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ABSTRACT 

Background: Biological sex impacts susceptibility and presentation of cardiovascular 

disease, which remains the leading cause of death for both sexes. To reduce 

cardiovascular disease risk, statin drugs are commonly prescribed to reduce circulating 

cholesterol levels through inhibition of cholesterol synthesis. The effectiveness of statin 

therapy differs between individuals with a sex bias in the frequency of adverse effects. 

Limited information is available regarding the mechanisms driving sex-specific responses 

to hypercholesterolemia or statin treatment.  

Methods: Four core genotypes mice (XX and XY mice with ovaries and XX and XY mice 

with testes) on a hypercholesteremic Apoe–/– background were fed a chow diet without or 

with simvastatin for 8 weeks. Plasma lipid levels were quantified and hepatic differential 

gene expression was evaluated with RNA-sequencing to identify the independent effects 

of gonadal and chromosomal sex. 

Results: In a hypercholesterolemic state, gonadal sex influenced the expression levels of 

more than 3000 genes, and chromosomal sex impacted expression of nearly 1400 genes, 

which were distributed across all autosomes as well as the sex chromosomes. Gonadal 

sex uniquely influenced the expression of ER stress response genes, whereas 

chromosomal and gonadal sex influenced fatty acid metabolism gene expression in 

hypercholesterolemic mice. Sex-specific effects on gene regulation in response to statin 

treatment included a compensatory upregulation of cholesterol biosynthetic gene 

expression on mice with XY chromosome complement, regardless of presence of ovaries 

or testes.  
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Conclusion: Gonadal and chromosomal sex have independent effects on the hepatic 

transcriptome to influence different cellular pathways in a hypercholesterolemic 

environment. Furthermore, chromosomal sex in particular impacted the cellular response 

to statin treatment. An improved understanding of how gonadal and chromosomal sex 

influence cellular response to disease conditions and in response to drug treatment is 

critical to optimize disease management for all individuals. 
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INTRODUCTION 

Cardiovascular disease (CVD) remains the leading cause of death for both men and 

women in the United States. CVD mortality for males and females combined declined 

from 1980 to 2010, but has increased from 2010 to 2019 (the most recent time point for 

which figures are available) [1]. This is despite extensive knowledge regarding the risk 

factors for the development of CVDs (including hypercholesterolemia, high blood 

pressure, and diabetes), and the widespread use of drugs to reduce these risk factors. A 

fundamental factor that influences CVD susceptibility is biological sex. Men are more 

susceptible than women to the most common form of cardiovascular disease, coronary 

artery disease, through age 50 [2,3]. However, women with coronary artery disease 

before age 50 have a worse prognosis than men, and following menopause, the incidence 

of disease in women increases and overtakes that in men at advanced ages.  

Statin drugs are widely prescribed worldwide to reduce CVD risk by inhibiting hepatic 

cholesterol synthesis and reducing circulating cholesterol levels. Although statins are 

largely effective at reducing CVD risk, statin response differs among individuals. In 

particular, biological females are more likely to experience adverse statin effects, 

including myopathy and new-onset diabetes [4–6]. Elucidating the mechanisms that 

underlie sex-specific responses to hypercholesterolemia and statin treatment would be a 

valuable step toward optimizing CVD prevention and treatment for both sexes. 

The liver is the central organ for cholesterol homeostasis and statin action [7]. During 

the postprandial period, hepatocytes take up lipids from intestinally-derived lipoproteins 

(chylomicrons) that contain triglycerides and cholesterol esters; during the fasting state, 

hepatocytes take up fatty acids released from triglyceride stores in adipose tissue. The 
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fatty acids may be oxidized, or fatty acids and cholesterol may be esterified and stored 

as lipid droplets. Hepatocytes package triglycerides and cholesterol esters into very low-

density lipoproteins (VLDL) which are secreted and transport triglycerides and cholesterol 

to peripheral tissues. The hydrolysis of lipids within the core of liver-derived lipoproteins 

converts them to intermediate-density lipoproteins, and ultimately, low-density 

lipoproteins (LDL), which carry most cholesterol in the circulation and are imported into 

tissues throughout the body via the LDL receptor.  

Hepatocytes also synthesize cholesterol and fatty acids de novo. The regulation of 

hepatic cholesterol biosynthesis is under complex metabolic control by multiple factors, 

most notably the sterol response element binding protein 2 (SREBP2) transcription factor 

[8]. When cellular cholesterol levels are low, SREBP2 is activated to induce expression 

of genes involved in cholesterol synthesis, including that of the rate-limiting enzyme, 

hydroxymethylglutaryl (HMG)-CoA reductase. When cholesterol accumulates, 

hepatocytes down-regulate SREBP2 (through the action of the liver X receptor alpha 

transcription factor) and reduce cholesterol synthesis. The utility of statin drugs in 

reduction of CVD risk stems from their action as competitive inhibitors of HMG-CoA 

reductase to reduce endogenous cholesterol biosynthesis [9].  

Despite the long history of studies on hypercholesterolemia as a CVD risk factor, and 

statin drug action, little is known about the mechanistic basis for sex differences in 

hypercholesterolemia or statin effects. Here, we dissect sex determinants of hepatic 

transcriptome changes that occur in the hypercholesterolemic state and in response to 

statin treatment using the Four Core Genotypes (FCG) mouse model. This model 

independently segregates the development of gonads from the sex chromosomes to 
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generate four sex genotypes: XX and XY mice with ovaries and XX and XY mice with 

testes [3,10]. We identified specific effects of gonadal sex and chromosomal sex on 

plasma lipid levels and hepatic gene expression pathways in the hypercholesterolemic 

state. We further identified the role of biological sex components in statin lipid lowering 

and regulation of hepatic gene expression. These findings reveal that both gonadal and 

genetic sex differences contribute to the regulation of a key CVD risk factor and a widely 

used therapeutic intervention.  
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METHODS 

Animals 

The Apoe–/–;FCG mice were maintained at UCLA for >15 generations and were generated 

as previously described [11,12]. In brief, female C57BL/6J apolipoprotein E knockout 

(Apoe–/–) mice (#002052, Jackson Laboratory, Bar Harbor, ME) were crossed with XY–

(Sry+) Apoe–/– male mice to generate XX, XX(Sry+), XY–, and XY–(Sry+) offspring on an 

Apoe deficient background. This mouse cohort is referred to as “FCG mice” throughout. 

At 8–10 wks of age, mice were fed a chow diet containing 5%–6% fat from calories 

(D1001, Research Diets, New Brunswick, NJ) or the same diet containing pharmaceutical 

grade simvastatin (0.1 g/Kg; prepared at Research Diets under formulation D11060903i) 

for 8 wks. The statin concentration was calculated to be the equivalent in mouse of an 80 

mg/day dose in human. All mouse studies were conducted in accordance with UCLA 

Institutional Animal Research Committee (IACUC) approval under a 12-hour light/dark 

cycle with ad libitum access to food and water. At time of sacrifice, mice were fasted for 

5 hrs and tissues were collected and flash-frozen in liquid nitrogen, followed by storage 

in –80ºC.  

 

Plasma lipid quantitation 

Total cholesterol, triglycerides and free fatty acid levels were determined in mouse 

plasma via enzymatic reactions and colorimetric detection [13]. 

 

RNA-sequencing 
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RNA from snap-frozen liver samples was isolated with TRIzol (Thermo Fisher Scientific, 

Waltham, MA). The RNA-seq libraries were generated as previously described [14], 

including poly (A) RNA selection, RNA fragmentation, oligo(dT) priming with cDNA 

synthesis, adaptor ligation to double-stranded DNA, strand selection and PCR 

amplification to produce the final libraries. Index adaptors were used to multiplex samples 

after quantification (Quibit) and for quality evaluation (4200 TapeStation, Agilent). 

Sequencing was performed on a NovaSeq 6000 sequencer at the UCLA Technology 

Center for Genomics & Bioinformatics. Processing of RNA-seq raw data was performed 

as previously described [14]. Reads were aligned to mouse genome (GRCm38.97) and 

read counts per gene were generated with STAR. Differential gene expression analysis 

was performed with DESeq2 (version 1.26, n = 3 per FCG genotype and treatment) and 

a P value < 0.05 demonstrating significance, unless otherwise noted [15]. Pathway 

analysis was performed for differentially expressed genes with >1.25 fold-change and 

adjusted p ≤ 0.05 (chow only comparisons) or p ≤ 0.05 (statin treated comparisons) using 

Enrichr [16–18]. MA plots, PCA plot, and normalized read boxplots were generated in R. 

RNA-seq data has been deposited in GEO (Accession number GSE202977).  

 

Quantitative real-time PCR 

For gene expression quantification, RNA was reverse transcribed to cDNA with iScript 

reverse transcriptase (Bio-Rad, Hercules, CA) and quantified by quantitative real-time 

PCR (RT-PCR) with SsoAdvanced SYBR Green Supermix on Bio-Rad CFX Opux 384 

Real-Time PCR Detection System. All real-time PCR data was normalized to Rplp0 (also 
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known as 36B4) gene expression. Supplemental Table 1 contains all primer sequences 

used in this study.  

 

Statistical Analyses 

Graphpad Prism 9 and RStudio were used for all statistical analyses and data 

representation. FCG gene expression was analyzed by two-way ANOVA with main 

factors of gonads (testes vs. ovaries) and sex chromosome complement (XX vs. XY), and 

assessment of an interaction between the two factors.  
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RESULTS 

Effects of gonadal sex on lipid levels are abolished following statin treatment 

To assess the effects of sex components on hypercholesterolemia, we made use 

of the apolipoprotein E (apoE)-deficient (Apoe–/–) mouse model, which is widely used in 

the study of hypercholesterolemia and atherosclerosis. Apoe–/– mice typically develop 

hypercholesterolemia (300–600 mg/dL) without dietary intervention, which is associated 

with elevated levels of LDL and VLDL, as well as reduced high-density lipoproteins (HDL) 

(reviewed in [19]). We generated Apoe–/– FCG mice on a C57BL/6 background (see 

Methods) to evaluate the role of gonadal and chromosomal sex in response to 

hypercholesterolemia and statin treatment (Fig. 1A, left panel). Comparison of the two 

genotypes with XX chromosomes (XX with ovaries and XX with testes) vs. those with XY 

chromosomes (XY with ovaries and XY with testes) allows for detection of sex 

chromosome effects (Fig. 1A, middle panel). Comparison of mice with ovaries (XX or XY 

with ovaries) vs. those with testes (XX or XY with testes) allows for detection of gonadal 

effects. The analyses that we performed include plasma lipid levels and assessment of 

the liver transcriptome by RNA-seq and differential gene expression with pathway 

analyses (Fig. 1A, right panel).  

Apoe–/– FCG mice were fed chow diet with or without simvastatin for 8 wks. On 

chow diet, all genotypes were hypercholesterolemic due to apo E deficiency, but mice 

with testes had higher cholesterol levels than those with ovaries, regardless of sex 

chromosome type (Fig. 1B, left). After statin treatment, there were no significant sex 

differences in the absolute cholesterol levels (Fig. 1B, middle). However, the sex 

genotype influenced the statin-induced change in cholesterol levels. Within-genotype 
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reductions in cholesterol levels occurred only in mice having the standard sex genotypes 

of XX with ovaries or XY with testes; XX mice with testes and XY mice with ovaries did 

not exhibit a significant drop in cholesterol levels with statin treatment (Fig. 1B, right). In 

contrast to cholesterol levels, triglyceride levels did not vary across sex genotypes on 

chow or after statin treatment (Fig. 1C).  

Free fatty acid levels in hypercholesterolemic mice were influenced by gonadal 

type, with the presence of testes associated with higher levels (Fig. 1D, left). After statin 

treatment, free fatty acid levels were influenced by chromosomal sex, with XX mice 

having higher levels than XY mice (Fig. 1D, middle). As with cholesterol levels, statin-

induced changes in free fatty acid levels occurred only in the standard sex genotypes (XX 

mice with ovaries and XY mice with testes) (Fig. 1D). However, while statin reduced 

cholesterol levels in both of these genotypes, fatty acid levels were increased by statin in 

XX mice with ovaries and reduced in XY mice with testes. Overall, statin altered plasma 

cholesterol and free fatty acid levels in a sex-dependent manner with the most robust 

effects in mice having XX chromosomes paired with ovaries or XY chromosomes paired 

with testes.  

 

Gonadal and chromosomal sex independently impact the hepatic transcriptome in 

hypercholesterolemic mice 

To identify genes and pathways that influence sex differences in 

hypercholesterolemia and statin response, we performed RNA-sequencing of liver from 

Apoe–/– FCG mice. To visualize the impact of gonads, sex chromosomes, and statin 

treatment on gene expression, we performed principal component analysis (PCA) of the 
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RNA-seq data (Fig. 2A). The PCA generated separate clusters for gonadal type based 

on principal component 1, which accounted for 58% of the variation in the dataset. Within 

each gonadal type, the samples were separated into individual clusters for XX and XY 

sex chromosome complement based on principal component 2, which accounted for 23% 

of the variation within the dataset. Chow and statin treatments clustered together within 

each genotype indicating that statin treatment had a smaller impact on gene expression 

than sex genotype. We performed differential expression analysis with DESeq2 [20]; 

boxplots of the transformed counts show similar total counts across all 24 samples in the 

analysis (Fig. 2B).  

We assessed the influence of sex genotypes on gene expression in the 

hypercholesterolemic state without statin treatment. A genome-wide analysis of 

differential gene expression (≥1.25-fold difference, adj p<0.05) identified 3223 genes with 

differential expression in mice with ovaries compared to testes, and 1390 genes with 

differential expression in XX compared to XY mice (Supplemental Table 2). We found 

that 5.9–12.7% of genes on each autosome and 5.5% of genes on the X chromosome 

had different expression levels in mice with ovaries compared to mice with testes (Fig. 

2C, blue bars). The XX vs. XY chromosome complement conferred differential expression 

of 3.7–7.3% of genes/autosome, as well as 3.8% of genes on the X chromosome (Fig. 

2C, red bars). The majority of Y chromosome genes are expressed at very low levels in 

liver and were therefore not included in this analysis. This analysis reveals that gonadal 

and chromosomal sex each influence expression of genes that map across all autosomes 

as well as on the X chromosome.  
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We determined the functional classification of genes that were differentially 

expressed based on gonadal or chromosomal sex in the liver of hypercholesterolemic 

mice by pathway enrichment analysis [16–18]. The 1972 DEG with elevated expression 

in mice with ovaries compared to testes were enriched for genes in the immune system, 

cell cycle, and cell signaling pathways of the 49 significant pathways identified (Fig. 3A,B, 

Supplemental Table 2-3). The 1251 DEG elevated in the presence of testes were 

enriched in functions that include the unfolded protein response and endoplasmic 

reticulum (ER) stress pathways (Fig. 3A,B, Supplemental Table 2-3). These results 

demonstrate that distinct hepatic cellular processes are influenced at the gene expression 

level by presence of ovaries or testes.  

We also assessed the functional enrichment of genes with differential expression 

in mice with XX (with ovaries or testes) vs. XY chromosomes (with ovaries or testes). The 

majority of DEG due to sex chromosome complement (1242 of 1390 genes) had elevated 

expression in XY compared to XX mice (Fig. 3C, Supplemental Table 2). The XY DEG 

were enriched in immune system, Rho GTPase signaling, and other cell signaling 

pathways (Fig. 3D, Supplemental Table 3). Only 148 genes were expressed at higher 

levels in XX compared to XY liver, but these were enriched for genes associated with fatty 

acid oxidation in mitochondria and other aspects of fatty acid metabolism (Fig. 3D, 

Supplemental Table 3).  

 

ER stress response gene expression is elevated in mice with testes 

Since ER stress-related pathways were the predominant pathways upregulated in 

mice with testes, we further evaluated the regulation of specific genes within these 
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pathways. The ER plays key roles in protein synthesis and trafficking as well as the 

synthesis of lipids, including sterols, phospholipids, and triglycerides. Disruption of ER 

homeostasis induces stress responses that are associated with the development and 

progression of metabolic diseases including obesity, fatty liver, type 2 diabetes and 

atherosclerosis [21,22]. Of the 92 protein encoding genes in the unfolded protein 

response pathway (Reactome R-HSA-381119) [23], 36 genes were differentially 

expressed in mice with testes vs. ovaries, and 7 genes were influenced by sex 

chromosome complement (two-way ANOVA, p<0.05) (Fig. 4A). We confirmed the 

expression patterns of representative genes via real-time PCR in a greater number of 

mouse liver samples. Consistent with RNA-seq data, the expression levels of Psmd14, 

Hyou1, Dnjab11, and Sec61a1 were upregulated in the livers of mice with testes 

compared to mice with ovaries (Fig. 4B). These data suggest that gonadal sex is a key 

determinant of sex differences in gene expression of ER stress-associated pathways in 

hypercholesterolemic liver, while chromosomal sex has only a minor impact. 

 

Fatty acid metabolism genes are independently regulated by gonadal and chromosomal 

sex  

Our gene enrichment analyses demonstrated that gonadal and chromosomal sex 

each impact expression of lipid metabolism genes. In particular, XX vs. XY chromosomes 

influenced fatty acid metabolism and beta oxidation genes, and testes vs. ovaries 

influenced peroxisomal lipid metabolism (Fig. 3B,D; Supplemental Table 3). We further 

investigated the sex component regulation of genes involved in fatty acid synthesis and 

oxidation across the FCG genotypes. Of the 37 genes in the fatty acid synthesis pathway 
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(Reactome R-HSA-75105.7), 21 genes were regulated by gonadal sex, sex chromosome 

complement, or a combination of both sex factors in livers of hypercholesterolemic mice 

(Fig. 5A). Gonadal sex influenced expression of 10 fatty acid synthesis genes. Elovl3 was 

strongly increased by the presence of testes, but the majority of the other 10 gonadally 

regulated fatty acid synthesis genes were down-regulated in mice with testes. The sex 

chromosome complement influenced expression of 7 fatty acid synthesis genes, with the 

majority upregulated in XY compared to XX mice. Four fatty acid synthesis genes showed 

more complex regulation, with significant effects of both gonadal and chromosomal sex.  

Peroxisomal fatty acid oxidation genes were also largely influenced by gonadal 

sex, but in a pattern distinct from the fatty acid synthesis genes. Of 29 peroxisomal lipid 

metabolism-related genes (Reactome R-HSA-390918.5), 12 were regulated by gonadal 

sex, primarily with increased expression due to testes compared to ovaries (Fig. 5A). Four 

of the 29 peroxisomal oxidation genes were expressed at lower levels in mice with XY 

compared to XX chromosomes.  

We confirmed patterns of representative fatty acid metabolism genes identified by 

RNA-seq in a larger number of mice by real-time PCR. The acyl-CoA synthetase genes 

Acsl1 and Acsl4 were both regulated by sex chromosome complement, but in opposing 

directions: XX chromosomes promoted higher expression of Acsl1, while XY 

chromosomes promoted higher expression of Acsl4. (Fig. 5B). Scd2 and Phyh were 

oppositely regulated by gonadal sex, with ovaries promoting higher Scd2 expression, and 

testes enhancing Phyh expression (Fig. 5C). Slc27a2 exhibited combined gonadal and 

sex chromosome regulation with higher expression in XX mice compared to XY mice, but 

also higher expression in mice with testes compared to mice with ovaries (Fig. 5D). 
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Overall, fatty acid metabolism exhibits complex sex-dependent regulation with fatty acid 

biosynthesis and peroxisomal degradation impacted in opposite directions by gonadal 

and chromosomal sex.  

 

Sex-dependent transcriptional response to statin treatment is influenced by XY sex 

chromosome complement and testes  

 To identify sex-dependent effects of statin, Apoe–/– FCG mice received simvastatin 

in chow diet for 8 weeks. The role of sex components on statin-induced alterations in the 

hepatic transcriptome were identified by comparing statin-treated mice to chow diet 

controls within each genotype. Statin treatment influenced a similar number of genes in 

mice with testes (949 DEG between statin and chow) and ovaries (939 DEG between 

statin and chow) (Fig. 6A). However, only ~5% (94) of the genes altered by statin 

treatment were shared by mice with ovaries and testes, indicating distinct target genes 

for statin-associated regulation depending on gonadal type. We analyzed genes with up 

and down regulation in response to statin (Fig. 6B,C) for functional enrichment. In mice 

with testes, statin down-regulated genes were enriched for fatty acid metabolism 

pathways, and statin upregulated genes were enriched for cholesterol biosynthesis 

pathways (Fig. 6D). In mice with ovaries, statin-regulated genes did not show enrichment 

for specific biological pathways (Fig. 6E).  

Statin-induced gene regulation was also influenced by chromosomal sex. 

Compared to mice fed a chow diet, statin treatment altered expression of 605 genes in 

XY mice and 612 genes in XX mice, but only 39 (~6%) of the dysregulated genes were 

shared between the two sex chromosome complement types (Fig. 6F). In mice with XY 
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sex chromosomes, statin treatment upregulated 162 genes and down-regulated 442 

genes. In mice with XX sex chromosomes, statin treatment upregulated 391 genes and 

down regulated 221 genes (Fig. 6G,H). For XY mice, statin upregulated genes were 

enriched for cholesterol biosynthesis pathways, while XX mice had no significant pathway 

enrichment for the statin-induced DEG (Fig. 6I,J).  

 

Statin treatment induces cholesterol biosynthesis gene expression only in mice with XY 

sex chromosomes or testes  

Statin drugs bind to the rate-limiting enzyme in cholesterol biosynthesis (HMG CoA 

reductase) to inhibit its activity. The complex feedback mechanisms that control HMG 

CoA reductase levels can lead to enhanced transcription of the corresponding gene, as 

well as other genes within the pathway, in response to statin [24,25]. The subsequent 

upregulation of HMG CoA reductase protein levels may reduce the effectiveness of statin 

drugs. Our data above suggested that statin-induced compensatory upregulation of 

cholesterol synthetic gene expression is driven by testes and XY chromosome 

complement. We investigated further by assessing the effect of gonadal and 

chromosomal sex on expression of genes in the cholesterol biosynthetic pathway in 

response to statin. Statin upregulated 18 of 25 cholesterol biosynthetic genes in the liver 

of XY mice, with little or no increase in XX liver (Fig. 7A). The increased expression in XY 

mice was most pronounced in XY mice with testes, suggesting an additional impact from 

gonadal sex.  

We confirmed the sex chromosome differences in statin regulation of 

representative cholesterol synthetic genes by real-time PCR. Mice with XY sex 
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chromosomes upregulated Hmgcs, Hmgcr, Mvk, and Sqle with statin treatment compared 

to chow diet controls, while mice with XX sex chromosomes did not (Fig. 7B–E). Hmgcr 

expression also showed a significant gonad effect with higher expression in mice with 

ovaries compared to testes, irrespective of sex chromosome type and statin treatment 

(Fig. 7C). Our results reveal that sex differences in statin regulated gene expression 

depend on the individual gene, and specific genes may be influenced by gonadal sex, 

chromosomal sex, or a combination of the two. 
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DISCUSSION  

Differences between women and men have been characterized in plasma lipid 

profiles, hepatic lipid metabolism, and response to pharmaceutical approaches to reduce 

CVD risk [3,4]. There is, however, limited understanding of the molecular mechanisms 

that underlie these sex differences. We used Apoe–/– FCG mice to investigate how 

gonadal and chromosomal sex independently impact hepatic gene expression in a 

hypercholesterolemic state and in response to statin. We focused on liver because of its 

central role in regulating homeostatic lipid levels and as the primary target for statin 

inhibition of cholesterol synthesis. Previous studies have identified significant sex 

differences in the hepatic transcriptome [26–28]. Our study extends and augments 

previous work by assessing the role of sex in hepatic gene regulation in physiological 

states that are relevant to human disease—hypercholesterolemia and statin treatment.  

A general finding in our study is the demonstration that in hypercholesterolemic 

mice, the presence of ovaries vs. testes leads to differential expression of ~6–12% of 

genes on each of the 19 mouse autosomes, and presence of XX vs. XY chromosomes 

confers differential expression of ~3–6% of genes on each autosome. Several key 

findings related to the role of sex components and gene expression in 

hypercholesterolemic or statin-treated states also emerged. For example, an analysis of 

specific biological pathways that are influenced by sex components revealed that in the 

hypercholesterolemic state, gonadal sex influences the regulation of ER stress, whereas 

chromosomal sex and gonadal sex influence fatty acid metabolism. We hypothesized that 

the distinct sex-specific gene expression profiles in the liver of hypercholesterolemic mice 

would influence their response to external factors, such as statin drug treatment. Indeed, 
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we identified strong sex-dependent responses to statin. In particular, the presence of XY 

chromosomes was associated with more robust upregulation of the cholesterol 

biosynthesis pathway genes upon statin treatment. Further analysis confirmed the 

absence of this statin-induced response in XX mice, irrespective of gonad type. These 

data demonstrate that the sex chromosome complement, independent of gonadal sex, 

may be an important determinant of sex-dependent statin drug response. Ultimately, the 

complex interplay between gonadal and chromosomal sex leads to a specific gene 

expression environment that is expected to determine sex differences in traits related to 

CVD risk, such as circulating plasma lipid levels.  

Overall, our findings reveal independent effects of gonadal and chromosomal sex 

on the hepatic transcriptome to create sex-specific cellular phenotypes. While gonad type 

had the largest impact on hepatic gene expression in the conditions we assessed, we 

demonstrated that the sex chromosomes influence the hepatic response to statin 

treatment, which may have a profound impact on differential statin efficacy, effectiveness, 

or side effects between women and men. This may be important after middle age (when 

statin drugs are most commonly prescribed), as chromosomal sex effects persist after 

gonadal hormone levels wane. These findings join other recent data that demonstrate the 

integral role of sex chromosomes on cellular and whole-body physiology including mRNA 

and microRNA expression levels, lipoprotein metabolism, atherosclerosis, obesity, 

autoimmune, pulmonary, and neurological diseases [11,14,29–34]. Our study is the first 

to evaluate how gonadal and chromosomal sex impact cellular response to a drug 

treatment. An understanding of how sex components influence the response to disease 

conditions (such as hypercholesterolemia) and commonly prescribed drugs (such as 
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statins) will lead to optimal treatment for all individuals.  
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FIGURE LEGENDS 

 

Figure 1. Study design using hypercholesterolemic Four Core Genotypes mice, and 

sex determinants of plasma lipid level response to statin. (A) Experimental design to 

assess the contribution of sex components to lipid levels and hepatic transcriptome. Left, 

generation of FCG mouse cohorts on hypercholesterolemic (Apoe–/–) genetic 

background. Center, group comparisons made throughout the study. Right, a summary 

of analyses performed. (B) Total cholesterol levels, (C) triglyceride levels, (D) and free 

fatty acid levels in plasma of Apoe–/– FCG mice on chow diet (left panel), treated with 

simvastatin (center panel), and the statin-induced change in lipid levels (right panel). For 

the lipid levels, values represent mean ± standard deviation and were analyzed by two-

way ANOVA for gonad and sex chromosome effects indicated by brackets. Denoted 

significance values: *P<0.05, **** P<0.0001. 

 

Figure 2. Characterization of Apoe–/– FCG liver RNA-seq dataset. (A) Principal 

component analysis of liver RNA-seq data from Apoe–/– FCG mice fed chow diet without 

or with simvastatin for 8 wks. (B) Boxplots representing transformed RNA-seq counts 

across all 24 liver samples. (C) The genome-wide distribution of genes found to be 

differentially regulated by presence of ovaries vs. testes (gonadal DEG), or by presence 

of XX vs. XY chromosomes (Sex Chr DEG). DEG, differentially expressed genes.  

 

Figure 3. Gonadal and chromosomal sex impact gene expression in Apoe–/– FCG 

liver. MA plot shows mean expression and fold change of genes with differential 
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expression in (A) mice with ovaries compared to mice with testes (adjusted P<0.05, fold-

change >1.25) and (B) the top 10 significant cellular pathways enriched in the differentially 

expressed genes (adjusted P<0.05). MA plot shows mean expression and fold change of 

genes with differential expression in (C) XX mice compared to XY mice (adjusted P<0.05, 

fold-change >1.25) and (D) the top 10 significant cellular pathways enriched in the 

differentially expressed genes (adjusted P<0.05). 

 

Figure 4. Genes in ER stress and UPR pathways show increased expression in 

mice with testes. (A) Heatmap displays relative hepatic expression levels of genes 

related to ER stress and unfolded protein response in Apoe–/– FCG genotypes. 

Expression of each genotype was relative to that in XX mice with ovaries. *P<0.05 for 

gonadal or chromosomal sex by two-way ANOVA. (B) Real-time PCR quantification of 

representative ER stress genes from (A) (Psmd14, Hyou1, Dnjab11, and Sec61a1) in 

liver of Apoe–/– FCG mice. **P<0.01 by two-way ANOVA. N=4–6. 

 

Figure 5. Gonadal and chromosomal sex regulate fatty acid metabolism. (A) 

Heatmaps display relative hepatic expression levels of genes related to fatty acid 

synthesis and peroxisomal beta oxidation in Apoe–/– FCG genotypes. Expression of each 

genotype was relative to that in XX mice with ovaries. *P<0.05 for gonadal or 

chromosomal sex by two-way ANOVA. Real-time PCR quantification of representative 

genes from (A) showing (B) chromosomal sex effects (Acsl1 and Acsl4), (C) gonadal sex 

effects (Scd2 and Phyh) and (D) both gonadal and chromosomal sex effects (Slc27a2). 

Two-way ANOVA with *P<0.05 and **P<0.01. N=4–6. 
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Figure 6. Statin effects on hepatic gene expression are influenced in distinct ways 

by gonadal and chromosomal sex. (A) Venn diagram shows number of genes altered 

by statin treatment depending on presence of ovaries or testes, and the minimal overlap 

between the two. MA plots display mean expression levels and fold-change of 

differentially expressed genes (DESeq2, >1.25-fold altered expression, P<0.05) in (B) 

statin-treated mice with testes compared to chow diet controls and (C) statin-treated mice 

with ovaries compared to chow diet controls. Significantly enriched cellular pathways for 

statin-induced gene expression changes in (D) mice with testes and (E) mice with ovaries 

(no enriched pathways). (F) Venn diagram shows number of genes altered by statin 

treatment depending on presence of XX or XY chromosomes, and the minimal overlap 

between the two. MA plots display mean expression levels and fold-change of 

differentially expressed genes (DESeq2) in (G) statin-treated XY mice compared to chow 

diet controls and (H) statin-treated XX mice compared to chow diet controls. Significantly 

enriched cellular pathways for statin-induced gene expression changes in (I) XY mice and 

(J) XX mice (no enriched pathways).  

 

Figure 7. Cholesterol biosynthesis pathway gene expression is up-regulated in XY 

mice in response to statin. (A) Heatmap displays relative hepatic expression levels of 

genes altered by sex within the cholesterol biosynthesis pathway as fold-change of statin 

treated compared to chow diet for each of the Four Core genotypes. *P<0.05 by two-way 

ANOVA. (B–E) Real-time PCR quantification of representative genes from (A) illustrates 

the effects of gonadal and/or chromosomal sex on statin-induced alterations in gene 
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expression in the cholesterol biosynthesis pathway. *P<0.05 and **P<0.01 by two-way 

ANOVA. 
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Figure 4
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