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Changes in gene expression have been proposed to play a major role
in adaptive evolution. However, gene expression is highly context-
dependent and very few studies have determined the influence of
genetic and non-genetic effects on adaptive gene regulation in natural
populations. Here, we utilize context-dependent allele-specific expres-
sion to characterize cis and trans changes underlying divergence in
temperate and tropical house mice in two metabolic tissues under two
thermal conditions. First, we show that gene expression divergence
is pervasive between populations and across thermal conditions,
with roughly 5-10% of genes exhibiting genotype-by-environment
interactions. Second, we found that most intraspecific regulatory
divergence was due to cis-regulatory changes that were stable across
temperatures. In contrast, patterns of expression plasticity were
largely attributable to trans-effects, which showed greater sensitiv-
ity to temperature. Nonetheless, we discovered a small subset of
temperature-dependent cis-regulatory changes, thereby identifying
loci underlying expression plasticity. Finally, we performed scans for
selection in wild house mice to identify genomic signatures of rapid
adaptation. Genomic outliers were enriched in genes with evidence
for cis-regulatory divergence. Strikingly, these genes were associated
with phenotypes that affected body weight and metabolism, identify-
ing cis-regulatory changes as a mechanism for adaptive body size
evolution between populations. Together, these results support the
central role of cis-regulatory divergence in adaptive evolution over
extremely short timescales.
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A central goal in evolutionary biology is to understand how1

organisms adapt to novel environments. Gene regulation has2

long been recognized to play a major role in adaptive evo-3

lution (1, 2), especially across short evolutionary timescales4

(e.g., refs. 3, 4). Yet, we still have a poor understanding of5

how changes in regulatory architecture shape adaptive evolu-6

tion. Cis-regulatory elements (e.g. promoters, enhancers) are7

predicted to be the primary substrate of adaptive evolution as8

they tend to be less pleiotropic than protein-coding changes9

(5–8). However, selection may favor divergence through trans-10

acting mechanisms (e.g., transcription factors), particularly11

when trans-effects modulate gene regulatory networks that12

are beneficial in new environments (9, 10). Trans-effects may13

also play a significant role in plastic changes in gene expres-14

sion (11–13), and selection on genetic variation underlying15

plasticity may facilitate adaptation to new environments (14,16

15). However, determining the relative importance of cis- and17

trans-changes to adaptation is challenging given that gene reg-18

ulation is highly dependent on the environment, tissue-type,19

sex, and developmental stage (16–21). In most studies, reg-20

ulatory patterns are often quantified under a single context,21

limiting our understanding of how gene regulatory architecture22

shapes adaptive evolution in natural populations.23

The recent expansion of house mice into the Americas 24

provides an opportunity to address the role of gene regula- 25

tory changes in adaptive evolution. Since their arrival from 26

Western Europe ~500 years ago, house mice (Mus musculus 27

domesticus) have rapidly adapted to various climatic extremes 28

through changes in morphology, physiology, and behavior (22– 29

26). One striking example of this is changes in body size, as 30

mice from more northern populations are significantly larger 31

than mice closer to the equator, likely reflecting adaptation 32

to thermal environments (26). Previous studies point to an 33

important role for gene regulation in driving this local adap- 34

tation. First, genomic scans have primarily identified positive 35

selection on noncoding regions (23, 24), which have been linked 36

to differences in gene expression (24, 27). Second, changes in 37

cis-regulation at specific loci have been associated with vari- 38

ation in body weight in North American mice (27). Finally, 39

gene expression plasticity has been shown to differ between 40

populations in response to environmental stressors (25), sug- 41

gesting a role for context-specific regulatory divergence in local 42

adaptation. 43

Here, we investigate the role of gene regulation in adap- 44

tation in house mice from contrasting thermal environments. 45

Specifically, using RNA-seq data collected from liver and brown 46

adipose tissue in males and females, we measured gene expres- 47

sion in temperate and tropical mice and in their F1 hybrids 48

when reared under warm and cold temperatures. This al- 49

lowed us to describe the proportion of divergently expressed 50
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Fig. 1. Evolved differences in phenotypes and gene expression. (A) Variation in mean annual temperature across North and South America. Wild-caught individuals were
collected in upstate New York (43◦N) and equatorial Brazil (3◦S). (B) Genetic differences in body mass (g), pelage conductance (W-1m-2C-1), tail length (mm), and ear length
(mm) between New York and Brazil. Tail length and ear length are plotted relative to body mass for each individual. Individuals are represented as individual points, and
boxplots indicate the 25th, median, and 75th quartiles. Results from linear mixed models are presented in upper right corners (*P < 0.05; Table S1). Males and females show
similar patterns and are combined for plotting simplicity. (C) Common garden experimental design. Individuals were reared under two temperatures from weaning until adults.
(D) Principal component plots for PC1 vs PC3 based on male gene expression in BAT and liver. PC1 separates individuals based on genotype while PC3 reflects environmental
differences. (E) Expression divergence between New York and Brazil males in warm and cold for both BAT and liver. Log2 fold changes between parents were calculated for all
genes independently. In each panel, points (representing individual genes) are colored depending on their direction and significance of the log2 fold change. Insets depict the
total number of differentially expressed genes for each comparison (FDR < 0.05). Females show similar patterns and are depicted in Figures S2-S3.

genes that are due to changes in cis, trans, or both, and to51

determine the degree to which cis- and trans-regulation is52

context-dependent. Finally, we performed scans for selection53

in wild populations of house mice to identify genomic signa-54

tures of adaptation. We then intersect these genomic outliers55

with genes exhibiting cis-regulatory divergence to identify56

putatively adaptive cis-regulatory mutations associated with57

local adaptation. Our results provide insight into how gene58

expression is regulated across multiple contexts and how this59

complex regulatory divergence within species may contribute60

to adaptive evolution.61

Results62

Extensive gene expression divergence between temperate63

and tropical house mice. To characterize the regulatory ar-64

chitecture of adaptation, we first examined gene expression65

differences in mice from two drastically different environments66

in the Americas: Saratoga Springs, New York, USA (SARA),67

located at 43◦N, and Manaus, Amazonas, Brazil (MANA),68

located near the equator at 3◦S. Saratoga Springs and Manaus69

differ considerably in climate, such as mean annual temper-70

ature (Figure 1A), and mice from these environments show71

several phenotypic differences consistent with climatic adapta-72

tion. Specifically, mice from New York are larger, retain more73

heat through their fur, and have shortened extremities com- 74

pared to mice from Brazil (ANOVA tests, P < 0.05) (Figure 75

1B; Table S1), suggesting adaptation to cold environments 76

(26). 77

We explored patterns of gene expression evolution by rear- 78

ing New York and Brazil mice under two temperatures (5◦C 79

and 21◦C) and sequenced brown adipose tissue (BAT) and 80

liver transcriptomes of 48 individuals (6 / line / sex / environ- 81

ment) (Figure 1C). We chose these two tissues as they play 82

important roles in both metabolism and adaptive thermogene- 83

sis (28–30). Principal component analysis (PCA) of all gene 84

expression data revealed tissue type as the largest source of 85

variance (PC1 ~97% of variance explained), followed by sex 86

(PC2 ~1.5%) (Figure S1). Within each tissue and sex, New 87

York and Brazil mice cleanly separated along PC1 (>60% 88

of variance explained), while PC3 largely separated warm- 89

and cold-reared mice (>4% of variance explained) (Figures 90

1D, S2). We also identified more than a third of genes to be 91

differentially expressed between New York and Brazil mice 92

(false discovery rate (FDR) < 0.05) (Figures 1E, S3-S4), with 93

most expression differences concordant across environments 94

and sexes. 95

This strong pattern of divergence was also apparent when 96

we categorized differentially expressed genes as those showing 97

genetic variation (G), environmental variation [i.e., plasticity 98
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(E)], or genetic variation for plasticity (i.e., GxE) (Figures 2A,99

S3). Genotype had >1.5x larger effect size (calculated as the100

mean absolute value of the log2 fold change) on gene expres-101

sion than environment across both tissues (Figures 2A, S3).102

Similar effects were identified when we attributed expression103

differences to genotype and sex, though these patterns were104

largely tissue-dependent (Figure S4). Overall, these results105

demonstrate that within sexes and tissues, genotype plays a106

larger role than either environment or GxE interactions in107

shaping expression differences between temperate and tropical108

house mice.109

Reduced gene expression plasticity in cold-adapted mice.110

Given that New York and Brazil mice have evolved under111

different thermal environments, we reasoned that gene ex-112

pression responses to temperature would differ between these113

lines. Roughly ~5% and ~10% of all expressed genes showed114

significant GxE in liver and BAT, respectively (FDR < 0.05)115

(Figures 2B, S3). Notably, we found fewer differentially ex-116

pressed genes in New York mice (~5% BAT; ~1% liver) than117

Brazil mice (~10% BAT; ~5% liver) (Chi-square tests, liver118

and BAT: P < 0.05), suggesting that New York mice may be119

more buffered against cold stress.120

Next, we explored the relationship between plastic gene121

expression changes and evolved gene expression differences.122

Adaptive plasticity may facilitate the colonization of new123

environments by moving a population closer to the phenotypic124

optimum, while non-adaptive plasticity may do the opposite125

(31, 32). To determine if the pronounced temperature response126

of Brazil mice is adaptive or non-adaptive, we asked whether127

the direction of expression plasticity of Brazil mice correlates128

with expression divergence between New York and Brazil mice129

(see Methods). We found that expression plasticity generally130

goes in the same direction as evolved divergence for both131

tissues (positive Spearman’s correlations, P < 0.05) (Figures132

2C, S3), consistent with patterns of adaptive plasticity (25, 33,133

34). These results suggest that plasticity may have facilitated134

the rapid expansion of house mice into new environments.135

Expression divergence is predominantly due to cis-regulatory136

changes, and most cis-changes are robust to environmental137

temperature. To investigate the gene regulatory mechanisms138

underlying expression differences between New York and Brazil139

mice, we generated BAT and liver RNA-seq from NY x BZ F1140

hybrids reared in both warm and cold environments (Figures141

1C, S5). Measuring gene expression in F1 hybrids allowed142

us to discern if parental gene expression differences are due143

to cis- and/or trans-acting changes by assessing patterns of144

allele-specific expression (ASE) (Figure 3A). Specifically, as145

F1 hybrids inherit both a Brazil allele and New York allele146

within in the same trans-acting environment, differences in147

expression between alleles are indicative of one or more cis-148

acting elements (35–37). In contrast, if no ASE is detected in149

hybrids but differences are observed between parental lines,150

we can infer divergence is likely due to trans-acting factors151

(35–37).152

We tested 5,898 genes for ASE based on the presence of153

fixed differences between parental Brazil and New York lines154

(see Methods). While most genes showed conserved gene155

regulation between New York and Brazil mice (~75%), genes156

with evidence for expression divergence tended to involve157

changes in cis (Figure 3B). Specifically, 7-8% of genes showed158
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Fig. 2. Patterns of genotype-by-environment interactions (GxE). (A) Ternary plots
depicting the proportion of each gene’s expression variance explained by genotype
(G), environment (E), and GxE. The relative proportion of each factor is shown for
all differentially expressed male genes in BAT and liver. Total variance is the sum
of all three components. (B) Comparison of gene expression differences between
temperature regimes in NY and BZ males in both BAT and liver. Log2 fold changes
between temperatures were calculated for all genes independently. In each panel,
points (representing individual genes) are colored depending on their direction and
significance of the log2 fold change. GxE categories include line-specific responses
or opposite responses between lines. Insets depict the total number of differentially
expressed genes for each comparison (FDR < 0.05). (C) The relationship between
gene expression plasticity and evolved divergence in BAT and liver. Points represent
expression differences with statistically significant plasticity in BZ (cold vs warm;
FDR < 0.05) as well as significant expression divergence between NY and BZ at
warm temperature (FDR < 0.05). Points colored in orange represent genes with a
positive correlation between plasticity and evolved divergence and represent adaptive
plasticity. Points in black represent genes with a negative association and represent
non-adaptive plasticity. Insets depict the observed correlation coefficient (orange
solid lines) is more positive than a randomized distribution of correlation coefficients
for each tissue (see Methods for details). Asterisks denote significance of adaptive
plasticity for each tissue (binomial exact tests, P < 0.05). Females show similar
patterns and are depicted in Figures S2-S3.

expression divergence due to cis alone and 5-6% genes showed 159

evidence of divergence due to cis and trans (Figure 3B). Only 160

~5% of genes involved regulatory changes solely in trans (Figure 161

3B). Moreover, the magnitude of cis-effects were greater than 162

trans-effects per gene (Wilcoxon signed-rank test, P < 2.2 x 163

10-16). The predominance of cis-regulatory changes relative 164

to trans-changes is consistent with previous studies in house 165

mice (38–40). 166
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We next asked how the environment modulates gene reg-167

ulatory evolution by comparing patterns of cis- and trans-168

regulatory differences across environments. Similar to ex-169

pression patterns observed in the parents, the majority of170

genes that could be categorized across temperature treat-171

ments showed the same regulatory control in both environ-172

ments (~88%) (Figure 3C). For the genes that did show a173

change in regulatory control, we found that cis-regulatory174

changes were more insensitive to temperature than trans-175

changes. Comparing the difference in magnitude of the cis-176

and trans-differences between warm and cold conditions, we177

found that trans-differences were greater between environ-178

ments for both tissues (Wilcoxon signed-rank tests, P < 2.2 x179

10-16) (Figure S6). The cold environment also had a lower pro-180

portion of genes with trans-divergence (Chi-square tests; BAT,181

P=0.0003; liver, P=0.02), where the proportion of genes with182

only cis-divergence was the same across temperature condi-183

tions (Chi-square tests; BAT, P=0.51; liver, P=0.66). These184

results suggest that trans-effects play a larger role in gene185

expression plasticity than cis-effects.186

A small number of genes show temperature-dependent187

cis-regulation. While most cis-effects were robust to temper-188

ature, we were specifically interested in exploring whether189

any genes showed temperature-dependent cis-effects. Such190

genes are of particular interest since they correspond to plas-191

ticity-eQTL (i.e., loci that harbor mutations underlying a192

plastic response)(41). To identify genes for which there was193

a significant effect of temperature on regulatory divergence,194

we determined if either the cis and/or the trans component195

showed a significant interaction with temperature (see Meth-196

ods). We identified cis x temperature effects for 11 genes in197

BAT (gstt1, wars2, hsd11b1, itih5, dst, tmed2, plbd1, cdh13, 198

scd1, tmem45b, s100a13 ) and 4 in the liver (elovl3, hmgcs2, 199

wars2, ebpl) (FDR < 0.1). Most of these genes showed dif- 200

ferences in the magnitude of ASE between temperatures, but 201

we also observed cases where ASE was induced by one tem- 202

perature treatment (i.e., wars2, tmed2, cdh13, s100a13, ebpl, 203

hmgcs2 ). Over half of the genes corresponding to plasticity- 204

eQTL showed a smaller plastic response in New York than 205

in Brazil, consistent with the overall reduction in expression 206

plasticity in cold-adapted mice. We also identified a small 207

number of genes with significant trans x temperature effects 208

in BAT (18 genes) and liver (1 gene) (FDR < 0.1) (Table S2). 209

Several of these genes with temperature-induced regulatory 210

differences have suggested roles in energy metabolism and 211

thermal tolerance (e.g., refs 42, 43–45). The identification of 212

temperature-dependent gene regulatory effects (especially plas- 213

ticity-eQTL) indicates a role for evolved changes in plasticity 214

between temperate and tropical mice. 215

Cis-regulatory changes are largely tissue-specific and are en- 216

riched for body size and metabolism. While both liver and 217

BAT play essential roles in metabolism and thermogenesis, 218

these tissues have distinct functional properties that differen- 219

tiate their role in environmental adaptation. In both tissues, 220

genes with evidence for cis-divergence were enriched for GO 221

terms related to metabolic processes, as well as the pathway 222

for metabolism (Reactome R-MMU-1430728; liver, FDR=6.55 223

x 10-8; BAT, FDR=1.49 x 10-8). Genes with cis-regulatory 224

changes in the liver were enriched for several mutant pheno- 225

type annotations for homeostasis and metabolism, including 226

abnormal lipid homeostasis (FDR=6.248 x 10-5), abnormal 227

cholesterol level (FDR=0.003), abnormal energy expenditure 228
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(FDR=0.001), and abnormal triglyceride level (FDR=0.008).229

Additionally, genes with cis-changes in the liver showed a230

greater than 2-fold enrichment of genes with mutant pheno-231

types for abnormal susceptibility to weight gain (FDR=0.014)232

and were nominally significantly enriched for several other233

phenotypes related to body weight, size, and composition (Fig-234

ure S7). Interestingly, two genes (bcat2, adam17 ) exhibiting235

cis-regulatory divergence were previously implicated in body236

weight differences in North American populations (27), further237

supporting their role in adaptive divergence between house238

mouse populations.239

Next, we assessed the extent to which regulatory control is240

tissue-biased. Comparing gene expression evolution in BAT241

and liver, we found regulatory divergence to be largely tissue-242

biased. The majority of genes (80%) for which we could243

assign a regulatory category in each tissue were assigned to a244

different regulatory category in the other tissue (2954/3672245

genes). In particular, we found that trans-divergence was more246

likely to be restricted to one tissue (with expression conserved247

between lines in the other tissue), compared to cis-changes248

which were more often shared (>2-fold more) (Chi-square249

test P < 0.0001). This may reflect the general observation of250

increased tissue-specificity of trans-effects relative to cis-effects251

(46).252

To formally identify tissue-biased ASE, we contrasted ASE253

measurements in BAT and liver for paired hybrid samples (see254

Methods). We identified 338 genes with evidence for differ-255

ential allele-specific expression between tissues (Figure S8).256

While the majority of these genes (77%) showed significant257

allele-specific expression in just one tissue, we also identified258

cases where allele-specific expression was present in both tis-259

sues but with differences in expression magnitude or direction260

(23%). Of these genes, forty-three had discordant allele-specific261

expression between tissues, where the opposite parental allele262

was up-regulated between tissues. Genes with tissue-biased263

ASE were enriched for metabolic phenotypes (e.g., abnor-264

mal lipid homeostasis, FDR=0.00027; increased food intake,265

FDR=0.036) and tissue specific functions and physiology (e.g.,266

abnormal adipose tissue physiology, FDR=0.007; abnormal267

liver morphology, FDR=0.00097). These results highlight the268

importance of tissue-specific gene regulation in population269

divergence.270

Positive selection on genes with cis-regulatory divergence in271

wild house mouse populations. As cis-regulatory variants are272

often drivers of local adaptation (4, 47, 48), and because most273

regulatory divergence between New York and Brazil house274

mice is governed in cis, we next explored whether genes regu-275

lated in cis are under positive selection in wild mice from the276

Americas. To test this, we utilized previously published whole277

exome data from wild-caught individuals collected from New278

Hampshire/Vermont, USA (NH/VT) (24) and Manaus, Brazil279

(MAN) (Gutiérrez-Guerrero et al., in prep), and compared280

these data to previously published whole genome data from281

Eurasian populations of house mice (49). Genetic PCA dis-282

tinguished mice based on subspecies and population-of-origin283

(Figures 4A, S9), with mice from NH/VT clustering most284

closely with mice from Germany. These results are consistent285

with the suggestion that mice from eastern North America are286

most closely related to populations in northern Europe (50,287

51).288

Next, to identify genetic signatures of adaptation in house289

mice from the Americas, we performed a scan for regions 290

of genetic differentiation consistent with selection using a 291

normalized version of the population branch statistic (PBSn1 ). 292

We used this test to identify highly differentiated loci in our 293

focal populations in the Americas (MAN and NH/VT) relative 294

to Eurasian populations (see Methods). In total, 83,538 and 295

84,420 non-overlapping 5-SNP windows were analyzed for 296

Manaus and NH/VT, respectively. Outlier windows in NH/VT 297

and MAN overlapped 538 and 530 genes, respectively (File 298

S1). 299

Finally, we asked to what extent genomic divergence among 300

wild mice from temperate and tropical environments is asso- 301

ciated with cis-regulatory changes. Specifically, if natural 302

selection associated with climatic adaptation has acted mainly 303

on regulatory variants, we predicted an enrichment of PBSn1 304

outliers near genes displaying ASE (e.g., ref. 52). To test 305

this prediction, we overlapped candidate regions for selection 306

based on PBSn1 outlier windows with genes for which we iden- 307

tified evidence for allele-specific expression in BAT or liver. 308

In NH/VT, we found outlier windows overlapped 71 and 62 309

genes with evidence for cis-regulatory divergence under warm 310

and cold conditions, respectively (overlap 44 genes) (Figure 311

4B; File S1). The overlap between genes with cis-regulatory 312

divergence and outlier windows in this population was greater 313

than expected by chance (hypergeometric test, P=0.0016) and 314

genes with allele-specific expression were associated with higher 315

average PBSn1 scores than background genes (P=0.00026, see 316

Methods). ASE outliers were enriched for mutant phenotypes 317

related to body size, growth, and metabolism relative to other 318

genes with cis-regulatory divergence (e.g., abnormal postnatal 319

growth/weight/body size, abnormal susceptibility to weight 320

gain, decreased susceptibility to diet-induced obesity, and in- 321

creased energy expenditure; FDR < 0.05) (Figure 4C; File S1). 322

This gene set also includes genes whose expression in the liver 323

was previously associated with body mass variation in natu- 324

ral populations of North American house mice (bcat2, col6a1, 325

col5a2, col3a1 ) (24, 27). Additionally, this set included genes 326

implicated in obesity and metabolic phenotypes in humans 327

(e.g., wrn, plaat3, prkar2b, sulf2, smoc1 ) (Figure 4D) (53) and 328

mice (Table S3). Together, these results suggest that selection 329

has acted on cis-regulatory genes related to metabolism and 330

body weight in New York mice. 331

In contrast, we did not find significant overlap between 332

genes with allele-specific expression and PBSn1 outliers for 333

Manaus (P=0.4). Outlier windows overlapped 49 and 51 genes 334

with evidence for cis-regulatory divergence under warm and 335

cold conditions, respectively (Figure S10). Genes were not 336

enriched for metabolic process terms or phenotypes. The 337

significant overlap between PBSn1 outliers and ASE in the 338

temperate mice but not in the tropical mice suggests that 339

adaptive gene expression differences may predominantly re- 340

flect adaptation to cold environments (rather than to warm 341

environments). 342

Discussion 343

Understanding how both genetic and non-genetic factors in- 344

fluence gene expression is essential to understanding adaptive 345

evolution. Here, we utilized allele-specific expression in liver 346

and brown adipose tissue to characterize cis and trans changes 347

underlying expression differences between temperate and trop- 348

ical house mice when reared under warm and cold laboratory 349
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Fig. 4. Genomic outliers are enriched in genes with evidence for cis-regulatory divergence. (A) Genetic PCA of wild house mice distinguished mouse populations based
on population-of-origin (Mus musculus domesticus (M.m.d.)) and subspecies (Mus musculus castaneus (M.m.c.), Mus musculus musculus (M.m.m.)). The x and y axes show
the first and second SNP eigenvectors, respectively (EV; PC1: 29% of variance, PC2: 8% of variance. (B) Autosomal selection scan showing PBSn1 results for the New
Hampshire/Vermont (NH/VT) focal population. Orange points depict genes that exhibit cis-regulatory divergence and overlap with outlier regions. (C) Gene set enrichment
analysis for genes with ASE that overlap genomic outliers in the NH/VT population. ASE outliers were highly enriched for mouse phenotypes related to body size differences
and metabolic features, across both temperature treatments. (D) Candidate gene that exhibits cis-regulatory divergence and overlaps with outlier region. Allele frequencies (pie
charts) of significant SNPs (gold asterisks) in the four populations.

environments. We found that most regulatory divergence350

was governed by cis-regulatory variation, and that these cis-351

effects were largely independent of environmental temperature.352

However, a subset of genes showed temperature-dependent353

cis-effects and thus represent QTL for expression plasticity.354

We also found that many cis-regulated genes were associated355

with metabolism and body size, but that these cis-effects were356

often tissue-biased. Finally, overlap of genes exhibiting cis-357

regulatory divergence with scans for selection identified several358

cis-regulatory genes under positive selection, consistent with359

a role for these loci in local adaptation. The combination360

of allele-specific expression with genomic scans is a fruitful361

approach to identify the regulatory architecture of adaptive362

evolution in natural populations.363

Comparisons between New York and Brazil house mice364

provide insights into the evolution of gene regulation over very365

short evolutionary timescales. Although New York and Brazil366

house mice colonized the Americas only within the last ~500 367

years, we find evidence for pervasive regulatory divergence. 368

Moreover, the regulatory control underlying this intraspecific 369

divergence is overwhelmingly due to cis variants either alone or 370

together with one or more trans variants. The predominance 371

of cis-regulatory divergence is in agreement with previous 372

interspecific studies in house mice (38, 40, 54), and has been 373

observed in intraspecific comparisons of other species (55– 374

61). Although some evidence suggests trans-effects play larger 375

roles within rather than between species (62–66), it is likely 376

that certain evolutionary contexts, timescales, and selection 377

pressures may favor either cis- or trans-acting mechanisms (67, 378

68). Regardless, our study indicates that strong intraspecific 379

cis-regulatory divergence between populations can accrue on 380

extremely short timescales. 381

Despite the plastic response of gene expression in both 382

New York and Brazil house mice, cis-regulatory divergence 383
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was relatively robust to environmental temperature. In con-384

trast, changes in the environment preferentially affected trans-385

regulation profiles, suggesting that trans-effects play a more386

pronounced role in gene expression plasticity. Greater sensitiv-387

ity of trans-effects to the environment is in strong agreement388

with previous studies (11, 12, 41, 57, 69–71) and may be due389

to the role trans-acting factors play in signaling pathways that390

become activated in response to environmental change (72).391

Indeed, we found that the effect sizes of trans were greater392

than those of cis across environments, indicating that much393

of expression plasticity we observed is governed by changes394

in trans. Moreover, the pronounced expression plasticity we395

observe in Brazil house mice largely goes in the same direction396

as evolved divergence (i.e., adaptive plasticity)(33, 34). Previ-397

ous studies in house mice have implicated the role of adaptive398

gene expression plasticity in local adaptation (25), suggesting399

that plasticity in general may have aided in the colonization400

of new environments.401

Although ASE was generally observed at both tempera-402

tures for a given gene, a subset of genes showed temperature-403

dependent cis-effects. These loci are of particular interest since404

these constitute plasticity-eQTL and harbor mutations that di-405

rectly affect plasticity of gene expression. Genetic assimilation406

refers to the conversion of a plastic response to a fixed response407

(73–76). If the ancestral allele at a plasticity-eQTL encodes a408

plastic response and the derived allele encodes a fixed response,409

then the plasticity-eQTL represents a case of genetic assimila-410

tion. For example, selection in a cold, temperate environment411

may have led to the reduced plasticity exhibited in New York412

mice. A similar mechanism was recently proposed to underlie413

rapid divergence in threespine stickleback (57). Cis-regulatory414

variants could rapidly canalize expression through the loss415

or gain of specific binding sites for conditionally expressed416

transcription factors, thereby decoupling a gene’s expression417

from the environment (72). Many of the cis x environment418

candidates illustrate potential regulatory mechanisms under-419

lying genetic assimilation as many of them exhibit reduced420

plasticity in New York mice (Figure S11). For example, scd1421

plays an important role in basal and cold-induced thermogen-422

esis (77, 78) and New York mice show higher and constitutive423

average expression of scd1 in BAT compared to Brazil mice424

(Figure S11). Further study of these genes may help us under-425

stand the relationship between adaptive plasticity and genetic426

adaptation to novel environments.427

Finally, we discovered significant overlap between genes428

exhibiting cis-regulatory divergence and genomic SNPs that429

show evidence for positive selection in wild mice, suggest-430

ing that selection has acted mainly on regulatory variants431

associated with local adaptation. This overlapping gene set432

is enriched for mutant phenotypes related to body size and433

metabolism in New York mice and are consistent with previous434

studies showing selection on genes with cis-eQTLs related to435

body size in North American mice (27). Together, our results436

highlight how natural selection on cis-regulatory divergence437

is a likely contributor to rapid climatic adaptation in house438

mice.439

Materials and Methods440

Animals and Evolved Phenotypic Differences. To characterize441

evolved phenotypic differences between New York and Brazil442

house mice, we used two wild-derived inbred lines of house443

mice: SARA (New York) and MANA (Brazil). The estab- 444

lishment of these lines has been described previously (26). 445

Mice from each line were housed in a standard laboratory 446

environment at 21◦C with a 12L:12D cycle. Roughly equal 447

numbers of males and females were produced for each within- 448

line comparison (n = 32 per line; File S1). We took standard 449

museum measurements on all mice and removed and prepared 450

dried skins. Thermal conductance of pelage (referred to as 451

pelage conductance (W-1m-2C-1)) was measured on dry skins 452

following the protocol of Riddell et al. 2021 (see SI Methods) 453

(79). Tail length and ear length were corrected for body mass 454

for each individual. Effects of line and sex for each pheno- 455

type were modeled using ANOVA. All statistical analyses were 456

performed using packages available in R (v.4.1.1). 457

Experimental Design and Tissue Collection. To investigate the gene 458

regulatory mechanisms underlying local adaptation in house 459

mice, we generated F1 hybrids by crossing a SARA female 460

with a MANA male. All experimental animals were born at 461

room temperature (21◦C) and were provided water and com- 462

mercial rodent chow ad libitum. We weaned and singly housed 463

SARA, MANA, and F1 hybrids at ~3 weeks of age. We split 464

3.5-week-old full-sibs and F1 hybrids into size-matched experi- 465

mental groups across cold (5◦C) and warm (21◦C) treatments. 466

Mice were kept in their respective experimental environment 467

until ~12 weeks of age, at which point individuals were euth- 468

anized via cervical dislocation. We took standard museum 469

measurements and then rapidly dissected and preserved liver 470

and brown adipose tissue in RNAlater at 4◦C overnight and 471

moved to -80◦C until RNA extraction. We prepared standard 472

museum skeletons and accessioned them in UC Berkeley’s Mu- 473

seum of Vertebrate Zoology (catalog numbers are given in File 474

S1). All experimental procedures were in accordance with the 475

UC Berkeley Institutional Animal Care and Use Committee 476

(AUP-2017-08-10248). 477

RNA Extraction, Library Preparation, and Sequencing. We extracted 478

total RNA from liver and BAT from each sample (n = ~6 per 479

genotype/sex/treatment/tissue) using the RNeasy PowerLyzer 480

Kit (QIAGEN). We generated Illumina cDNA libraries from 481

1 µg of purified RNA using KAPA Stranded mRNA-Seq Kit 482

(Illumina), and uniquely indexed libraries using unique dual 483

indexes (Illumina). Libraries were pooled in equal molar 484

concentration and sequenced on one lane each of 150 bp paired- 485

end NovaSeq S1 and NovaSeq S4 at the Vincent J. Coates 486

Genomics Sequencing Center at UC Berkeley. We filtered raw 487

reads below a Phred quality score of 15 and trimmed adapter 488

sequences using fastp (80). 489

Parental Gene Expression Analyses. After cleaning and trimming 490

parental sequences of MANA and SARA, we mapped reads 491

to the Mus musculus reference genome (GRCm38/mm10) us- 492

ing STAR (81). We counted reads overlapping exons using 493

HTSeq (82) based on the Ensembl GRCm38.98 annotation. 494

We imported raw count data into R (v.4.1.1) and transformed 495

expression values using variance stabilizing transformation 496

(83) to assess transcriptome-wide expression patterns via PCA. 497

Next, we removed genes with fewer than an average of 10 498

reads per individual within each tissue, retaining ~14K ex- 499

pressed genes per tissue for downstream analyses. We then 500

used DESeq2 (83) on raw, filtered reads to quantify expres- 501

sion patterns by fitting a generalized linear model following 502

a negative binomial distribution. We computed differential 503
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expression between lines with the model population + envi-504

ronment + population*environment to determine the effects505

of genotype, environment, and genotype-by-environment on506

expression patterns for each tissue and sex, separately. We507

also identified genotype-by-sex interactions using a similar508

model in DESeq2 (see SI Methods and Results).509

To determine if gene expression plasticity is correlated with510

gene expression divergence, we compared genes with signifi-511

cant plasticity to genes with significant expression divergence512

within each tissue and sex, separately. We used Spearman’s513

rank correlation coefficients to assess overall directionality and514

significance of gene expression. To account for potential sta-515

tistical artifacts (84), we compared the observed correlations516

to a permuted distribution (10,000 permutations). Lastly, we517

used a Benjamini-Hochberg multiple test correction (85) on518

all resulting P-values and considered genes with FDR < 0.05519

to be significantly differentially expressed.520

Identifying Variants between Parental Lines. To identify differences521

between lines for allele-specific read assignment, we performed522

SNP calling on whole genome sequence data from one female523

each of MANA and SARA. We mapped genomic reads with524

Bowtie2 (86) to the mm10 reference genome (setting: –very-525

sensitive) obtained from Ensembl. We marked duplicates526

with the Picard tool MarkDuplicates and then we used the527

GATK tools HaplotypeCaller and GenotypeGVCFs for joint528

genotyping across genomic samples. We filtered for low quality529

SNP calls with VariantFiltration (QD < 2.0; QUAL < 30.0;530

FS > 200; ReadPosRankSum < -20.0). To reduce the influence531

of genotyping error on allele-specific expression, we mapped532

RNA-seq reads from all individuals and then counted allele-533

specific reads aligned to each site we genotyped with the GATK534

tool ASEReadCounter. We excluded sites for which we did not535

have coverage of at least 5 reads from each population-specific536

allele. These SNPs were then used for identifying allele-specific537

reads.538

Mapping Allele-Specific Reads. For allele-specific expression anal-539

yses, we mapped reads from hybrid individuals to the mouse540

reference genome (GRCm38/mm10) using STAR. We used541

WASP (87) to reduce the potential for reference mapping bias.542

We retained reads that overlapped a population-specific variant543

and that passed WASP filtering for our allele-specific expres-544

sion analysis. We separated reads overlapping informative545

variants into allele-specific pools (NY, BZ) based on genotype546

for quantification. We used HTSeq to count the number of547

reads associated with each gene per population based on the548

overlap of reads and annotated exonic regions based on the549

Ensembl GRCm38.98 annotation. We examined per site allelic550

reads with ASEReadCounter to quantify allele-specific map-551

ping over individual sites. Proportions of reads overlapping552

the references vs. alternative allele (REF allele / (ALT allele553

+ REF allele)) showed a median 0.5 across samples (Figure554

S12), indicating no evidence for reference mapping bias.555

Identifying Cis- and Trans-Regulatory Divergence. Parental (F0)556

and F1 expression data was used to characterize cis and trans557

effects. To categorize regulatory divergence at each gene, we558

inferred differential expression by analyzing raw counts using559

DESeq2. To identify genes with evidence of allele-specific560

expression in hybrid individuals, we took reads that mapped561

preferentially to either New York or Brazil alleles and fit562

these to a model with allele (NY vs. BZ), sample (individual),563

and tissue (BAT, liver) for hybrid male samples in DESeq2 564

(Wald-test). As read counts come from the same sequencing 565

library, library size factor normalization was disabled in DE- 566

Seq2 by setting SizeFactors = 1 for measures of allele-specific 567

expression. We used males to assign regulatory categories to 568

maximize power due to a larger number of hybrid samples 569

sequenced (6 replicates of males vs. 4 replicates of females). 570

Differential expression between alleles in the F1 is evidence 571

for cis-regulatory divergence, where differential expression in 572

the F0 generation is not recapitulated between alleles in the 573

F1 is evidence for trans divergence. The trans component (T) 574

was assessed through a Fisher’s Exact Test on reads mapping 575

to each parental allele in the hybrid vs. parental read counts, 576

summed over all replicates (37, 62). Reads were randomly 577

down-sampled to account for library size differences between 578

parental and F1 replicates (88, 89). P-values for each test 579

were corrected for FDR with the Benjamini-Hochberg method. 580

Genes were sorted into categories based on hard FDR thresh- 581

olds (FDR < 0.05) (37, 62), as described below. We analyzed 582

temperature treatments (warm and cold) separately for regu- 583

latory assignment and then compared as described below: 584

Conserved: no significant difference between lines (F0), no 585

significant difference between alleles (F1), no significant T. 586

Cis only: significant difference between lines (F0), signifi- 587

cant difference between alleles (F1), no significant T. 588

Trans only: significant difference between lines (F0), no 589

significant difference between alleles (F1), significant T. 590

Cis & Trans designations: significant differences between 591

alleles (F1) and significant T. This category was further sub- 592

divided into cis + trans (reinforcing), cis + trans (opposing), 593

compensatory, and cis x trans, as previously described (38, 594

40). 595

Ambiguous: all other patterns. 596

We identified cis x temperature interactions using DESeq2 597

under a model specifying temperature (cold vs. warm) and 598

allele (BZ vs. NY). To identify trans x temperature interactions, 599

we fit a model that included parental and hybrid read counts 600

for temperature (cold vs. warm), allele/genotype (BZ vs. NY), 601

and generation (F1 vs. F0) and interactions. Similar models 602

were also used to identify sex-specific regulatory patterns in 603

DESeq2 (see SI Methods and Results). 604

Genetic PCA of M.m. domesticus populations. We used SNPRelate 605

(90) to perform PCA and IBS hierarchical clustering of popula- 606

tion genetic data. Genomic data from 3 Eurasian populations 607

of M. m. domesticus (Germany [Cologne-Bonn], France, and 608

Iran) and M. m. musculus and M. m. castaneus subspecies 609

were downloaded from http://wwwuser.gwdg.de/~evolbio/evolgen/ 610

wildmouse/ (49). For PCA, biallelic variants genotyped across 611

all these individuals were extracted and pruned for linkage dis- 612

equilibrium in SNPRelate (thresholds=0.2) resulting in 22,126 613

variant sites for PCA and IBS clustering for M. m. domesticus 614

comparisons and 25,467 variants for global Mus comparisons 615

(Figures 4A, S9). Altering the pruning threshold to 0.5 did 616

not result in any change in population clustering. 617

Autosomal Scans for Selection. To identify regions with evidence 618

for selection in the Americas, we scanned the exomes of our 619

North and South American focal populations for selection by 620

using a modification of the population branch statistic (PBS) 621

which summarizes a three-way comparison of allele frequencies 622

between a focal group, a closely related population, and an 623
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outgroup comparison (PBSn1 ) (91, 92):624

P BSn1 = P BS1

1 + P BS1 + P BS2 + P BS3
625

Here, PBS1 indicates PBS calculated as either Manaus or626

NH/VT as the focal population, and PBS2 and PBS3 indi-627

cate PBS calculated for Eurasians populations as the focal628

populations (France or Germany and Iran, respectively). To629

maximize the number of sites that could be compared, Ameri-630

can populations are not directly compared in the branch test631

due to the reduced representation of exome data and high per632

site Fst values between the two populations (Figure S13). In-633

stead, NH/VT and MAN were each compared to two Eurasian634

populations [((MAN), France) Iran) and ((NH/VT) Germany)635

Iran)], selected based on population clustering (Figure S9).636

We restricted our SNP set to biallelic variants across the 3637

populations being compared and required that at least six638

individuals in the focal branch be genotyped. We note that639

the NH/VT sample used in the PBS test is geographically640

close to the origin of the SARA line.641

We used VCFtools (93) to calculate Weir and Cockerham642

Fst at each variant position. These values were used to calcu-643

late PBSn1 for non-overlapping blocks of 5 SNPs. We consider644

blocks in the top 1% of PBSn1 scores outliers and do not at-645

tempt to assign P-values to each SNP-block (94). Outliers646

were >3 standard deviations above the mean windowed value647

of SNP-blocks in each comparison (MAN focal, median=0.045;648

NH/VT focal median = 0.064). We identified windows overlap-649

ping genes based on Ensembl gene coordinates (mm10) and the650

BEDTools “intersect” tool (95). As allele-specific expression651

in F1s is consistent with local independent genetic changes652

influencing gene expression, we focused on genes with evidence653

for cis-regulatory divergence (i.e., differences in expression654

between parental alleles in the F1) for overlap with outlier loci.655

To ask whether allele-specific expression was associated with656

elevated PBSn1 scores, we used a generalized linear model in-657

corporating gene category (ASE or no ASE) and SNP density658

per kb as factors to PBSn1 scores. SNP density was calculated659

by dividing the number of informative sites between NY and660

BZ for allele-specific expression per gene by transcript length.661

Enrichment Analyses. We performed all GO and pathway enrich-662

ment analyses with PANTHER (96, 97). Phenotype enrich-663

ment analyses were performed with ModPhea (98). We anno-664

tated genes to specific phenotypes based on Mouse Genome665

Informatics phenotype annotations (http://www.informatics.jax.666

org/).667

Data Availability. Scripts are available on GitHub(https://github.668

com/malballinger/BallingerMack_NYBZase_2022). All sequence669

data generated in this study have been deposited to the Na-670

tional Center for Biotechnology Information Sequence Read671

Archive under accession BioProject ID PRJNAXXX. All other672

data are included in the article and/or SI Appendix.673
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