|.*/
for j <+ 1 to N do
for i+ 1 to K do
if i € paths(M[j].v) then
‘ Z.push(M][j].v, M[j].z,0, j,1)
Zpush(M[j]-v, M[jly. 1, 7.7)
else if last2reach(M][j].v,t) exists then
10 v < last2reach(M|[j].v, 1)
‘ Z.push(v, |o(v)| + 1,0, 7, 1)

w N

© o N O R

12 end
13 end
14 for z € Z in lexicographically ascending order based on the key (rank(v), pos, task) do
15 j < z.anchor,i < z.path,v < z.v, wt < weight(M][j])
16 if z.task = 0 then
17 ‘ Clj] + max(C[j], wt + T;.RMQ(0, M[j].c) — M[j].x — dist2begin(v, i) —
D(v, M[j].v) = M[j].c +2)
18 else
19 | Ti.update(M[j].d, C[j] + M[j].y + dist2begin(v, i) + M[j].d)
20 end

For simplicity of notations, we have not allowed an anchor to span two or
more connected vertices in a DAG, but the proposed framework can be easily
generalized to handle this [25,27|. Finally, we design algorithms for Problems 2b
and 2c¢ by using 2-dimensional RMQs. We summarize the result below and defer
the proof to Appendix.

Lemma 5. Assuming DAG G(V, E, o) is preprocessed, Problems 2b and 2¢ can
be solved in O(K N log®> N + KNlog KN) time and O(KNlog N) space.

5 Implementation details

Among the proposed algorithms, Algorithm 2 has the best time complexity.
We implemented this algorithm in C++, and developed a practical long read
alignment software Minichain.

Pangenome graph representation: A path in pangenome reference graph
G(V, E, o) spells a sequence in a single orientation, whereas a read may be sam-
pled from either the same or the opposite orientation due to the double-stranded
nature of DNA. To address this internally in Minichain, for each vertex v € V/,
we also add another vertex v whose string label is the reverse complement of
string o(v). For each edge u — v € E, we also add the complementary edge
v — u. This process doubles the count of edges and vertices.

Optimization for whole-genome pangenome graphs: A pan-genome ref-
erence graph associated with a complete human genome is a union of weakly
connected components, one per chromosome, because there is no edge which

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

10 Chandra and Jain

connects two chromosome components. We actually maintain two components
per chromosome, one being the reverse complement of the other. During both
preprocessing and chaining stages of the proposed algorithms, each component is
treated independently. The parameter K in our time complexity results is deter-
mined by the maximum K value among the components. We use GraphChainer
implementation [25] to compute minimum path cover and range queries. We also
optimize runtime by performing parallel preprocessing of different components
(Lemma 3) using multiple threads.

Computing multiple best chains and confidence scores: When a read
is sampled from a repetitive region of a genome, computing read’s true path
of origin becomes challenging. Practical methods often report more than one
alignment per read in such cases. The highest-scoring alignment is marked as
primary alignment, and the remaining are marked as secondary. Additionally,
based on the score difference between the primary and the highest-scoring sec-
ondary alignment, a confidence score € [0, 60] is provided as mapping quality that
represents the likelihood that the primary alignment is correct [23]. In Minichain,
we also implement an algorithm to identify multiple high-scoring chains so that
multiple base-to-base alignment records can be reported to a user. Algorithm 2
returns partial scores C[1..N] in the end. We perform backtracking from anchor
argmax; C[j] to compute the optimal chain. The anchors involved in this chain
are marked as wvisited. Iteratively, we check presence of another chain (a) whose
score is > 7-max; C[j], where 7 € [0, 1] is a user-specified threshold with default
value 0.95, and (b) none of the anchors in the chain are previously wisited. We
stop when no additional chains exist that satisfy these conditions.

Computing anchors and final base-to-base alignments: In Minichain, we
use the seeding and base-to-base alignment methods from Minigraph [22|. The
seeding method in Minigraph works by identifying common minimizers between
query sequence and string labels o(v) of graph vertices. Given a pre-defined
ordering of all k-mers and w consecutive k-mers in a sequence, (w, k)-minimizer is
the smallest k-mer among the w k-mers [36]. The common minimizer occurrences
between a query and vertex labels form anchors. In our experiments, we use same
parameters k = 17, w = 11 as Minigraph. The weight of each anchor is k£ times
a user-specified constant which is set to 200 by default. Algorithm 2 is used to
compute the best chains and discard those anchors which do not contribute to
these chains. Finally, we return the filtered anchors to Minigraph’s alignment
module to compute base-to-base alignments [42].

6 Experiments

Benchmark datasets: We built string-labeled DAGs of varying sizes by using
Minigraph v0.19 [22]. Each DAG is built by using a subset of 95 publicly avail-
able haplotype-resolved human genome assemblies [24,30]. In Minigraph, a DAG
is iteratively constructed by aligning each haplotype assembly to an intermedi-
ate graph, and augmenting additional vertices and/or edges for each structural
variant observed. We disabled inversion variants by using --inv=no parameter

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence to graph alignment using gap-sensitive chaining 11

to avoid introducing cycles in the DAG. CHM13 human genome assembly [30] is
used as the starting reference, and we added other haplotype assemblies during
DAG construction. In the CHM13 assembly, the first 24 contigs represent indi-
vidual chromosome (1-22, X, Y) sequences, and the last 25" contig represents
mitochondrial DNA. Using this data, we constructed five DAGs, labeled as 1H,
10H, 40H, 80H and 95H respectively. In each of these DAG labels, the integer
prefix reflects the count of haplotype assemblies present in the DAG. Properties
of these DAGs are shown in Table 1. Parameter K, i.e., the size of MPC, is
presented as a range because different connected components in a DAG have
different MPCs. For all DAGs, note that the maximum K is < |V|. We used
PBSIM2 v2.0.1 [31] to simulate long reads from CHM13 human assembly. For
each simulated read and each DAG, we know the true string path where the read
should align. PBSIM2 input parameters were set such that we get sequencing
error rate and N50 read length as 5% and 10 kbp respectively. The commands
used to run the different tools are listed in Appendix.

Table 1: Properties of DAGs used in our experiments. Total sequence length
indicates the sum of length of string labels of all vertices in the DAG.

No. of| N50 length of]| Total sequence K

DAG V| |E|| structural| vertex labels length (Gbp)| (min-)
variants (kbp) eng b)|{min-max

1H 25 0 0 150,617 3.11 1-1

10H| 141,755| 203,160 61,430 225 3.15 1-9

40H| 340,451 489,612 149, 186 126 3.23 1-20

80H| 553,271 797,528 244,282 85 3.31 1-29

95H| 611,949 882,739 270, 815 78 3.34 1-35

Evaluation methodology: Alignment output of a read specifies the string path
in the input DAG against which the read is aligned. An appropriate evaluation
criteria is needed to classify the reported string path as either correct or incorrect
by comparing it to the true path. We followed a similar criteria that was used
in previous studies [21,22]. First, the reported string path should include only
those vertices which correspond to CHM13 assembly, i.e., it should not span an
edge augmented from other haplotypes (Figure 3). Second, the reported interval
in CHM13 assembly should overlap with the true interval, and the overlapping
length should exceed > 10% length of the union of the true and the reported in-
tervals. A correct alignment should satisfy both the conditions. We use paftools
[21] which implements this evaluation method. All our experiments were done
on AMD EPYC 7742 64-core processor with 1 TB RAM. We used 32 threads
to run each aligner because all the tested tools support multi-threading by con-
sidering each read independently. Wall clock time and peak memory usage were
measured using /usr/bin/time Linux command.

Performance comparison with existing algorithms: We compared Minichain
(v1.0) to three existing sequence-to-DAG aligners: Minigraph v0.19 [22], GraphAligner

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

12 Chandra and Jain

DAG [Trccaca t b ST 3 i [Trccaca
'[ATCGGGTCAA‘ GIACCCY TACGACAT | VATCGGGTCA ATACGCC TACGACAT |

Fig. 3: Illustration of the evaluation criteria. Among the three reported paths
above, only (C) is correct.

v1.0.16 [34], and GraphChainer v1.0 [25]. Minigraph uses a two-stage co-linear
chaining approach. The first stage ignores edges in the graph and solves co-
linear chaining between query sequence and vertex labels. The second stage
combines the vertex-specific-chains. In contrast, GraphAligner does not use co-
linear chaining and instead relies on its own clustering heuristics. GraphChainer
solves co-linear chaining on DAG without penalizing gaps. All the aligners, ex-
cept GraphChainer, also compute mapping quality (confidence score) for each
alignment. We excluded optimal sequence-to-DAG aligners (e.g., [15,17]) because
they do not scale to DAGs built by using entire human genomes.

We evaluated accuracy and runtime of Minichain using three DAGs 1H, 10H
and 95H (Tables 2, 3, 4). While using DAG 1H, we also tested Minimap2 v2.24
[21], a well-optimized sequence-to-sequence aligner, by aligning reads directly to
CHM13 genome assembly. The results show that Minichain consistently achieves
the highest precision among the existing sequence-to-DAG aligners. It aligns a
higher fraction of reads compared to Minigraph. The gains are also visible when
mapping quality (MQ) cutoff 10 is used to filter out low-confidence alignments.
GraphAligner and GraphChainer align 100% reads consistently, but this is sup-
plemented with much higher fraction of incorrectly aligned reads. Both Mini-
graph and Minichain do not align 100% reads. This likely happens because the
seeding method used in these two aligners filters out the most frequently occur-
ring minimizers from DAG to avoid processing too many anchors. This can leave
several reads originating from long-repetitive genomic regions as unaligned [19].

Among the four aligners, Minigraph performs the best in terms of runtime.
Runtime of Minichain increases for DAG 95H because of higher value of K. How-
ever, we expect that this can be partly addressed with additional improvements
in the proposed chaining algorithm, e.g., by dynamically deleting the anchors
from search trees whose gap from all the remaining unprocessed anchors ex-
ceeds an acceptable limit. Overall, the results demonstrate practical advantage
of Minichain for accurate long-read alignment to DAGs. Superior accuracy of
Minichain is also illustrated using precision-recall plots in Figure 4.

Impact of increasing DAG size on accuracy: Alignment accuracy generally
deteriorates as count of haplotypes increases in DAGs for all the tested aligners.
For each read that was not aligned correctly, we checked if the corresponding
reported string path overlaps with the true interval (Figure 3, case A). Such
reads are aligned to correct region in the DAG but the reported path uses one
or more augmented edges. The remaining fraction of incorrectly aligned reads

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence to graph alignment using gap-sensitive chaining 13

Table 2: Performance comparison of long read aligners using DAG 1H.

Minichain Minigraph GraphAligner GraphChainer| Minimap2
Indexing time (sec) 65 65 395 458 55
Alignment time (sec) 205 104 6298 6714 133
Memory usage (GB) 20.06 19.66 38.12 126.14 12.48
Unaligned reads 0.94% 2.11% 0% 0% 0%
Incorrect aligned reads 0.58% 0.66% 1.06% 1.33% 0.56%
Unaligned reads (MQ>10) 3.89% 5.82% 0.80% 0% 2.29%
Incorrect aligned reads (MQ>10) 0.02% 0.11% 0.53% 1.33% 0.0013%

Table 3: Performance comparison of long read aligners using DAG 10H.
Minichain Minigraph GraphAligner GraphChainer

Indexing time (sec) 67 66 321 537
Alignment time (sec) 610 132 5479 9642
Memory usage (GB) 23.15 23.16 38.41 143.94
Unaligned reads 1.17% 2.17% 0% 0%
Incorrect aligned reads 0.80% 1.20% 1.55% 2.10%
Unaligned reads (MQ>10) 4.03% 5.88% 0.28% 0%
Incorrect aligned reads (MQ>10) 0.20% 0.34% 0.99% 2.10%

align to wrong region in the DAG. We observe that the fraction of incorrectly-
aligned reads which align to correct region in DAG increases with increasing
count of haplotypes (Figure 5). This happens because the count of alternate
paths increases combinatorially with more number of haplotypes which makes
precise alignment of a read to its path of origin a challenging problem. Addressing
this issue requires further algorithmic improvements.

Table 4: Performance comparison of long read aligners using DAG 95H.
Minichain Minigraph GraphAligner GraphChainer

Indexing time (sec) 7 71 342 763
Alignment time (sec) 1414 154 5695 17336
Memory usage (GB) 24.75 24.76 40.79 192.36
Unaligned reads 1.62% 2.23% 0% 0%
Incorrect aligned reads 1.31% 1.96% 3.01% 4.92%
Unaligned reads (MQ>10) 4.75% 6.26% 0.88% 0%
Incorrect aligned reads (MQ>10) 0.56% 0.89% 2.38% 4.92%
Acknowledgements

This work was supported by funding from the National Supercomputing Mis-
sion, India under DST/NSM/ R&D HPC Applications. We used computing
resources provided by the C-DAC National PARAM Supercomputing Facility,
India, and the National Energy Research Scientific Computing Center, USA.

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

14 Chandra and Jain

100% T 2 100% o & 100% % &
» 98% T » 98% /'/ » 98% —
K gy, 3 Ve 3 ra;
0 96% 2 96% 2 96% 7
k3 k3 k3
c 94% c 94% c 94%
2 Minichain —+— 2 Minichain —+— 2 Minichain —+—
<C goo, 5 Minigraph —<— <C goo, Minigraph —<— < goo, Minigraph —<—
92% %XX GraphA?ignper —*— 92% GraphAgl;ignper —*— 92% GraphAEI’ignper —*—
GraphChainer —=— GraphChainer —=— GraphChainer —&—
90% 90% 90%
0.01% 0.10% 1.00% 10.00% 1.0% 10.0% 1.0% 10.0%
Incorrectly aligned reads Incorrectly aligned reads Incorrectly aligned reads
(a) DAC 1H (b) DAG 10H (c) DAG 95H

Fig. 4: Precision-recall curves obtained by using different aligners. X-axis indi-
cates percentage of incorrectly aligned reads in log-scale. These curves are ob-
tained by setting different mapping quality cutoffs € [0, 60]. GraphChainer curve
is a single point because it reports fixed mapping quality 60 in all alignments.

I Wrong region
4.0% W Correct region

Minichain Minigraph GraphAligner GraphChainer

2.0% 1

Incorrectly aligned reads

0.0% -

'\«Y\ ‘\0\(\ D‘Q\e\ %0\(\ q‘)\(\ '\«Y\ ‘\0\(\ D‘Q\e\ %0\(\ q‘)\(\ '\«Y\ ‘\0\(\ D‘Q\e\ Q,QY\ q‘)\(\ '\«Y\ ‘\0\(\ D‘Q\e\ Q,QY\ q‘)\(\
DAGs

Fig.5: The fraction of incorrectly aligned reads is shown using DAGs 1H, 10H,
40H, 80H and 95H. Each incorrectly-aligned read is further classified as aligned
to either a wrong or a correct region in the DAG based on whether the reported
string path overlaps with the true string path (e.g., cases A,B in Figure 3).

References

1. Abouelhoda, M., Ohlebusch, E.: Chaining algorithms for multiple genome compar-
ison. Journal of Discrete Algorithms 3(2-4), 321-341 (2005)

2. Baaijens, J.A., Bonizzoni, P., Boucher, C., Della Vedova, G., Pirola, Y., Rizzi, R.,
Sirén, J.: Computational graph pangenomics: a tutorial on data structures and
their applications. Natural Computing pp. 1-28 (2022)

3. Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic
time (unless seth is false). In: Proceedings of the forty-seventh annual ACM sym-
posium on Theory of computing. pp. 51-58 (2015)

4. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational ge-
ometry: algorithms and applications, 3rd Edition. Springer (2008)

5. Céaceres, M., Cairo, M., Mumey, B., Rizzi, R., Tomescu, A.l.: Sparsifying, shrinking
and splicing for minimum path cover in parameterized linear time. In: Proceedings
of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). pp.
359-376. STAM (2022)

6. Computational Pan-Genomics Consortium: Computational pan-genomics: status,
promises and challenges. Briefings in bioinformatics 19(1), 118-135 (2018)

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence to graph alignment using gap-sensitive chaining 15

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT press (2022)

8. Dvorkina, T., Antipov, D., Korobeynikov, A., Nurk, S.: Spaligner: alignment of long
diverged molecular sequences to assembly graphs. BMC bioinformatics 21(12), 1—
14 (2020)

9. Eggertsson, H.P., Jonsson, H., Kristmundsdottir, S., et al.: Graphtyper enables
population-scale genotyping using pangenome graphs. Nature genetics 49(11),
1654-1660 (2017)

10. Eizenga, J.M., Novak, A.M., Sibbesen, J.A., Heumos, S., Ghaffaari, A., Hickey, G.,
Chang, X., Seaman, J.D., Rounthwaite, R., Ebler, J., et al.: Pangenome graphs.
Annual review of genomics and human genetics 21, 139 (2020)

11. Eppstein, D.; Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming
i: linear cost functions. Journal of the ACM 39(3), 519-545 (1992)

12. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming
ii: convex and concave cost functions. Journal of the ACM 39(3), 546-567 (1992)

13. Garg, S., Rautiainen, M., Novak, A.M., et al.: A graph-based approach to diploid
genome assembly. Bioinformatics 34(13), i105-i114 (2018)

14. Tllumina: DRAGEN v3.10.4 software release notes. https://support.illumina.
com/content/dam/illumina- support/documents/downloads/software/dragen/
200016065_00_DRAGEN-3.10-Customer-Release-Notes.pdf, accessed: 2022-08-08

15. Ivanov, P., Bichsel, B., Vechev, M.: Fast and optimal sequence-to-graph align-
ment guided by seeds. In: International Conference on Research in Computational
Molecular Biology. pp. 306-325. Springer (2022)

16. Jain, C., Gibney, D., Thankachan, S.V.: Co-linear chaining with overlaps and gap
costs. In: International Conference on Research in Computational Molecular Biol-
ogy (RECOMB). pp. 246-262. Springer (2022)

17. Jain, C., Misra, S., Zhang, H., Dilthey, A., Aluru, S.: Accelerating sequence align-
ment to graphs. In: 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). pp. 451-461. IEEE (2019)

18. Jain, C., Rhie, A., Hansen, N.F., Koren, S., Phillippy, A.M.: Long-read mapping to
repetitive reference sequences using winnowmap2. Nature Methods pp. 1-6 (2022)

19. Jain, C., Rhie, A., Zhang, H., Chu, C., Walenz, B.P., Koren, S., Phillippy,
A.M.: Weighted minimizer sampling improves long read mapping. Bioinformatics
36(Supplement 1), i111-i118 (2020)

20. Jain, C., Zhang, H., Dilthey, A., Aluru, S.: Validating paired-end read alignments in
sequence graphs. In: 19th International Workshop on Algorithms in Bioinformatics
(WABI 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

21. Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34(18), 3094-3100 (may 2018). https://doi.org/10.1093 /bioinformatics/bty191

22. Li, H., Feng, X., Chu, C.: The design and construction of reference pangenome
graphs with minigraph. Genome Biology 21(1) (oct 2020)

23. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome research 18(11), 1851-1858 (2008)

24. Liao, W.W., Asri, M., Ebler, J., Doerr, D., Haukness, M., Hickey, G., Lu, S., Lucas,
J.K., Monlong, J., Abel, H.J., et al.: A draft human pangenome reference. bioRxiv
(2022). https://doi.org/10.1101,/2022.07.09.499321

25. Ma, J., Caceres, M., Salmela, L., Méakinen, V., Tomescu, A.l.: Graphchainer: Co-
linear chaining for accurate alignment of long reads to variation graphs. bioRxiv
(2022)

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

16 Chandra and Jain

26. Maékinen, V., Sahlin, K.: Chaining with overlaps revisited. In: 31st Annual Sympo-
sium on Combinatorial Pattern Matching (CPM 2020). Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik (2020)

27. Maékinen, V., Tomescu, A.l., Kuosmanen, A., Paavilainen, T., Gagie, T., Chikhi,
R.: Sparse dynamic programming on DAGs with small width. ACM Transactions
on Algorithms 15(2), 1-21 (Apr 2019)

28. Myers, G., Miller, W.: Chaining multiple-alignment fragments in sub-quadratic
time. In: SODA. vol. 95, pp. 3847 (1995)

29. Navarro, G.: Improved approximate pattern matching on hypertext. Theoretical
Computer Science 237(1-2), 455-463 (2000)

30. Nurk, S., Koren, S., Rhie, A., Rautiainen, M., et al.. The complete
sequence of a human genome. Science 376(6588), 44-53 (apr 2022).
https://doi.org/10.1126 /science.abj6987

31. Ono, Y., Asai, K., Hamada, M.: PBSIM2: a simulator for long-read sequencers
with a novel generative model of quality scores. Bioinformatics 37(5), 589-595
(sep 2020). https://doi.org/10.1093 /bioinformatics/btaa835

32. Otto, C., Hoffmann, S., Gorodkin, J., Stadler, P.F.: Fast local fragment chaining
using sum-of-pair gap costs. Algorithms for Molecular Biology 6(1), 4 (2011)

33. Paten, B., Novak, A.M., Eizenga, J.M., Garrison, E.: Genome graphs and the
evolution of genome inference. Genome research 27(5), 665-676 (2017)

34. Rautiainen, M., Marschall, T.: Graphaligner: rapid and versatile sequence-to-graph
alignment. Genome biology 21(1), 1-28 (2020)

35. Ren, J., Chaisson, M.J.: Ira: A long read aligner for sequences and contigs. PLOS
Computational Biology 17(6), e1009078 (2021)

36. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage
requirements for biological sequence comparison. Bioinformatics 20(18), 3363-3369
(jul 2004). https://doi.org/10.1093/bioinformatics/bth408

37. Sahlin, K., Baudeau, T., Cazaux, B., Marchet, C.: A survey of mapping algorithms
in the long-reads era. bioRxiv (2022)

38. Sahlin, K., Makinen, V.: Accurate spliced alignment of long RNA sequencing reads.
Bioinformatics 37(24), 4643-4651 (2021)

39. Salmela, L., Rivals, E.: Lordec: accurate and efficient long read error correction.
Bioinformatics 30(24), 3506-3514 (2014)

40. Sirén, J., Monlong, J., Chang, X., et al.: Pangenomics enables genotyping of known
structural variants in 5202 diverse genomes. Science 374(6574), abg8871 (2021)

41. Wang, T., Antonacci-Fulton, L., Howe, K., et al.: The human pangenome project:
a global resource to map genomic diversity. Nature 604(7906), 437-446 (apr 2022)

42. Zhang, H., Wu, S., Aluru, S., Li, H.: Fast sequence to graph alignment using the
graph wavefront algorithm. arXiv preprint arXiv:2206.13574 (2022)

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence to graph alignment using gap-sensitive chaining 17

Appendix

1 Algorithms for solving Problems 2b and 2c

To support Lemma 5, we propose O(K N log? N+ KNlog KN) time algorithms
to solve Problems 2b and 2c. We assume that DAG G(V, E, o) is preprocessed
already (Lemma 3). Unlike Algorithm 2 which uses 1D orthogonal range queries,
here we will use 2D orthogonal range queries. When function f(gapa(sj—1,s;)
,gaps(sj_1,s;)) for gap cost is defined as either max(gapa(s;j—1,s;), gaps(s;—1,5;))
or [gapa(sj—1,S;)—gaps(sj_1, s;)|, the second dimension is used to check whether
gapc(sj—1,5;) > gaps(sj_1,s;) holds or not. The following search tree data
structure is used to support 2D orthogonal range queries (ref. [4]).

Lemma 6. Let n be the number of (key,value) entries where a key is defined
as a tuple (k1,ka) of type Z x Z. The following operations can be supported in
O(log®n) time:

— update((k1, k2),val): For the entry w with key = (k1, k2), value(w) < max(value(w),
val).

— RMQ((l1,71), (I2,72)): Return max{value(w) | Iy < key(w).ky < r1, Iy <
key(w).ke < ro}. This is 2-dimensional range maximum query. Input ranges
can be provided as either open or closed intervals.

Given n (key,value) entries, a search tree data structure to support the above
operations can be constructed in O(nlogn) time and space.

Algorithm 3 outlines our solution to Problem 2b. The pseudocode follows
a similar structure as Algorithm 2. We use 2K search trees 7; and Z;, for
all i € [1,K] (Line 1). Search trees 7; execute update operations to handle
those cases where gap cost should equal gaps(s;j—i,s;) (Line 13). In Line 8,
the first dimension of the range query in 7; is to restrict search over those
anchors which precede anchor M|[j] (same as Algorithm 2), and the second di-
mension is to further restrict search over those preceding anchors M[i] for which
gaps(M]i], M[j]) > gapa(M]i], M[j]). Similarly, search trees Z; set value of each
key to handle cases where gap cost equals gapa(s;—1,s;) (Line 14). In Line 9,
the first dimension of the range query in Z; is to restrict search over those an-
chors which precede anchor M|[j], and the second dimension further restricts
search over those anchors M{[i| for which gaps(M][i], M[j]) < gapa(M|i], M[j]).
Throughout the algorithm, we perform O(KN) RMQ and update operations.
Each operation uses O(log?N) time because size of each tree is at most N.
Therefore, these operations require overall O(K N log? N) time. The sorting op-
eration used in Line 4 uses O(K Nlog KN) time to sort O(KN) tuples. The
combined storage complexity of 2K search trees is O(K N log N). This com-
pletes the description of Algorithm 3. Algorithm 4 addresses Problem 2c, and
follows a similar intuition.

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

18

Chandra and Jain

Algorithm 3: O(K N log? N + KN log KN) time co-linear chaining al-
gorithm to solve Problem 2b

=

© o N O oA WwN

10
11
12
13
14
15

Input: Array of weighted anchors M[1..N], preprocessed DAG G(V, E, o)
Output: Array C[1..N] such that C[j] = score of an optimal chain that ends at Mj]
Initialize search trees T; and Z;, for all ¢ € [1, K], using keys
{(Mj].d, dist2begin(M[j].v,3) + M[jl.y — M[j].d) | 1 < j < N and i € paths(M[j].v)}
and values —oo

Initialize C[j] as weight(M][j]), for all j € [1, N]
Build array Z as described in Algorithm 2 (Lines 4-13)
for z € Z in lexicographically ascending order based on the key (rank(v), pos, task) do
j < z.anchor,i + z.path,v <+ z.v
if z.task = 0 then
p + dist2begin(v,i) + D(v, M[j].v) + M[j].x
q < Ti-RMQ((0, Mj].c), [p — M([j].c, +00)) — (M[j].c — 1)
7 < Z; RMQ((0, M([j].c), (=00, p — M[j].c]) — (p — 1)
Clj]l « max(C[j], weight(M[j]) 4+ q, weight(MI[j]) +r)
else
s « dist2begin(v, i) + M[j].y
T .update((M([j].d, s — M[j].d), C[j] + M[j].d)
TZ;.update((M|[j].d, s — M[j].d), C[j] + s)

end

Algorithm 4: O(KNlog® N + K Nlog KN) time co-linear chaining al-
gorithm to solve Problem 2c

© 0N R W N

Mo
= o

12
13
14

Input: Array of weighted anchors M[1..N], preprocessed DAG G(V, E, o)

Output: Array C[1..N] such that C[j] = score of an optimal chain that ends at M|j]
Initialize search trees 7; and Z; as described in Algorithm 3 in Line 1

Initialize C[j] as weight(M][j]), for all j € [1, N]

Build array Z as described in Algorithm 2 (Lines 4-13)

for z € Z in lexicographically ascending order based on the key (rank(v), pos, task) do
j < z.anchor,i < z.path,v < z.v

if z.task = 0 then

p dist2begin(v,i) + D (v, M[j].v) + M[j].x

q + Ti.RMQ((0, M[j].c), [p — M[j].c, +00)) — (M[j].c — p)

T+ Z;.RMQ((0, M[j].c), (=00, p — M[j].c]) — (p — M[j].c)

Cljl = max(C[j], weight(M[j]) + q, weight(M[j]) +)

else

s « dist2begin(v, i) + M[j].y

Ti.update((M[j].d, s — M[j].d), C[j] + M[j].d — s)

Z;.update((M[j].d, s — M[j].d), C[j] + s — M[j].d)

15 end

https://doi.org/10.1101/2022.08.29.505691

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505691; this version posted January 8, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence to graph alignment using gap-sensitive chaining

19

2 Commands used for empirical evaluation

Table 5: Command-line arguments used to run various tools. The scripts to
reproduce results are available in Minichain GitHub repository.

Purpose Tool Commands
Read simulation pbsim2 (v2.0.1, pbsim --depth 0.5 --length-min 10000 --length-mean
bioconda) 10000 --length-max 10000 --accuracy-mean 0.95

paftools. js
(commit:15cade0)

--accuracy-max 0.95 --accuracy-min 0.95 --hmm_model
P6C4.model CHM13Y.fa

k8-Linux paftools.js pbsim2fq CHM13Y.fa.fai *.maf >
CHM13Y_reads.fa

Graph generation

minigraph
(v0.19-r551)

minigraph -t32 -cxggs --inv=no CHM13Y.fa HG002.1.fa
HGO002.2.fa HGO0438.1.fa HG00438.2.fa HG005.1.fa
HG005.2.fa HGO0621.1.fa HG00621.2.fa HGO0673.1.fa >
CHM13Y_10H.gfa 2> log_10H.txt

Read mapping

minimap2
(v2.24-r1122)
minigraph
(v0.19-r551)
minichain (v1.0)

GraphAligner
(commit:4e2cab6)
GraphChainer
(commit:59¢c9c67)

minimap2 -t32 -cx map-pb CHM13Y.fa CHM13Y_reads.fa >
CHM13Y.paf

minigraph -t32 -cx lr CHM13Y_10H.gfa CHM13Y_reads.fa
> CHM13Y_10H.gaf

minichain -t32 -cx lr CHM13Y_10H.gfa CHM13Y_reads.fa
> CHM13Y_10H.gaf
GraphAligner -t32
CHM13Y_reads.fa -a
GraphChainer -t32 -g CHM13Y_10H.gfa -f
CHM13Y_reads.fa -a CHM13Y_10H.gaf

-x vg -g CHM13Y_10H.gfa -f
CHM13Y_10H.gaf

Conversion to stable
GAF co-ordinates
(GraphAligner and
GraphChainer)

mgutils. js
(commit:8619249)

k8-Linux mgutils.js stableGaf CHM13Y_10H.gfa
CHM13Y_10H.gaf > CHM13Y_10H_stable.gaf

Evaluation of read
alignments

paftools.js

k8-Linux paftools.js mapeval CHM13Y_10H.gaf

https://doi.org/10.1101/2022.08.29.505691

