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Extended Data Fig. 5. Native ribosome deactivation by spectinomycin in the 401 

femtoliter droplet assay. 402 

(a) Representative micrographs of droplets after the femtoliter droplet assay using 403 

control S12 cell extracts containing only native ribosomes. The concentration of the 404 

or1-oSD–LacZ reporter was 5 nM. The droplets emitted strong fluorescence without 405 

spectinomycin as the femtoliter droplet assay is so sensitive that a very weak interaction 406 

between the native ribosomes and the or1-oSD–LacZ reporter could be detected. The 407 

addition of 100 μM spectinomycin eliminated this nonspecific fluorescence signal. 408 

Scale bars = 5 μm. (b) Representative micrographs of droplets after the femtoliter 409 

droplet assay using S12 cell extracts containing artificial ribosomes with or1-oASD and 410 
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C1192U spectinomycin resistance (SpcR). The concentration of the or1-oSD–LacZ 411 

reporter was 5 nM. The droplets emitted strong fluorescence with or without 100 μM 412 

spectinomycin. Scale bars = 5 μm. 413 

  414 
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Extended Data Fig. 6. Single-ribosome-level detection of the artificial ribosome 415 

translational activity. 416 

Scatter plot of the mean relative fluorescence unit (RFU) against the diameter of each 417 

droplet was generated using the dataset of Fig. 2c. Droplets over the threshold (the 418 

mean RFU ≥ 22) are shown in red. From the Poisson distribution formula, most of the 419 

fluorescent droplets (89 %) were estimated to contain only one artificial ribosome. 420 

  421 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2022. ; https://doi.org/10.1101/2022.08.29.505692doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.29.505692
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

Extended Data Fig. 7. Representative images of the femtoliter droplet assay. 422 

(a) A representative micrograph of droplets in the initial trial. In the first reaction, the 423 

concentrations of the native ribosomes, the artificial rRNA operon with or1-oASD and 424 

C1192U spectinomycin resistance (SpcR), and 21 SSU r-protein genes were 20, 1, and 425 

0.25 nM each, respectively. Scale bars = 10 μm. (b) A representative micrograph of 426 

droplets in the optimized reaction condition. The concentrations of the native ribosomes, 427 

the artificial rRNA operon, and 21 SSU r-protein genes were 80, 0.3, and 0.05 nM each, 428 

respectively. Scale bars = 10 μm. 429 

  430 
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Extended Data Fig. 8. Supporting pieces of evidence for the in vitro SSU and LSU 432 

biogenesis. 433 

(a) Detection of pre-existing and nascent r-proteins. We replaced unlabeled (light) 434 

L-arginine and L-lysine with stable isotope-labeled (heavy) L-arginine (13C6, 
15N4) and 435 

L-lysine (13C6, 
15N2) to label nascent r-proteins in the reaction solutions during the 436 

reconstituted SSU or LSU biogenesis (Fig. 3 and 4). As negative controls, we omitted 437 

the r-protein genes from the reaction solutions. Certain r-proteins were not identified 438 

(e.g., bL35 and bL36 in the reconstituted SSU biogenesis) because r-proteins are very 439 

small and difficult targets for proteomics. The heavy peptides of certain r-proteins were 440 

not identified (e.g., uS13 in the reconstituted SSU biogenesis); the absence of heavy 441 

peptides does not mean the absence of nascent proteins because of the stochastic nature 442 

of the protein identification algorithm. (b) Direct evidence for the incorporation of 443 

newly synthesized r-proteins into nascent ribosomes. The concentrations of the native 444 

ribosomes, the artificial rRNA operon with or1-oASD and C1192U spectinomycin 445 

resistance (SpcR), and 21 SSU r-protein genes were 80, 0.3, and 0.05 nM each, 446 

respectively. A mutant r-protein gene encoding uS12 K43T was used instead of an 447 

r-protein gene encoding native uS12. The uS12 K43T mutation confers streptomycin 448 

resistance to SSU. The translational activity of the nascent artificial SSU was detected 449 

using the or1-oSD–LacZ reporter in the presence of spectinomycin and streptomycin. 450 

NC, negative control without 21 SSU r-protein genes. The data represent the normalized 451 

relative fluorescence unit (RFU) in the bulk assay and are shown as the mean ± SD 452 

(n = 3). **, p < 0.01; Welch’s t-test. 453 

  454 
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Extended Data Fig. 9. In vitro reconstitution of the entire ribosome biogenesis 455 

process in a single reaction. 456 

(a) Experimental scheme to reconstitute both SSU and LSU biogenesis in vitro in a 457 

single reaction. (b and c) Successful detection of the nascent artificial SSU and LSU 458 

translational activity using the bulk assay under the optimized reaction condition. The 459 

concentrations of the native ribosomes, artificial rRNA operon with or1-oASD, C1192U 460 

spectinomycin resistance (SpcR), and A2058U clindamycin resistance (CldR), and 54 461 
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r-protein genes were 80, 0.9, and 0.01 nM each, respectively. The data represent the 462 

mean ± SD (n = 3). **, p < 0.01; Welch’s t-test. 463 

  464 
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Methods 465 

Strains and plasmids 466 

The chromosomal lacZ gene of the BL21 StarTM (DE3) (Thermo Fisher Scientific, 467 

Waltham, MA, USA) was disrupted by Red-mediated recombination50. Briefly, pKD46 468 

encoding phage λ-Red recombinase was transformed into the E. coli cells. The 469 

transformants were grown in 50 mL of SOC medium with 100 μg/ml ampicillin 470 

(Viccillin® for injection, Meiji Seika Pharma, Tokyo, Japan) and 10 mM 471 

L-(+)-arabinose (Nacalai Tesque, Kyoto, Japan). The fragment of the 472 

kanamycin-resistance gene (kmr) was amplified using primers (H1P1 forward primer, 473 

5′- 474 

GAAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTGTGTAGGCTGG475 

AGCTGCTTC-3′, and P4H2 reverse primer, 476 

5′-TTACGCGAAATACGGGCAGACATGGCCTGCCCGGTTATTAATTCCGGGGA477 

TCCGTCGACC-3′) from pKD13, and introduced into the E. coli cells by 478 

electroporation. The electroporated cells were grown on an LB agar plate with 50 μg/ml 479 

of kanamycin monosulfate (Nacalai Tesque) to select KmR transformants. The resulting 480 

strain is described as BL21 StarTM (DE3) lacZ::kmr. The FLP helper plasmid, pCP20, 481 

was transformed into the BL21 StarTM (DE3) lacZ::kmr to eliminate the kmr gene. As 482 

pCP20 harbors a temperature-sensitive replicon and shows thermal induction of FLP 483 

synthesis, the transformants were cultured nonselectively at 37 °C and tested for the loss 484 

of antibiotic resistance. The resulting strain is described as BL21 StarTM (DE3) 485 

lacZ::frt. 486 

The rrnB rRNA operon was inserted into pET-41a(+). Genes encoding 54 487 

r-proteins were cloned from the E. coli DH5α genome. In this study, we included bS1 in 488 
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r-proteins, which works more as a translational factor than a structural component, 489 

because additional bS1 could improve protein yields51–54. The expression of the genes 490 

encoding 54 r-proteins was regulated by the pT7CONS55 and EpsA2056 sequences, 491 

improving transcription and translation efficiencies. pT7CONS and EpsA20 were also 492 

used to construct an improved LacZ reporter. Mutations in genes encoding rRNAs and 493 

r-proteins were introduced by mutagenic primer-based PCR. 494 

The strains and plasmids used in this study are listed in Supplementary 495 

Information 2. 496 

 497 

Sonicated S12 cell extract preparation 498 

Sonicated S12 cell extracts were prepared as previously described with some 499 

modifications57. Briefly, E. coli cells were grown in 200 mL of 2 × YPTG medium at 500 

37 °C and pelleted by centrifugation. The cell pellets were resuspended in buffer A. The 501 

suspended cells were disrupted by a Q125 Sonicator (Qsonica, Newtown, CT, USA) at 502 

a frequency input of 20 kHz and amplitude of 50 %. The sonication energy input was 503 

500 J for 1 mL cell suspension. The cell extract was centrifuged at 4 °C and 12,000 g 504 

for 10 min, and the supernatant was collected. The obtained cell extract was 505 

flash-frozen in liquid nitrogen and preserved at −80 °C until further use. 506 

 507 

French press cell extract preparation 508 

French press S30 cell extracts were prepared based on previous reports with some 509 

modifications4,5,58. Briefly, E. coli cells were grown in 1 L of 2 × YPTG medium at 510 

37 °C and pelleted by centrifugation. The cell pellets were resuspended in buffer A 511 

(20 mM Tris-HCl, 100 mM NH4Cl, 10 mM MgCl2, 0.5 mM EDTA, and 2 mM DTT, 512 
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pH = 7.2). Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific) and RNase 513 

Inhibitor (QIAGEN) were added to the suspension. The cells were disrupted using an 514 

EmulsiFlex-C5 homogenizer (Avestin, Ottawa, Canada) with a single pass at a pressure 515 

of 20,000 psi. RNase Inhibitor and DTT were added to the cell extracts followed by 516 

centrifugation at 4 °C, 30,000 g for 30 min twice. The collected supernatant was 517 

dialyzed four times against the iSAT buffer (50 mM HEPES-KOH, 10 mM magnesium 518 

glutamate, 200 mM potassium glutamate, 2 mM DTT, 1 mM spermidine, and 1 mM 519 

putrescine), imitating cytoplasmic chemical conditions58. For clarification and 520 

concentration, the cell extract was centrifuged at 4,000 g for 10 min in a Centriprep® 3K 521 

device (EMD Millipore, Burlington, MA, USA). The obtained cell extract was 522 

flash-frozen in liquid nitrogen and preserved at −80 °C until further use. 523 

French press S150 cell extracts were prepared as previously described with some 524 

modifications4,5. Briefly, BL21 Star™ (DE3) lacZ::frt harboring pT7_WT-ASD_rRNA 525 

was grown in 1 L of 2 × YPTG medium with 50 µg/mL of kanamycin at 37 °C until the 526 

OD600 reached 0.5. The cells were incubated with 0.1 mM 527 

isopropyl-β-D-thiogalactopyranoside (IPTG, Nacalai Tesque). Then, the cells were 528 

disrupted using an EmulsiFlex-C5 homogenizer (Avestin) with a single pass at a 529 

pressure of 20,000 psi. The cell extracts were centrifuged at 30,000 g for 30 min at 4 °C. 530 

The collected supernatants were centrifuged at 90,000 g for 21 h at 4 °C. The collected 531 

supernatants were further centrifuged at 150,000 g for 3 h at 4 °C. Then, the collected 532 

supernatants were dialyzed using the iSAT buffer. The cell extracts were concentrated 533 

using Amicon Ultra-15 3 kDa cutoff (Merck Millipore, Burlington, MA, USA). The 534 

obtained cell extract was flash-frozen in liquid nitrogen and preserved at −80 °C until 535 

further use. 536 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2022. ; https://doi.org/10.1101/2022.08.29.505692doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.29.505692
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

 

 537 

Cell extract preparation containing ribosomes with artificial rRNAs 538 

A plasmid encoding an artificial rRNA operon was introduced into the BL21 StarTM 539 

(DE3) lacZ::frt. The transformant was grown in a 2 × YPTG medium with 50 µg/mL of 540 

kanamycin at 37 °C until the OD600 reached 0.7. The cultured cells were incubated with 541 

0.1 mM IPTG (Nacalai Tesque) for 3 h. The cell extracts were prepared as described 542 

above. 543 

 544 

Cell-free transcription and translation (CF-TXTL) 545 

CF-TXTL was performed according to a previous report with modifications4. E. coli 546 

ribosomes were purchased from New England BioLabs (Ipswich, MA, USA). T7 RNA 547 

polymerase (T7 RNAP, New England BioLabs) was added to a final concentration of 548 

0.8 U/μL. T7 RNAP was not added when we used cell extracts derived from 549 

IPTG-induced BL21 StarTM (DE3) or its derivative strains. The reporter plasmid 550 

concentration was 1.5 nM. The sfGFP or LacZ reporter expression was induced by 551 

IPTG at a final concentration of 2 mM. We used 5-chloromethylfluoresecein 552 

di-β-D-galactopyranoside (CMFDG; Invitrogen, Waltham, MA, USA) as a substrate of 553 

LacZ at a final concentration of 33 μM. CF-TXTL was conducted using 15 μL reaction 554 

solutions at 37 °C in a 96-well plate (polystyrene, solid bottom, half area, black-walled, 555 

Greiner Bio-One International GmbH, Kremsmünster, Austria). The reporter signals 556 

were quantified using fluorescence microplate readers, Fluoroskan Ascent FLTM 557 

(Thermo Fisher Scientific) or Infinite® 200 PRO (TECAN, Männedorf, Switzerland), at 558 

λex = 485 nm and λem = 535 nm. For native ribosome deactivation, spectinomycin 559 

(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan), streptomycin (FUJIFILM 560 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2022. ; https://doi.org/10.1101/2022.08.29.505692doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.29.505692
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

Wako Pure Chemical Corporation), or clindamycin (Abcam, Cambridge, UK) were 561 

used at final concentrations of 5 mM, 10 μg/mL, or 1.5 mM, respectively. For the 562 

ribosome concentration quantification, kasugamycin (FUJIFILM Wako Pure Chemical 563 

Corporation) was added to 2 mM 15 min after the beginning of CF-TXTL as previously 564 

reported59. The fluorescence intensity was kinetically measured after adding 565 

kasugamycin, and the background fluorescence intensity was subtracted. Kasugamycin 566 

is an antibiotic originally isolated from Streptomyces kasugaensis that blocks translation 567 

initiation by preventing the ribosomal subunit association. However, it did not affect 568 

translating or stalled 70S ribosomes60,61. The constituents of the CF-TXTL reaction 569 

solutions used in this study are summarized in Supplementary Information 3. 570 

The in vitro reconstitution of SSU biogenesis was performed as follows. In the 571 

first reaction, the CF-TXTL solutions based on the S150 cell extracts were mixed with 572 

the native ribosomes, the artificial rRNA operon with or1-oASD and C1192U SpcR, 573 

and 21 SSU r-protein genes. We used S150 cell extracts to enable native ribosome 574 

concentration control. The solutions were incubated at 37 °C for 180 min. The reaction 575 

conditions were optimized using a simple lattice design (Supplementary Information 576 

4). In the second reaction, the resulting CF-TXTL solutions were mixed with 577 

pT7_or1-oSD_LacZ, CMFDG, 100 µM spectinomycin, and an additional 15 µL of the 578 

CF-TXTL solutions based on the S150 cell extracts. The fluorescence of the reaction 579 

solutions was measured by a bulk assay or a femtoliter droplet assay. In the bulk assay, 580 

the reporter signals were kinetically measured at 37 °C using Infinite® 200 PRO 581 

(TECAN) at λex = 485 nm and λem = 535 nm. The femtoliter droplet assay was carried 582 

out as described below. 583 
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The in vitro reconstitution of LSU biogenesis was performed as follows. In the 584 

first reaction, the CF-TXTL solutions based on the S150 cell extracts were mixed with 585 

the native ribosomes, the artificial rRNA operon with or1-oASD, SpcR, and A2058U 586 

CldR, and 33 LSU r-protein genes. The solutions were incubated at 37 °C for 180 min. 587 

The reaction conditions were optimized by varying the concentrations of the artificial 588 

rRNA operon and 33 LSU r-protein genes (Supplementary Information 4). In the 589 

second reaction, the resulting CF-TXTL solutions were mixed with pT7_WT-SD_LacZ 590 

or pT7PCONS_EpsA20_WT-SD_lacZ, CMFDG, clindamycin, and an additional 15 µL 591 

of the CF-TXTL solutions based on the S150 cell extracts. The fluorescence of the 592 

reaction solutions was kinetically measured at 37 °C using Infinite® 200 PRO (TECAN) 593 

at λex = 485 nm and λem = 535 nm. 594 

The in vitro reconstitution of the entire ribosome biogenesis process was 595 

conducted according to the protocol described above with minor modifications. In the 596 

first reaction, the concentrations of the native ribosomes, the artificial rRNA operon 597 

with or1-oASD, SpcR, and CldR, and 54 r-protein genes were 80, 0.9, and 0.01 nM 598 

each, respectively. In the second reaction, pT7_or1-oSD_LacZ and spectinomycin were 599 

used for the detection of the nascent artificial SSU, and 600 

pT7PCONS_EpsA20_WT-SD_lacZ and clindamycin were used for the detection of the 601 

nascent artificial LSU. The reaction solution fluorescence was kinetically measured at 602 

37 °C using Infinite® 200 PRO (TECAN) at λex = 485 nm and λem = 535 nm. 603 

The iSAT assembly was performed according to previous reports4,5,58 with some 604 

modifications. Briefly, in the first reaction, the CF-TXTL solutions based on the S150 605 

cell extracts were mixed with 100 nM total protein of 70S ribosome (TP70) and 0.3 nM 606 

of the artificial rRNA operon with or1-oASD and SpcR. The solutions were incubated at 607 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2022. ; https://doi.org/10.1101/2022.08.29.505692doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.29.505692
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

 

37 °C for 180 min. In the second reaction, the resulting CF-TXTL solutions were mixed 608 

with pT7_or1-oSD_LacZ, CMFDG, spectinomycin, and an additional 15 µL of the 609 

CF-TXTL solutions based on the S150 cell extracts. The reaction solution fluorescence 610 

was kinetically measured at 37 °C using Infinite® 200 PRO (TECAN) at λex = 485 nm 611 

and λem = 535 nm. 612 

The parameter values described above were tuned experiment-dependently and 613 

are specified in the figure legends. 614 

 615 

Femtoliter droplet assay 616 

An oil mixture was composed of light mineral oil (Sigma-Aldrich Corporation, St. 617 

Louis, MO, USA), 4.5 % sorbitan monooleate (Nacalai Tesque), and 0.5 % Triton® 618 

X-100 (Nacalai Tesque), as previously described62,63. The CF-TXTL reaction solutions 619 

were mixed with the oil mixture and tapped twenty times in microtubes (Maruemu 620 

Corporations, Osaka, Japan). The emulsions were incubated at 37 °C. The bright-field 621 

and fluorescence images of droplets were obtained using a confocal fluorescence 622 

microscope LSM700 (Carl Zeiss AG, Oberkochen, Germany). The 488 nm laser was 623 

focused using an oil immersion objective (Plan-Apochromat 40×/1.4 Oil DIC M27, Carl 624 

Zeiss AG) with immersion oil (ImmersolTM 518F, Carl Zeiss AG). 625 

 626 

Deep-learning-assisted automated femtoliter droplet assay 627 

It is a difficult task to extract features from a large number of droplets; hence, we 628 

devised a deep-leaning-assisted automated analysis pipeline for a scalable and objective 629 

femtoliter droplet assay. We aimed to develop an analysis pipeline enabling area and 630 

centroid extraction of each droplet from the bright-field images and the fluorescence 631 
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intensity of each droplet from the corresponding fluorescence images. In the beginning, 632 

we produced positive control fluorescent droplets using purified LacZ (FUJIFILM 633 

Wako Pure Chemical Corporation) and CMFDG and generated 15 sets of bright-field 634 

and corresponding fluorescence images containing 27580 fluorescent droplets in total. 635 

We trained an ilastik64 pixel classification model and processed the positive control 636 

fluorescence images into binary segmented images (droplet or background) as ground 637 

truth. We used a convolutional neural network architecture called U-Net39 to build a 638 

binary segmentation model. We used the FastAI library65 under an Anaconda virtual 639 

environment (Python 3.7, torch==1.4.0+cpu, torchvision==0.5.0+cpu). The model was 640 

trained using 13 sets of ground-truth binary segmented images and the corresponding 641 

bright-field images, and the remaining two sets of images were used as test data. We 642 

specified an encoder network, Resnet34, and a weight-decay of 1e-2. We searched for a 643 

fitting learning rate using the learn.lr_find() method, and picked a learning rate of 1e-4. 644 

The model was trained using the fit_one_cycle() method for 20 epochs at slice(1e-4) 645 

and pct_start=0.3. We unfroze all layers and searched for a learning rate again. The 646 

whole model was trained using the fit_one_cycle() method for 100 epochs at slice(1e-4) 647 

and pct_start=0.3. As a result, the accuracy (number of correctly classified pixels/total 648 

number of pixels) reached >90 % using the test data (Extended Data Fig. 3). The 649 

trained U-Net deep-learning model was used to process bright-field droplet images into 650 

binary segmented images, in which white and black regions indicate the droplets and 651 

background, respectively. The binary segmented images were provided for particle 652 

analysis using ImageJ, and the particle analysis results were redirected to corresponding 653 

fluorescence images. Using the deep-learning-assisted automated analysis pipeline, we 654 

could automatically obtain the area, mean fluorescence intensity, minimum fluorescence 655 
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intensity, maximum fluorescence intensity, integrated density, and centroid of each 656 

droplet in a scalable and objective manner. The codes were described in 657 

Supplementary Information 5. 658 

 659 

Sensitivity calculation of the deep-learning-assisted automated femtoliter droplet 660 

assay 661 

We roughly estimated the sensitivity of our femtoliter droplet assay using the data at 662 

49 pM artificial ribosomes (dilution ratio 105) (Fig. 2c and Extended Data Fig. 6). In 663 

this experiment, a droplet with a diameter of 1 µm was expected to contain an average 664 

of 1.54 × 10−2 ribosomes. From the Poisson distribution formula, the probability that a 665 

1-µm droplet would contain k ribosomes was expressed as follows: 666 

 667 

���, �� �
�
�
�
��

�!
, 668 

 669 

where k is the number of ribosomes and λ is 1.54 × 10−2. According to this 670 

formula, the ratios of droplets that contain zero, one, or two or more ribosomes were 671 

0.9847, 0.0152, or 0.0001, respectively. 672 

In the data at 49 pM artificial ribosomes (dilution ratio 105), we observed 15544 673 

droplets with a diameter of 0.5–1.5 μm, and the number of fluorescent droplets among 674 

them was 17. The observed ratio of the fluorescent droplets was 0.0011. Taken together, 675 

most of the fluorescent droplets (89%) were estimated to contain only a single artificial 676 

ribosome. 677 

 678 

Mass spectrometric analysis 679 
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The proteomic analysis was carried out as previously described with modifications66. 680 

Briefly, the CF-TXTL reaction solutions were reduced by 50 mM dithiothreitol and 681 

modified with 50 mM iodoacetamide. For stable isotope labeling67, we used CF-TXTL 682 

reaction solutions with 20 amino acid mixtures containing stable isotope-labeled 683 

(heavy) L-arginine (13C6, 
15N4) and L-lysine (13C6, 

15N2) (Thermo Fisher Scientific) 684 

instead of unlabeled (light) L-arginine and L-lysine. The proteins were digested with 685 

sequencing-grade modified trypsin (Promega Corporation, Madison, WI, USA). The 686 

peptides were analyzed using a nano LC–MS system (UltiMateTM 3000 RSLCnano and 687 

Orbitrap ExplorisTM 240) equipped with an Aurora UHPLC column 688 

(AUR2-25075C18A; IonOpticks, Fitzroy, Australia). A gradient was produced by 689 

changing the mixing ratio of the two eluents: A, 0.1 % (v/v) formic acid and B, 690 

acetonitrile. The gradient started with 5 % B with a 10-min hold, was then increased to 691 

45 % B for 60 min, and finally increased to 95 % B for a 10-min hold, following which 692 

the mobile phase was immediately adjusted to its initial composition and held for 693 

10 min to re-equilibrate the column. The autosampler and column oven were maintained 694 

at 4 °C and 40 °C, respectively. The separated peptides were detected on the MS with a 695 

full-scan range of 300–2000 m/z (resolution of 240,000) in the positive mode followed 696 

by data-dependent MS/MS scans (resolution of 15,000). The method was set to 697 

automatically analyze the top 20 most intense ions observed in the MS scan. The ESI 698 

voltage, dynamic exclusion, ion-transfer tube temperature, and normalized collision 699 

energy were 2 kV, 30 s, 275 °C, and 30 %, respectively. The mass spectrometry data 700 

were analyzed using Proteome Discoverer 2.5 (Thermo Fisher Scientific). The protein 701 

identification was performed using Sequest HT against the protein database of E. coli 702 

DH5α (accession number PRJNA429943) with a precursor mass tolerance of 10 ppm, a 703 
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fragment ion mass tolerance of 0.02 Da, and strict specificity allowing for up to 2 704 

missed cleavage. Cysteine carbamidomethylation was set as a fixed modification. 705 

L-arginine (13C6, 
15N4), L-lysine (13C6, 

15N2), methionine oxidation, N-terminus 706 

acetylation, and N-terminal methionine loss were set as dynamic modifications. The 707 

data were then filtered at a q-value ≤ 0.01 corresponding to a 1 % false discovery rate 708 

on a spectral level. 709 

 710 

Data and code availability 711 

MS data generated in this study are available in the jPOST repository68 (jPOST ID 712 

JPST001809). The source data are shown in Supplementary Information 4. The codes 713 

used in the study are shown in Supplementary Information 5. The other datasets 714 

generated during the current study are available from the corresponding author. 715 

  716 
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