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ABSTRACT 

The analysis of ‘omic data depends heavily on machine-readable information about protein interactions, 

modifications, and activities. Key resources include protein interaction networks, databases of post-

translational modifications, and curated models of gene and protein function. Software systems that read 

primary literature can potentially extend and update such resources while reducing the burden on human 

curators, but machine-reading software systems have a high error rate. Here we describe an approach to 

precisely assemble molecular mechanisms at scale using natural language processing systems and the 

Integrated Network and Dynamical Reasoning Assembler (INDRA). INDRA identifies overlaps and 

redundancies in information extracted from published papers and pathway databases and uses 

probability models to reduce machine reading errors. INDRA enables the automated creation of high-

quality, non-redundant corpora for use in data analysis and causal modeling. We demonstrate the use of 

INDRA in extending protein-protein interaction databases and explaining co-dependencies in the Cancer 

Dependency Map. 
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INTRODUCTION 

Molecular biology is characterized by a sustained effort to acquire and organize mechanistic information 

about the molecules governing the behavior of cells, tissues and organisms (Craver and Darden, 2013). 

“Mechanism” is used rather loosely in this context, since it operates on multiple scales from the 

structural transitions of individual molecules to the myriad interactions mediating signal transduction, 

but it is generally understood to involve a description of the properties, modifications and behaviors of 

biomolecules in terms of physical and chemical principles. Individual mechanistic discoveries are 

reported in the biomedical literature, which, with over 3 x 107 articles indexed in PubMed as of 2022, 

constitutes a substantial public investment and an essential source of knowledge.  However, results in 

research papers are generally described in natural language designed for human – not machine – 

consumption. As the literature has grown, and methods of experimental data collection become more 

diverse, it has become impossible for any individual scientist to acquire all of the background 

knowledge necessary to be an expert in a particular problem and fully interpret experimental results 

(Forscher, 1963). Biomedicine is therefore faced with a substantial problem of knowledge aggregation, 

harmonization, and assembly.  

 

The bioinformatics community has actively worked to make knowledge more accessible by curating 

information about molecular mechanisms in a machine readable form suitable for computational data 

analysis (Ashburner et al., 2000; Fabregat et al., 2018; Perfetto et al., 2016; Schaefer et al., 2009). This 

has led to the creation of standard representation languages (Demir et al., 2010; Hucka et al., 2003), and 

databases that aggregate curated knowledge from multiple primary sources (Cerami et al., 2011; Jensen 

et al., 2009; Türei et al., 2016). Curated databases form the backbone of many widely used methods of 

high-throughput data analysis, including gene set and pathway enrichment, and prior knowledge-guided 

network inference (Babur et al., 2021; Dugourd et al., 2021). However, creation of these database has 

largely involved human curation of the literature, which is costly and difficult to sustain (Bourne et al., 

2015). As a result, most databases and online resources are incomplete; for example, the creators of 

Pathway Commons (which aggregates pathway knowledge from 22 primary human-curated databases) 

have estimated that their resource covers only 1-3% of the available literature (Valenzuela-Escárcega et 

al., 2018). At the same time, databases such as Pathway Commons contain redundant or conflicting 

information about the same sets of mechanism because assembling knowledge into a coherent whole 

remains difficult and is currently dependent on additional human curation. Compounding these 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.505688doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.30.505688
http://creativecommons.org/licenses/by/4.0/


 

 4

difficulties is the increasing volume of published scientific articles and the fact that curation standards 

and languages evolve along with methods of data collection and analysis, making on-going maintenance 

of a previously curated resources necessary to prevent them from becoming obsolete.  

 

Automated extraction of mechanistic information through literature mining has the potential to address 

many of the challenges associated with manual curation (Ananiadou et al., 2015). However, the 

precision of machine reading systems is still lower than that of human curators, particularly for complex 

relationships that underly many statements about mechanism (Allen et al., 2015; Islamaj Doğan et al., 

2019; Madan et al., 2019). Nevertheless, at the current state of the art, machine reading can extract 

simple relations (e.g., post-translational modifications and binding and regulatory events) at literature 

scale and with reasonable reliability. A variety of text mining systems have been developed, each with 

different designs, strengths, and weaknesses, but common steps include grammatical parsing of 

sentences, named entity recognition and normalization, also called grounding (i.e., associating entities 

with a standardized identifier in controlled vocabularies such as HGNC), and event extraction 

(identifying interactions, transformations or regulations among grounded entities). Much of the research 

to date in text mining for biology has focused on small-scale studies for method validation, but a handful 

of efforts have aimed to create large-scale resources available for use in data analysis by the broader 

computational biology community (Van Landeghem et al., 2013; Yuryev et al., 2006). We speculate that 

the reliability of machine reading could be increased by combining the results of multiple distinct 

systems in a principled manner, but few such combined approaches have been described thus far. 

 

What is still needed are computational tools for the large-scale assembly of both text-mined and curated 

mechanisms in databases to generate knowledge resources with mechanistic detail and genome scale. 

Human-generated resources such as Reactome (Fabregat et al., 2018) aspire to this, but would benefit in 

scope and currency from human-in-the-loop collaboration with machines. However, machine assembly 

must overcome not only errors in grounding and event extraction but also the challenges associated with 

combining noisy information about mechanisms at different levels of specificity. Users of this 

information may have different end goals, but have a common need for reliable networks and models 

that can be used to investigate mechanisms at the level of the individual reactions, mutations, or drug-

binding events—something currently possible on a smaller scale using dynamical systems analysis 

(Lopez et al., 2013) and logic-based modeling (Saez-Rodriguez et al., 2009). These more mechanistic 
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networks and models contrast with existing genome-scale networks that commonly involve unsigned 

node-edge graphs that aggregate diverse types of interactions (genetic, physical, co-localization, etc.) 

using the simplest possible abstraction.  

 

We previously described a software system, the Integrated Network and Dynamical Reasoning 

Assembler (INDRA) that automates the use of curated natural language text to create computational 

models that can be executed using dynamical, logic-based, or causal formalisms (Gyori et al., 2017). For 

example, we have previously used INDRA to convert “word models” expressed in simplified declarative 

text (e.g., “Active ATM activates p53.  Active p53 transcribes MDM2 etc.”) into dynamical ODE-based 

models. A key feature of INDRA is that it uses an intermediate representation to decouple the process of 

knowledge collection from the construction of specific models (Figure 1A). More specifically, INDRA 

normalizes mechanistic information expressed in natural (English) language into a high-level 

intermediate machine representation called Statements. Statements can then be used directly to create 

executable models, for example in rule-based languages such as BioNetGen or PySB. The current 

taxonomy of INDRA Statements accounts for the types of biomolecular processes most commonly 

involved in intracellular biological networks and signal transduction (e.g., post-translational 

modifications, positive and negative regulation, binding, transcriptional regulation, etc.) but is extensible 

to other domains of natural science. 

 

Here we describe a greatly expanded set of computational tools and use cases, implemented within the 

INDRA architecture, for combining mechanistic information obtained at scale from primary research 

publications. This is a substantially more challenging task than the conversion of short, controlled, 

declarative text into ODE models that we described previously (Gyori et al., 2017). We accomplished 

reading at scale by combining the results of multiple reading systems with curated mechanisms from a 

wide range of databases and structured knowledge sources. Used in this way, INDRA identifies 

duplicate and partially overlapping Statements, allowing for automated assembly of mechanistic 

fragments into a nonredundant and coherent set of interactions and subsequently into large-scale 

knowledge assemblies for use in biocuration and data analysis. We illustrate the end-to-end assembly 

procedure with INDRA by processing publications specifically relevant to human genes and integrate 

this information with publicly available databases to create a corpus of ~ 900,000 unique and specified 

interactions among human proteins. We found that overlap between different machine reading systems 
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was surprisingly small (highlighting both the readers’ complementarity and their limitations), but for a 

given Statement, the existence of supportive evidence from multiple systems was informative of 

reliability. We used manual curation to analyze the error and overlap characteristics of multiple machine 

reading systems and, using this data, we developed predictive models that estimate the technical 

reliability of text-mined extractions in the form of a “belief score”. To evaluate the utility of machine-

extracted mechanisms we used the INDRA-assembled corpus of Statements to prioritize protein-protein 

interactions for curation that are not yet captured in the widely used structured knowledgebase, 

BioGRID (Oughtred et al., 2019). Finally, we used the same assembled corpus to identify and explain 

gene dependency relationships in the Cancer Dependency Map (DepMap) dataset (Meyers et al., 2017; 

Tsherniak et al., 2017). In this case, an INDRA-assembled network served helped determine statistically 

significant codependencies between genes, thus allowing for the detection of new codependencies in the 

context of cancer. INDRA also provided possible mechanistic explanations rooted in the scientific 

literature for observed DepMap codependencies.  

 

RESULTS 

Automated assembly of large knowledge bases from curated databases and machine reading systems 

raises a series of interconnected issues not arising in the conversion of curated natural language text to 

machine readable mechanisms (Figure 1A) (Gyori et al., 2017). In particular, each source of 

information yields many mechanistic fragments that capture only a subset of the underlying process, 

often at different levels of abstraction. For example, one source might describe the MEK1 (HUGO name 

MAP2K1) phosphorylation of ERK2 (MAPK1) on a specific threonine residue (T185), whereas another 

source might describe the same process at the protein family level, stating that MEK phosphorylates 

ERK, without mentioning a specific isoform, residue or site position (Figure 1B). Individual 

mechanisms obtained from machine reading are not only fragmented, they also include different types of 

technical errors that must be overcome (Figure 1B, red font). One analogy for assembling pathways 

from mechanistic fragments is the assembly of a full genome sequence from many noisy, overlapping 

sequencing reads (Figure 1B). The goal of knowledge assembly is similarly to achieve a best 

“consensus” representation of the underlying processes, incorporating as much mechanistic detail as 

possible while minimizing errors. Ultimately, the process is expected to yield computational approaches 

for finding truly missing or discrepant information, by analogy with variant calling. 
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Box 1. Representing knowledge captured from multiple sources in INDRA (Figure 1C) 

Scientific publications contain descriptions of mechanisms (interaction, regulation, etc.) among 

biological entities. These descriptions can be extracted either by human experts and captured in 

curated databases or extracted automatically by reading systems using natural language processing. 

Collectively, reading systems and curated databases serve as knowledge sources for INDRA. These 

extractions are made available by knowledge sources in a variety of custom machine-readable formats 

such as JSON, XML and TSV. INDRA processes such extractions into INDRA Statements. Each 

Statement represents a type of mechanism (e.g., Ubiquitination), and has multiple elements, including 

Agents representing biological entities such as proteins or small molecules, and potentially other 

mechanistic detail such as an amino acid residue for a modification. Each Statement can be supported 

by one or more mentions, each representing a single curated database entry or a single extraction by a 

reading system from a sentence in a given publication. Mentions are represented by INDRA as 

Evidence objects that have a multitude of properties representing rich provenance for each mention, 

including the source sentence and the identifiers of the source publication.  

 

Our preliminary studies identified multiple technical and conceptual problems that needed to be 

addressed to assemble coherent knowledge at scale. These included (i) inconsistent use of identifiers for 

biological entities among different sources, (ii) full or partial redundancy between mechanisms, and (iii) 

technical errors in named entity recognition and relation extraction. Such problems are particularly 

salient when integrating literature-mined interactions, but they also exist when aggregating interactions 

from multiple curated databases, due to differences in curation practices. For example, in Pathway 

Commons v12 there are at least eight different curated representations of the process by which MAP2K1 

phosphorylates MAPK1, each at a different level of detail (Figure S1A). We developed a set of INDRA 

algorithms for addressing each of these assembly challenges. These algorithms are general-purpose and 

can be configured to support a wide range of modeling applications (Figure 1D), as illustrated in the 

following examples of machine reading, assembly, and data analysis. 

 

INDRA integrates mechanisms from pathway databases and machine reading 

We used six machine reading systems, Reach (Valenzuela-Escárcega et al., 2018), Sparser (McDonald 

et al., 2016), MedScan (Novichkova et al., 2003), TRIPS/DRUM (Allen et al., 2015), RLIMS-P (Torii et 

al., 2015), and the ISI/AMR system (Garg et al., 2016) to process 567,507 articles (using full-text 
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content when available, and allowed by copyright restrictions, and abstracts otherwise; Table 1) curated 

as having relevance to human protein function (see Methods). Reader output was normalized to INDRA 

Statements, yielding ~5.9·106 unassembled or “raw” Statements (Figure 2A). These were combined 

with approximately 7.3·105 INDRA Statements extracted from structured sources such as Pathway 

Commons and the BEL Large Corpus; this used the previously described extraction logic (Gyori et al., 

2017) but extended to multiple additional sources including SIGNOR (Perfetto et al., 2016). In 

combination, reading and databases yielded a total of ~6.7·106 raw Statements (the end-to-end assembly 

is illustrated schematically in Figure 2A). In what follows, we refer to the resulting set of assembled 

INDRA Statements as the INDRA Benchmark Corpus. 

 

After collecting information from each source, a series of normalization and filtering procedures were 

applied (green and red boxes, Figure 2A). These processing steps have been combined into a custom 

computational pipeline but are also available as individual and reusable software modules in INDRA. 

First, we removed Statements that were supported by mentions indicative of a hypothesis rather than an 

assertion (for instance, including sentences phrased as “we tested whether…”). Next, “grounding 

mapping” was performed to correct systematic errors in named entity normalization, which often arise 

due to the ambiguity of biomedical naming conventions. INDRA integrates both a manually-curated 

mapping table to fix entities frequently mis-identified by reading systems (described in detail in 

(Bachman et al., 2018)), and a set of machine learned models to perform disambiguation based on text 

context (by integrating the Adeft (Steppi et al., 2020) and Gilda (Gyori et al., 2022) systems). “ER” is an 

example of a common but ambiguous entity: it can stand for endoplasmic reticulum, estrogen receptor, 

estradiol receptor, emergency room, and a variety of other entities and concepts depending on context. 

As currently implemented, Reach, Sparser and other reading systems ground “ER” deterministically to a 

single identifier (e.g., estrogen receptor) irrespective of context. In contrast, the machine learned 

disambiguation models integrated into INDRA predict the most likely meaning of entities such as ER 

based on surrounding text; this is then used to current the results of text reading systems.  

 

The next step of the grounding mapping process standardizes identifiers for individual entities using a 

network of cross-references between equivalent identifiers in different namespaces (Figure S2A). This 

addresses the opposite problem from the one described above (i.e., one name corresponding to multiple 

entities), namely that a single entity can have multiple identifiers in different namespaces, and these 
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identifiers can be assigned inconsistently across machine reading systems and curated database sources. 

For example, a metabolite such as prostaglandin E-2 identified using a Chemical Entities of Biological 

Interest identifier (ChEBI; (Hastings et al., 2016)) will be assigned additional, equivalent identifiers, and 

a standard name so that it has the same canonical form as an equivalent metabolite identified using a 

NCBI Medical Subject Heading identifier (MESH; Figures S2A and S2B). This procedure ensures that 

Agents in INDRA Statements take on canonical identifiers in multiple namespaces, irrespective of the 

identifier used in the original source of knowledge.  

 

The final normalization procedure we performed was sequence normalization. This accounts for 

inconsistencies in attributed sequence positions of post-translational modifications, some of which 

involve outright errors in residue numbers, while others involve the implicit, interchangeable use of 

residue numbers between human and model organism reference sequences (Bachman et al., 2019). 

Commonly, human and mouse residue numbers are used interchangeably even through residue 

numbering in orthologous proteins frequently differs, so sequence normalization is necessary for 

accurate knowledge assembly. 

 

After these steps were performed, Statements still containing ungrounded entities (~38% of Statements 

contained Agents that lacked any identifiers) were filtered out, as were Statements containing non-

canonical sequence positions (about 1% of Statements) as these likely arose from machine reading 

errors. Because the current study focuses on biology involving human genes, we also filtered the set of 

Statements to just those containing human genes and their families/complexes. Each of these processing 

and filtering steps operate at the level of individual Statements and change the overall number of 

Statements as well as proportion of Statements in the corpus from each input source, as shown in Figure 

2B. The final corpus contained ~2.9·106 Statements after all filtering steps. 

 

Once the normalization steps were complete, we used INDRA to combine Statements representing 

equivalent mechanisms from different sources into a single unique Statement; each unique Statement 

was associated with the supporting mentions from all contributing knowledge sources including curated 

databases and reading systems (Figure 2C). In some cases, multiple readers will have extracted the 

same mechanisms from the same sentence, but different reading systems often generated mentions 

supporting a specific Statement from different sentences in a given publications or even from different 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.505688doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.30.505688
http://creativecommons.org/licenses/by/4.0/


 

 10 

publications (Figure 2C). This highlights the substantial differences between reading systems and 

highlights the benefits of the multi-reader approach used in this paper. For the Benchmark Corpus,  

~2.9·106 filtered Statements yielded ~9·105 unique Statements after combining duplicates (Figure 2A), 

with an average of ~3 supporting mentions per Statement. However, the distribution of mentions per 

Statement was highly non-uniform, with a large number of Statements (63%) attributable to a single 

sentence or database entry, and a small number of Statements (82 in total) having >1,000 supporting 

mentions (Figure 2D). For example, the Statement that “TP53 binds MDM2” has 2,494 distinct pieces 

of evidence. Although noisy for high counts, the distribution of Statements having a given number of 

mentions appeared linear on a log-log plot (Figure 2D) implying a long-tailed distribution potentially 

following a power law. To confirm this, we fitted the observed mention distribution using two 

approaches: (i) linear regression of the complement cumulative distribution of mention counts on a log 

scale, which showed a strong linear relationship (r2=0.999, p<10-17), and implied a power law exponent 

of � � 2.33; and (ii) fitting directly to a  power law using the powerlaw software package (Alstott et al., 

2014), which showed that the distribution was fit by a power law with exponent � � 2.38 (standard 

error � � 0.008) (Figure 2E) and was more likely than alternatives such as exponential (p < 10-38) or 

positive log-normal (p<10-30). Thus, the distribution of Statements having a given number of supporting 

mentions is similar to long-tailed distributions observed in a variety of domains including linguistics, 

computer networking and demographics (Clauset et al., 2009). 

 

A significant benefit of jointly assembling mechanisms from both databases and literature is that curated 

interactions from databases become linked to textual evidence that support the interaction (Figure 2F). 

For example, the fact that RCHY1 ubiquitinates TP73 appears as a curated interaction in the NCI-PID 

database (Schaefer et al., 2009) with reference to PMID20615966 (Sayan et al., 2010), but without 

providing specific supporting text within that publication. In the Benchmark Corpus, INDRA aligns 

seven mentions obtained from text mining with the ubiquitination of TP73 by RCHY1 derived from four 

sentences in two more recent publications (Coppari et al., 2014; Wu et al., 2011) (Figure 2F). Such 

aggregation of evidence across curated databases and text mining systems is highly beneficial because it 

increases confidence in the accuracy and relevance of the mechanism. This is where INDRA, due to its 

automated nature, provides a substantial advantage for linking literature sources to specific interactions 

compared to comparable manual curation, which would be laborious and time consuming (Kemper et 

al., 2010). 
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Detecting hierarchical relationships between mechanisms 

Following processing, filtering, and the identification of duplicate Statements, the next assembly step is 

to identify relationships among “overlapping” Statements (Figure 3A). A pair of Statements is 

considered to be overlapping when one functions as a refinement (i.e., adds additional mechanistic 

detail) to the other. Although the analogy in this case is not perfect, something similar is required in 

genome assembly – if a shorter sequence is fully contained in a longer sequence, the shorter one is 

redundant. When such a relationship exists between two Statements, we say that the more detailed one 

“refines” the less detailed one. Refinement can happen at the level of entities (e.g., an Agent 

representing a protein family and another a specific member of that family), or molecular states and 

context (e.g., an explicit reference to a site of post-translational modification in one Statement and its 

omission in another). The refinement relationship between Statements is determined using a partial 

ordering logic that compares pairs of Statement based on their individual elements (where elements 

include the Agents involved in the Statement, and, depending on the type of Statement, post-

translational modifications, cellular locations, types of molecular activity, etc.) and determines whether 

each element is either equivalent to or a refinement of the other (Figure 3A). To accomplish this, 

INDRA makes use of hierarchies of each relevant type of element, including proteins and their families 

and complexes drawn from FamPlex (Bachman et al., 2018), combined with chemical and bioprocess 

taxonomies from ChEBI and the Gene Ontology (Ashburner et al., 2000) (e.g., MAP2K1 is a specific 

gene in the MEK family, Figure 3A, blue), protein activity types (e.g., kinase activity is a specific type 

of molecular activity, Figure 3A, red), post-translational modifications (e.g., phosphorylation is a type 

of modification, Figure 3A, green), and cellular locations (also obtained from the Gene Ontology; e.g., 

that the cytoplasm is a compartment of the cell, Figure 3A, purple). A Statement is also considered a 

refinement of another if it contains additional contextual details but is otherwise a match across 

corresponding elements. One example of such a refinement relationship is shown in Figure 3B, in 

which the first Statement (Figure 3B, top) describes an additional molecular state (MAP2K1 being 

bound to BRAF) and mechanistic detail (T185 as the specific site of modification of MAPK1) over 

another Statement (Figure 3B, bottom) which omits these contextual details. 

 

Pairwise refinement of relationships among Statements is most easily represented using a graph in which 

nodes represent Statements and directed edges point from a node representing a Statement to another 
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node representing the Statement that it refines. Such Statement refinement graphs can be quite deep (i.e., 

the length of a directed path starting from a Statement can consist of a large number of edges going 

through many refined Statements). For example, the refinement subgraph for RPS6KA1 phosphorylated 

on S732, T359, S363, T573, S380, and S221 phosphorylates CREB1 on S133 (Figure 3C, where 

RPS6KA1 encodes the ribosomal S6 kinase and CREB1 a transcription factor) has nine levels. The 

refinement relationships for this Statement reveal the varying levels of specificity at which a given 

mechanism is described in sources: CREB is phosphorylated has 2,268 mentions in the literature 

collected by 4 reading systems, RPS6KA1 phosphorylates CREB1 has 3 mentions in total from both 

literature and curated databases, and CREB1 is phosphorylated on S133 has 399 mentions. It is also 

worth noting that support from curated databases for these Statements (Figure 3C, blue circles) is not 

attributable to a single database source. For example the Statement labeled S1 in Figure 3C is derived 

only from Pathway Commons, S5 only from SIGNOR, and S7 only from HPRD (Mishra, 2006). 

 

Organizing Statements hierarchically helps to ensure that an assembled model does not contain 

information that is mechanistically redundant. For instance, the Statements in Figure 3C, if viewed as a 

graph with nodes representing entities (RPS6KA1, CREB1, etc.) and edges representing 

phosphorylation reactions (Figure 3D, solid arrows) reveals five partially redundant edges (e.g., 

RPS6KA1→CREB1, P90RSK→CREB1, P90RKS→CREB, etc.) connecting members of the RSK and 

CREB protein families at different levels of specificity (e.g., P90RSK is a member of the RSK family, 

Figure 3D, dashed arrows). A key feature of INDRA is that it can recover Statement refinement 

relationships, enabling principled resolution of complex redundancies, for example, by retaining only 

Statements that are not refined by any other Statements (in the case of Figure 3C, the Statement labeled 

as S1 at the top of the graph). The refinement graph in Figure 3C also reveals how a highly specific 

Statement can serve as evidence for all the other Statements it subsumes, a relationship that is exploited 

when estimating Statement reliability. 

 

We found that refinement relationships were common in the Benchmark Corpus: 38% of Statements 

refined at least one other Statement, and some Statements refined a large number of other Statements, 

including 89 Statements that refined at least 20 other Statements (Figure 3E). These Statements are 

typically ones that represent a canonical (i.e., often described) mechanism (for example, the mechanism 

by which members of the AKT protein family phosphorylate GSK3 proteins) at a high level of detail 
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and subsume multiple variants of the same mechanism described at a lower level of detail. We also 

found that the Benchmark Corpus contained tens of thousands of refinements involving three or more 

levels (Figure 3F), emphasizing that many mechanisms across databases and literature are described at 

many levels of specificity. INDRA assembly can reconstruct these relationships and allow resolving the 

corresponding redundancy.  

 

Modeling the reliability of INDRA Statements with the help of a curated corpus 

One of the most challenging problems in using mechanisms generated by text mining is the unknown 

reliability of the extracted information. While the notion of “reliability” includes conventional scientific 

concerns, such as the strength of a particular study or method (Figure 4A, upper left quadrant), in 

practice the overwhelming majority of incorrect assertions result from technical errors in machine 

reading (Figure 4A, lower left quadrant). Common reading errors include systematic misidentification 

of named entities, incorrect polarity assignment (e.g., classifying activation as inhibition), failure to 

recognize negative evidence (e.g., “A does not cause B''), and difficulty distinguishing hypotheses from 

assertions and conclusions (e.g., “we tested whether A causes B” as opposed to “A causes B”) (Noriega-

Atala et al., 2019; Valenzuela-Escárcega et al., 2018). These errors arise primarily because scientific text 

uses a wide range of non-standard naming conventions to refer to entities and uses complex grammatical 

structures to convey the confidence associated with a result or datapoint. Indeed, much of the art in 

scientific writing is to generate text that appears to progress inexorably from a hypothesis to the 

description of supporting evidence to a conclusion and its caveats. This type of writing can be difficult 

even for humans to fully understand. Addressing the technical errors of reading systems at the level of 

individual Statements is a prerequisite for addressing the additional issues that arise when Statements are 

combined into causal models (Figure 4A, right quadrants). 

 

To study the reliability of our assembled Statements, we sampled a set of Statements from the 

Benchmark Corpus. The sampled Statements had between 1 and 10 mentions per Statement and arose 

from five reading systems (Reach, Sparser, MedScan, RLIMS-P and TRIPS; we excluded the ISI/AMR 

system from this systematic analysis due to the low number of extractions it produced). Two of the 

authors, both of whom are PhD biomedical research scientists, used this to develop a Curated Corpus 

from the sampled Statements. Curation involved determining whether a given mention correctly 

supported a specific Statement based on human understanding of the sentence containing the mention 
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and the overall context of the publication (see Methods). The resulting Curated Corpus data set covers 

~980 Statements with a combined total of ~5,000 mentions (Table 2).  

 

For a single reading system, the reliability of an extracted Statement has been observed to increase with 

the number of different supporting mentions (Valenzuela-Escárcega et al., 2018). We hypothesized that 

a Statement with multiple mentions would be more reliable if the supporting mentions had been 

independently extracted by more than one reading system. To test this idea, we used two complementary 

approaches to create models of Statement reliability: (i) structured probability models that build on 

empirical error characteristics of individual reading systems based on the Curated Corpus, and (ii) 

machine learning (ML) models trained on the Curated Corpus. Structured probability models require 

much less training data, however, machine learned models are generally more expressive and likely to 

be more accurate in predicting Statement reliability, given sufficient training data.  

 

Modeling the reliability of Statements from individual reading systems 

We first examined the error characteristics of individual reading systems. For individual readers, 

analysis of the Curated Corpus showed that while Statements with more mentions are generally more 

reliable, in many cases Statements supported by many sentences were still incorrect due to the presence 

of systematic errors (Figure 4B). For example, the Sparser reading system extracted the Statement 

MAOA binds MAOB with ten mentions from ten different publications, but all extractions were incorrect 

because the system incorrectly interpreted “association” as referring to a physical interaction rather than 

a statistical association between MAOA and MAOB, which is what the original publications described. 

We compared three alternative probability models for their ability to capture the dependence of sentence 

reliability on mention count: (i) a simple binomial model, (ii) a beta-binomial model (a binomial model 

in which the probability of success at each trial follows a beta distribution), and (iii) a two-parameter 

model that captures both random and systematic errors – we termed this latter model the INDRA Belief 

Model (Figure 4C; see Methods). Each of the three models was independently fitted to data from the 

Curated Corpus using Markov chain Monte Carlo optimization (see Methods) (Foreman-Mackey et al., 

2013). Both the beta-binomial model and the INDRA Belief Model outperformed the binomial model at 

predicting Statement correctness from mention counts, primarily due to their ability to capture the 

empirical observation that even high-mention Statements do not approach an accuracy of 100% (a 

phenomenon accounted for by modeling systematic reader errors) (Figure 4D, Table 3). The INDRA 
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Belief Model performed slightly better than the beta-binomial model at predicting Statement correctness 

for both the Reach and Sparser reading systems (Table 3) due to its better fit to low mention-count 

Statements that make up the bulk of the corpus (Figure 4D, mentions 1, 2, and 3). An additional 

advantage of the INDRA Belief Model is that the random and systematic error rates erand and esyst are 

interpretable and can be estimated heuristically by examining a small number of high-mention 

Statements (with precision approximately equal to esyst) and 1-mention Statements (with precision equal 

to esyst + (1 – esyst)erand). This makes it possible to set reasonable parameters for the INDRA Belief 

Model based on prior intuition or examination of a small number of exemplary Statements. Since the 

INDRA Belief Model performed the best overall, it is used as the default model in INDRA when no 

curation data is available. However, we noted that the beta-binomial model more accurately fit the 

underlying distribution of correct mentions for each Statement, suggesting that further research is 

needed on such error models (Figures S4A and S4B).  

 

Multi-reader overlap is associated with higher Statement frequency and reliability 

To better understand the potential for multi-reader reliability assessment, we characterized the extent of 

reader overlap in the Benchmark Corpus. We call two or more readers overlapping for a given Statement 

if they each produced mentions supporting that Statement. We found that 19% of assembled Statements 

had supporting mentions from two or more reading systems (Table 4; Figures 5A and S5A) but the 

bulk of Statements were supported exclusively by either Reach, Sparser, or MedScan (Figure 5A). The 

low overlap between readers is attributable to differences in their design, including their approaches to 

grammatical parsing, named entity recognition, associated resources (i.e., which lexical sources each 

reader incorporates), and the types of grammatical or semantic patterns that can be recognized. Low 

overlap among readers implies that using multiple reading systems in an integrated fashion via INDRA 

can increase coverage relatively to any single reading system.  

 

Despite the relatively small overlap among readers, the number of mentions from each reader supporting 

a Statement showed substantial correlation, with both ρ(Reach, Sparser) and ρ(Reach, MedScan) > 0.6 

(Table 5). We found, however, that these correlations in mention counts among Reach, Sparser, and 

MedScan were primarily driven by a subset of relations with very high numbers of mentions (Figure 

5B). More generally, we found that reader overlap for a Statement increases as a function of the number 

of supporting mentions an individual reader extracted for the Statement (Figure 5C). Overall, these data 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.505688doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.30.505688
http://creativecommons.org/licenses/by/4.0/


 

 16 

support the observation that, if a mechanism represented by a Statement is described in many different 

sentences across input documents, multiple systems are likely to extract supporting mentions, and these 

will often come from different sentences and publications (as we showed in Figures 2C and E). 

 

When we examined the relationship between reader overlap and Statement correctness using the Curated 

Corpus, we found that Statements supported by many mentions were more likely to overlap with other 

readers and be correct (Figure S5B, blue points along diagonals). Notably, in the case of Reach, the 

reader for which the most extensive subset of curated Statements was generated, we found that the 

probability of Statement correctness increased with the overall number of Reach mentions, but only for 

high-mention Statements that also included support from other readers (Figure 5D, blue points). For 

relations with support only from Reach, empirical correctness increased from 1 to 2 mentions (an 

observation consistent with the findings regarding the Reach system’s precision (Valenzuela-Escárcega 

et al., 2018)), but additional Reach-only mentions were not associated with substantial further increases 

in precision (Figure 5D, red points). Thus, in a multi-reader setting, the absence of reader overlap also 

plays a key role in assessing Statement reliability. These observations imply that combining multiple 

reading systems can be highly valuable when assessing Statement correctness based on supporting 

mentions. It also provides information that can be used by developers of reading systems to increase 

recall and precision. 

 

Two approaches to modeling the reliability of Statements from multiple readers 

We evaluated two strategies for assessing the reliability of Statements using mention counts from 

multiple readers: (i) extending the INDRA Belief Model, and (ii) training machine learning models on 

the Curated Corpus. Even though reader errors were not in fact fully independent of each other (Figure 

S5B) we made an assumption of independence (Zhang, 2004) to extend the INDRA Belief Model to 

multiple reading systems while adding the fewest additional model parameters. Specifically, the model’s 

formulation of error estimates was changed to express the probability that all the mentions extracted by 

all the readers were jointly incorrect (see Methods). We compared the extended INDRA Belief Model to 

several different machine-learned classifiers for their ability to correctly predict Statement correctness 

based on mention counts from each reading system. Evaluated classifiers included Logistic Regression 

on log-transformed mention counts, k-Nearest Neighbors, support vector classifiers, and Random 

Forests (see Methods).  
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We found that, when mention counts were the only input feature, the INDRA Belief Model yielded the 

greatest area under the precision-recall curve (AUPRC), followed by the Logistic Regression and 

Random Forest models (Table 6, rows 1, 3, and 2, respectively). However, when the machine learning 

models were extended to make use of additional Statement features such as the Statement type, number 

of supporting articles (i.e., the number of distinct publications from which mentions were extracted), the 

average length of the mention texts (longer sentences were more likely to be incorrectly interpreted), and 

the presence of the word “promoter” in the sentence (a frequent indicator that a sentence describing a 

protein to DNA promoter interaction had been mis-extracted as a protein-protein interaction), they 

outperformed the INDRA Belief Model (Table 6, rows 8-13; see Methods). This implies that—as long 

as sufficient training data is available—machine-learned classifiers can use multiple features associated 

with Statements and their supporting mentions to boost performance as compared to the INDRA Belief 

Model which relies solely on mention counts.  

 

The ability of INDRA to identify refinement relationships among Statements (Figure 3) has the added 

benefit that it allows mentions to be combined across different levels of detail for use in reliability 

estimation. For example, any evidence for the specific Statement “MAP2K1 phosphorylates MAPK1 on 

T185” also supports the more generic Statement “MEK phosphorylates ERK.” We found that combining 

more specific mentions with mentions directly associated with a specific Statement improved precision 

and recall: the AUPRC of the Random Forest model increased from 0.895 to 0.913 when using only 

mention counts (Table 6, row 2 vs. 17), and from 0.927 to 0.933 when using all features (Table 6, row 9 

vs. 24). Further, when we examined the effect of incorporating overlapping mentions from curated 

databases as features alongside mentions from readers, we found that the Random Forest model’s 

AUPRC increased to 0.941 – the highest AUPRC reached across all models and conditions. 

 

Because readers perform differently on the same input text, Statements supported by multiple readers 

are less common than Statements supported by a single reader but our analysis showed that both the 

existence of reader overlap as well as lack of overlap for a given Statement can be informative for 

predicting Statement correctness. Moreover, in the absence of human-curated data across multiple 

Statement features – a type of data that is laborious to generate – a parametric model (such as the 

INDRA Belief Model) based on the error profiles of individual readers can perform well from a 
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precision-recall perspective. When sufficient curated training data is available, machine learning models 

such as Random Forests can achieve greater performance, obtaining an AUPRC greater than 0.9 in 

several different configurations. These findings provide empirical support for INDRA’s approach to 

assembling sets of Statements from multiple text mining and curated database sources with principled 

estimates of correctness. Both the INDRA Belief Model and the machine-learned classifier models are 

available in the belief submodule of INDRA and allow parameters to be either manually set or estimated 

from curation data. 

 

Validation of assembled mechanisms and comparison against curated resources 

To test INDRA on a prototypical biocuration task, we compared the subset of Statements representing 

human protein-protein interactions (PPIs) in the Benchmark Corpus to the BioGRID database (Oughtred 

et al., 2019). BioGRID is a curated public database containing structured information on protein-protein 

and protein-small molecule interactions, as well as genetic interactions obtained from multiple 

organisms. These interactions were extracted by expert curators from a combination of high-throughput 

datasets and focused studies. As a measure of the utility of INDRA for biocuration we determined (i) the 

number of previously-uncurated PPIs that the INDRA Benchmark Corpus could add to BioGRID and 

(ii) the amount of new literature evidence that it could added to PPIs currently in BioGRID. We used our 

best-performing Random Forest model to assign a belief to each INDRA Statement in the Benchmark 

Corpus. 

 

The Benchmark Corpus contained ~26,000 Statements representing PPIs already in BioGRID, and 

~101,000 PPIs that were absent (Figure 6A); the latter potentially represent known but previously 

uncurated interactions. Grouping all PPIs in bins defined by belief score, we found that belief score was 

highly correlated with the likelihood of a PPI being curated in BioGRID (Figure 6B). This provides a 

quantitative corroboration of the belief scores and, by extension, suggests that a substantial number of 

the potentially new PPIs involve reading errors which are accounted for by low belief scores. Because 

the belief scores obtained from the Random Forest model can be interpreted as calibrated probabilities 

of correctness, they can be used to estimate the number of Statements in each bin that are expected to be 

correct. The proportion of Statements in BioGRID was consistently below the belief score for the bin, 

suggesting that each bin contained correctly extracted but uncurated PPIs (Figure 6B, blue line below 

diagonal). Conservatively assuming that all Statements found in BioGRID were correctly extracted, we 
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estimated a lower bound of 28,600 correct but uncurated PPIs in the Benchmark Corpus, a 6% increase 

over the ~480,000 unique human PPIs in BioGRID. 

 

As a practical matter, correct and incorrect Statements could be efficiently separated by manual curation, 

focusing first on Statements with the highest belief scores. The ~2,200 uncurated Statements with belief 

scores > 0.9 would be expected to yield >1,870 PPIs, or roughly six correct for every seven reviewed. 

Statements with lower belief scores are more numerous but also have a lower expected yield: 18,700 

correct but uncurated Statements would be expected among the the 41,600 Statements with belief scores 

between 0.4 and 0.9, with the curation yield starting at 67% (for Statements with belief between 0.8 and 

0.9) to 29% (for Statements with belief between 0.4 and 0.5) (Figure 6C). By way of illustration, we 

examined one PPI not currently in BioGRID that involved binding of the KIF1C kinesin to RAB6A, a 

GTPase and regulator of membrane trafficking. INDRA assembled a total of 40 mentions supporting 

this PPI, extracted by two machine reading systems (Reach and Sparser), into a Statement with belief 

score 0.82. Human curation confirmed that the interaction had been reliably demonstrated using both co-

immunoprecipitation and reconstitution experiments (Lee et al., 2015).  

 

A second application of INDRA is to add evidence for PPIs already in BioGRID and thereby (i) provide 

new and different types of evidence for an existing PPI (e.g., mass spectrometry vs. 2-hybrid 

interaction), (ii) reveal additional biological settings or cell types in which a PPI might occur, and (iii) 

provide additional mechanistic detail about a particular PPI. As an example of (i) and (ii), BioGRID lists 

only three publications as a reference for the interaction between brain-derived neurotrophic factor 

(BDNF) and the NTRK2 receptor tyrosine kinase, whereas the INDRA Benchmark Corpus contains 168 

mentions of this interaction from a total of 94 publications. Some of these additional publications 

provide primary experimental evidence for this interaction (e.g., (Vermehren-Schmaedick et al., 2014) 

and (Wang et al., 2009a)) discuss the role of the BDNF-NTRK2 interaction in important biological or 

clinical settings. As an example of (iii), the interaction between paxillin (PXN) and the tyrosine kinase 

PTK2B is supported by six references in BioGRID; INDRA not only identified 49 mentions from 18 

different publications supporting this PPI, but assembled a Statement with substantially more 

mechanistic information: namely that PTK2B, when phosphorylated on Y402, phosphorylates PXN on 

Y118 (Moody et al., 2012; Park et al., 2006). This example shows that for a PPI lacking mechanistic 
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detail, INDRA can illuminate the directionality and type of regulation, as well as the amino acids 

involved in posttranslational modifications.  

 

Detecting and explaining gene dependency correlations with an assembled causal network 

To study how networks that incorporate text-mined information can aid in the interpretation of 

functional genomic datasets, we used INDRA to detect and explain significant gene dependencies in the 

Cancer Dependency Map (https://depmap.org) (Meyers et al., 2017; Tsherniak et al., 2017). The 

DepMap reports the effects of RNAi or CRISPR-Cas9 mediated gene inactivation on cell viability and 

growth in >700 cancer cell lines using a competition assay. In this assay, the effect of gene inactivation 

is assessed by determining the rate at which a specific knockout (or knockdown) disappears from a co-

culture comprising cells transfected with a genome-scale RNAi or CRISPR-Cas9 library. It has 

previously been observed that that genes whose knockouts have similar effects on viability across a 

large number of cell lines —a phenomenon known as codependency—frequently participate in the same 

protein complex or pathway (Doherty et al., 2021; Meyers et al., 2017; Pan et al., 2018; Rahman et al., 

2021; Shimada et al., 2021; Tsherniak et al., 2017). For example, CHEK2 and CDKN1A have a 

correlation coefficient of 0.359 and 0.375 in DepMap CRISPR and RNAi data, respectively (Figure 

7A), and this codependency can be explained by the fact that the CHEK2 kinase is an activator of 

CDKN1A (also known as p21) and that the two genes jointly regulate cell cycle progression. To obtain 

robust measures of gene co-dependencies, we combined the CRISPR and RNAi perturbation data by 

converting the Pearson correlation coefficients for each gene pair into signed z-scores and computing the 

combined z-score between the two datasets using Stouffer’s method (Figure 7A). In analyzing the data, 

we first accounted for a bias also observed by others (Dempster et al., 2019; Rahman et al., 2021), 

namely that many of the strongest correlations are between mitochondrial genes (Figure 7B). These 

correlations have been described as an artifact of the screening method (such as the timepoint of the 

viability measurements relative to cell doubling time) rather than reflecting true co-dependencies 

(Rahman et al., 2021). We considered the correlations among these genes to be “explained” a priori due 

to their shared mitochondrial function, and using the mitochondrial gene database MitoCarta as a 

reference (Rath et al., 2021), we excluded correlations among them from subsequent analysis.  

 

From the Benchmark Corpus of assembled INDRA Statements, we generated a network model in which 

each node represents a human gene and each directed edge corresponds to an INDRA Statement (such as 
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Phosphorylation, Activation, etc.) connecting two nodes. We used the resulting network for two tasks: 

first, to constrain the number of hypotheses tested when determining the statistical significance of 

codependency correlations, and second, to find mechanistic explanations for the observed 

codependencies. For the first task, we calculated the number of codependencies that were significant at a 

false discovery rate (FDR) of 0.05 using three methods for controlling FDR with and without the use of 

the network to limit the number of hypotheses tested (Table 7). Overall, fewer codependencies were 

identified as significant when we restricted comparisons to relationships in the INDRA-assembled 

network, both because the network is incomplete and because many codependencies reflect indirect 

functional relationships not captured by a single direct edge in the network. However, many 

codependencies (4,007 using Benjamini-Yekutieli FDR correction) were detected as significant only 

when using the network (Table 7, “INDRA only”) due to the smaller number of hypotheses tested. 

Moreover, the majority of these (2,729) were based on interactions obtained only from machine reading, 

of which >60% were supported by a Statement with a belief score greater than 0.5. 

 

Conversely, the existence of a codependency added context to text-mined mechanisms. For example, the 

negative correlation between ERBB2 and STMN1 (ρ= -0.146 in DepMap CRISPR data) was associated 

with a single INDRA phosphorylation Statement in the Benchmark Corpus; the fact that the 

codependency correlation is negative indicates that ERBB2 phosphorylation of STMN1 inhibits it (a 

finding corroborated by (Benseddik et al., 2013)). Similarly, the negative correlation between GRB10 

and IRS2 (ρ=-0.137 in CRISPR) is consistent with reports that the binding of GRB10 to IRS2 is 

inhibitory. This provides context for the INDRA Statement derived from (Keegan et al., 2018; Mori et 

al., 2005) that “GRB10 binds IRS2” and is particularly interesting because the effect of GRB10 binding 

to IRS2 has been reported as both inhibitory (Wick et al., 2003) and activating (Deng et al., 2003). The 

negative DepMap correlation suggests that the inhibitory effect is more relevant in the context of the two 

genes’ co-regulation of cell viability. Overall, these findings suggest that an INDRA-assembled 

networks can lead to the detection of codependencies that would otherwise be missed, and—as the 

previous two examples show—the combined information from data and assembled knowledge provides 

deeper mechanistic insight into each interaction than data alone. 

 

In addition, we tested whether the Benchmark Corpus could provide mechanistic explanations of 

DepMap codependencies beyond what can be explained by curated pathway databases. We considered 
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three types of relationships to be explanatory: (i) direct causal relationships where one gene was 

reported to regulate, modify or interact with another, e.g. the inhibition of TP53 by MDM2, (Figure 7C, 

“Direct”), (ii) information that the two correlated genes were members of the same protein family or 

complex, as indicated by FamPlex relations (Bachman et al., 2018) (Figure 7C, “Family/Complex”), or 

(iii) a link between the parent family/complex of a gene and another gene or its parent family/complex 

(Figure 7C, “Parent Link”). To measure the impact of text mining, we derived a smaller, “database-

only” network from the Benchmark Corpus by excluding edges that were supported only by text mining 

evidence from the “full” network. As a control, we permuted the node labels of both the full and 

database-only networks and repeated our analysis. We found that the full network explained a greater 

proportion of codependencies than the database-only network (22% vs. 11% for codependencies with |z-

score| > 6), with similar improvements at all significance levels (Figure 7D). This improvement is 

striking considering the text mining results were drawn from a corpus that constitutes only a fraction of 

what is currently available in PubMed. We also found that for either network, stronger codependencies 

were more likely to be explainable than weaker ones (Figure 7D), highlighting that the curated and 

published mechanistic knowledge (that is likely to be picked up by INDRA) is generally biased towards 

the most robust functional relationships.  

 

To better characterize how INDRA-assembled networks provide mechanistic context for relationships in 

DepMap, we compared codependencies explainable via the full INDRA network to those explainable 

via interactions in BioGRID or by co-membership in a Reactome pathway. Of the 345,077 non-

mitochondrial gene pairs with DepMap codependency correlations above the Benjamini-Yekutieli 

significance cutoff, only 21,475, or 6.2%, could be explained by BioGRID interactions, a common 

Reactome pathway, or the INDRA network, highlighting the many potential functional relationships in 

DepMap without a literature precedent. Membership in a common Reactome pathway, the least specific 

type of explanation, accounted for the largest number of explanations, including 6,952 codependencies 

explainable only via this information (Figure 7E). The INDRA network accounted for the next-highest 

number of unique explanations with 4,819 (Figure 7E). Interestingly, a majority of these were 

attributable to regulatory relationships mediated by families and complexes of which specific 

codependent genes were members (Figure 7F, “Parent Link” explanations). While less stringent than 

explicit gene-gene relationships, these family-mediated connections can produce compelling 

explanations for genes commonly described at the level of families and complexes (Bachman et al., 
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2018). For example, the strong negative correlation between MPRIP and ROCK2 (ρ=-0.291) is 

explained by multiple text mined Statements linking MPRIP to the ROCK protein family (referred to 

generically as “ROCK” or “Rho kinase”) via their joint binding to the myosin-binding subunit of the 

myosin light chain phosphatase (gene PPP1R12A, Figure 7G) (Nunes et al., 2010; Surks et al., 2003; 

Wang et al., 2009b). 

 

The remainder of the INDRA-dependent explanations were derived from Statements involving two 

specific codependent genes (Figure 7F, “A->B”). While these explanations are “direct” in the sense that 

two genes are linked by an edge in the INDRA network, the relationships may not involve physical 

binding and might therefore have intermediaries (a mechanistically indirect connection). Such indirect 

mechanisms can be an advantage in many systematic explanation tasks. For example, the strong 

correlation between BRAF and MITF (ρ=0.456) cannot be explained by a common Reactome pathway, 

a physical interaction in BioGRID, or interactions in any of the pathway databases incorporated in the 

INDRA network. However, BRAF and MITF are linked by an INDRA network edge derived from 20 

text-mined Statements (supported by 59 distinct mentions) characterizing their complex mutual 

regulatory relationship. The Statements correctly capture the evidence that oncogenic BRAF activates 

the expression of MITF through the transcription factor BRN2 (Kumar et al., 2014) whereas wild type 

BRAF in melanocytes inhibits MITF expression due to the lack of expression of BRN2 (Wellbrock et 

al., 2008). Because INDRA can represent molecular states on Agents (in this case BRAF vs. its mutated 

form BRAF-V600E) these extracted Statements are able to provide machine-readable information 

differentiating the two distinct contexts. Finally, we noted that interactions obtained exclusively from 

text mining were not restricted to well characterized or indirect relationships: for example, the INDRA 

network also incorporates a Statement extracted from a single sentence explaining the correlation 

between DOCK5 and BCAR1 (better known as p130Cas) as arising from their joint interaction with the 

scaffold protein CRK (Frank et al., 2017). Despite their robust correlation (ρ=0.361), DOCK5 and 

BCAR1/p130Cas have only been co-mentioned in a total of three publications in PubMed. 

 

DISCUSSION 

In this paper, we described a method, implemented in INDRA software, for robust, automated assembly 

of mechanistic causal knowledge about biological interactions. The method normalizes information from 

heterogeneous sources, including both curated databases and text mining systems, and integrates this 
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information by identifying relationships between Statements and using statistical models to estimate the 

reliability of each Statement based on the totality of the supporting evidence. The corpus used in this 

paper (~570,000 articles) covers only a fraction of the published biomedical literature (>30 million 

articles). Nevertheless, we demonstrate that it is possible to meaningfully extend curated interaction 

databases and provide explanations for gene dependency correlations in the Cancer Dependency Map. 

INDRA enriches biocuration and data analysis efforts in three ways, i) by aggregating and normalizing 

new, previously uncurated mechanisms directly from the literature in machine-readable form, ii) by 

adding mechanistic detail (activation, modification, binding, etc.) to generic PPIs or empirical 

relationships, and iii) by supplying supporting evidence and context from the literature. Others can make 

use of INDRA tools since they are open source (https://github.com/sorgerlab/indra) and well-

documented (https://indra.readthedocs.io). INDRA has already been used for diverse knowledge 

assembly, curation, and analysis tasks, including network-based gene function enrichment (Ietswaart et 

al., 2021), causal analysis of viral pathogenesis (Zucker et al., 2021), drug target prioritization for acute 

myeloid leukemia (Wooten et al., 2021), assembling knowledge about protein kinases (Moret et al., 

2021), assisting manual biocuration efforts (Glavaški and Velicki, 2021; Hoyt et al., 2019a; Ostaszewski 

et al., 2021), and helping authors capture mechanistic findings in computable form (Wong et al., 2021). 

 

The method described here is related to prior work on the integration of biological databases 

(Rodchenkov et al., 2020; Szklarczyk et al., 2021; Türei et al., 2016), assembly of biological knowledge 

graphs (Himmelstein et al., 2017; Hoyt et al., 2019b), large-scale biomedical event extraction (Van 

Landeghem et al., 2011), and estimation of the reliability of individual interactions in knowledge graphs 

(Jia et al., 2019; Neil et al., 2018). However, it goes beyond the straightforward aggregation of 

interactions from multiple sources by 1) systematically normalizing named entities, 2) organizing 

Statements by specificity, and 3) exploiting information about Statement sources, frequency and 

specificity to predict Statement reliability. Others have introduced innovative methods for using 

machine reading and curated databases for automated model learning and extension, while also making 

use of INDRA to process reader output (Holtzapple et al., 2020) and estimate Statement reliability 

(Ahmed et al., 2021). We believe our work to be the first demonstration of a method that automatically 

assembles reliable, non-redundant mechanistic knowledge from both curated resources and multiple 

biomedical text mining systems.  
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Our approach focuses on capturing the types of information typically represented in biological pathway 

databases: post-translational modifications and physical and regulatory interactions among proteins, 

chemicals, and biological processes. It does not currently represent genetic interactions, gene-disease 

relationships, biomarkers, or other types of statistical associations. However, given suitable data sources 

and text extraction systems, the same approaches for named entity linking, hierarchical assembly and 

reliability assessment can be used for these types of information as well. Indeed, the core methodology 

described here has been used to generate probabilistic causal models from a reading system that extracts 

causal relations from open-domain text (Sharp et al., 2019).  

 

Automatically assembled knowledge bases have many uses in computational biology beyond the 

biocuration and functional genomics use cases we described here. A number of methods have been 

described that use pathway information for regularization in machine learning (Sokolov et al., 2016), to 

control false discovery in hypothesis testing (Babur et al., 2015), and to generate causal hypotheses from 

-omics data (Dugourd et al., 2021; Tuncbag et al., 2016). Most current methods for prior-guided data 

analysis require information about mechanisms to be “flattened” into a directed (possibly signed) 

networks (as we did in for our gene dependency correlation analysis). However, INDRA offers the 

ability to assemble information from multiple sources while preserving much of the information about 

mutations, modifications, and activity states that are necessary for detailed modeling. This supports the 

further development of analytical methods that exploit prior knowledge that is both broad and 

mechanistically detailed. INDRA facilitates this because it assembles information from sources in terms 

of knowledge-level assertions rather than model-specific implementations, different types of causal 

models can be generated from the assembled knowledge depending on the downstream application, 

including signed directed graphs, Boolean networks, or other types of executable models. In our 

previous work, we described a method for automatically assembling curated natural language text into 

detailed dynamical signaling models (Gyori et al., 2017). In principle, the methods described here allow 

for mechanistically detailed signaling models to be initialized from systematically compiled knowledge 

bases, with a quality suitable for static causal analysis ((Gyori et al., 2021), see https://emmaa.indra.bio). 

However, manual curation is generally still required to produce dynamical simulation models from 

automatically assembled assertions, due to the need to supply reverse rates and guarantee detailed 

balance; making this process more efficient is an area of ongoing research (Gyori and Bachman, 2021). 
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One of the striking conclusions from this work is that different reading systems extract very different 

types of information from the same text corpus. Moreover, even in the case of a single INDRA 

Statement, different reading systems extract different mentions from the same text. This points to the 

value of using multiple readers in parallel, something that has not previously been widely explored and 

suggests that direct comparison of reading system errors has the potential to improve these systems. To 

make use of multiple readers we developed an approach for estimating the technical reliability of 

Statements based on the number of mentions, the characteristics of their supporting evidences, and the 

properties of individual reading systems. While addressing this purely technical source of uncertainty is 

a prerequisite for the practical use of text mined information in downstream applications, addressing 

additional types of uncertainty in assembled knowledge and models is a worthwhile area of future 

research. In particular, there is a need for systematic approaches to managing conflicts and 

contradictions among assembled Statements (Figure 4A, upper right), which often take the form of 

polarity conflicts (“A activates B” vs. “A inhibits B”). While polarity conflicts can arise due to 

systematic errors in machine reading (Noriega-Atala et al., 2019), many represent inconsistent reports 

from the underlying scientific literature. These conflicts can potentially be addressed by a more 

thorough incorporation of biological context alongside causal information (Noriega-Atala et al., 2020), 

through the use of functional data such as the DepMap, or potentially by ensemble modeling procedures 

that capture polarity uncertainty in downstream analysis. Another primary concern in the use of text-

mined information is the unreliability of many scientific studies (Baker, 2016). Recent efforts in meta-

scientific analysis have examined features such as journal impact factor, article citations, and 

collaboration networks among researchers to determine whether these can predict the likelihood of the 

future replication of a study (Danchev et al., 2019). Large-scale assembly of causal information from the 

literature has the potential to facilitate the study of both biological and meta-scientific sources of 

scientific contradictions. 

 

It is interesting to speculate what might be possible were all of PubMed to be made fully machine 

readable. The corpus of 570,000 papers used in this study were chosen in part because they focus on 

human genes and their functions. Because it is not a randomly selected subset of all 30 million PubMed 

articles, comprehensive machine reading followed by assembly in INDRA is unlikely to generate 60-

fold more mechanistic information than the current study. To obtain a rough estimate of what could be 

expected, we determined the increase in the number of unique Statements and total mentions for a single 
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gene of interest, BRAF, obtainable by processing all machine-readable abstracts and full text articles in 

PubMed with two readers, Reach and Sparser. We found that, relative to the Benchmark Corpus, unique 

Statements roughly doubled (from ~1,500 to ~3,300), while total mentions tripled (~4,000 to ~12,000) 

and the total number of supporting articles quadrupled (~1,000 to ~4,000). These numbers highlight the 

potential value of applying knowledge extraction and assembly methods more broadly. However, in 

performing this analysis we were limited by the availability of full text content, as we were in our 

assembly of the Benchmark Corpus (Table 1). The contribution of text mining tools to machine readable 

knowledge is expected to be much more significant when a greater proportion of full text scientific 

articles are both legally and technically accessible (Westergaard et al., 2018).  
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METHODS 

Article corpus for event extraction 

The Entrez gene database was queried with the official gene symbols for all human genes in the HUGO 

database for MEDLINE articles curated as having relevance to the function of each gene. The resulting 

list of PubMed identifiers (PMIDs) is included in the code and data associated with the paper at 

https://github.com/sorgerlab/indra_assembly_paper. For these PMIDs, we obtained full text content 

when available from three sources: The PubMed Central open access and author’s manuscript 

collections, and the Elsevier Text and Data mining API (https://dev.elsevier.com). For the remaining 

PMIDs, we obtained abstracts from PubMed. Table 1 shows the distribution of text content sources. 

Text mining of article corpus 

We used multiple text mining systems integrated with INDRA to process all or part of the corpus of 

interest described in the previous section. 

Reach version 1.3.3 was downloaded from https://github.com/clulab/reach and used to process all text 

content for the collected corpus described in the previous section. Reach reading output was processed 

into INDRA Statements using the indra.sources.reach module. 

Sparser was obtained as an executable image from its developers and was used to process all text 

content for the collected corpus described in the previous section. The Sparser source code is available 

at https://github.com/ddmcdonald/sparser and the Sparser executable is available as part of the INDRA 

Docker image which can be obtained from https://hub.docker.com/r/labsyspharm/indra. Sparser reading 

output was processed into INDRA Statements using the indra.sources.sparser module. 

MedScan reader output for the collected corpus described in the previous section was obtained from 

Elsevier and processed into INDRA Statements using the indra.sources.medscan module. 

TRIPS/DRUM was obtained from https://github.com/wdebeaum/drum and used to process part of the 

text content for the collected corpus, as follows. First, we selected all papers for which only an abstract 

was available, then selected those papers from which Reach, Sparser and MedScan extracted at least one 

Statement about any of 227 genes relevant for a key cancer signaling pathway, the Ras pathway. This 

resulted in a total of 42,158 abstracts which were processed with TRIPS/DRUM. The outputs were then 

processed into INDRA Statements using the indra.sources.trips module. 

RLIMS-P reader output for PubMed abstracts and PubMedCentral full text articles was obtained from 

https://hershey.dbi.udel.edu/textmining/export/ (accessed June 2019), and then filtered to the corpus of 
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interest described in the previous section. The outputs were then processed into INDRA Statements 

using the indra.sources.rlimsp module. 

ISI/AMR (Docker image available at https://hub.docker.com/r/sahilgar/bigmechisi) reader output was 

provided by the system’s creators for 10,433 articles which were filtered to the corpus of interest 

resulting in a total of 1,878 reader outputs. These were then processed into INDRA Statements using the 

indra.sources.isi module. 

 

Structured sources 

In addition to text mining, we processed multiple pathway databases with INDRA to obtain INDRA 

Statements. 

TRRUST release 4/16/2018 with human transcription factor-target relationships was obtained from 

https://www.grnpedia.org/trrust/data/trrust_rawdata.human.tsv and processed into INDRA Statements 

using the indra.sources.trrust module. 

Signor content was processed through the Signor web service 

(https://signor.uniroma2.it/download_entity.php) in June 2019 and processed into INDRA Statements 

using the indra.sources.signor module. 

HPRD content was obtained from 

http://www.hprd.org/RELEASE9/HPRD_FLAT_FILES_041310.tar.gz and processed into INDRA 

Statements using the indra.sources.hprd module. 

BEL content was obtained from the Selventa Large Corpus available at 

https://raw.githubusercontent.com/cthoyt/selventa-

knowledge/master/selventa_knowledge/large_corpus.bel and processed using PyBEL and the 

indra.sources.bel module into INDRA Statements. 

CausalBioNet content was processed from JGF files from 

http://causalbionet.com/Content/jgf_bulk_files/Human-2.0.zip and processed into INDRA Statements 

using PyBEL and the indra.sources.bel module. 

BioGRID content was obtained from https://downloads.thebiogrid.org/Download/BioGRID/Release-

Archive/BIOGRID-4.2.192/BIOGRID-ALL-4.2.192.tab3.zip and processed into INDRA Statements 

using the indra.sources.biogrid module. 
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PhosphoSitePlus content was downloaded from https://www.phosphosite.org/staticDownloads in June 

2019 via the “BioPAX:Kinase-substrate information” link, in BioPAX format, and processed into 

INDRA Statements using the indra.sourecs.biopax module. 

Pathway Commons content was obtained from 

https://www.pathwaycommons.org/archives/PC2/v12/PathwayCommons12.Detailed.BIOPAX.owl.gz 

and processed using PyBioPAX and the indra.sources.biopax module into INDRA Statements. To 

account for the fact that BioGRID, PhosphoSitePlus and HPRD content were obtained separately (and 

these are also available as part of Pathway Commons), we filtered out interactions from these sources 

when processing Pathway Commons. 

 

The scripts to process each source as described above is available at: 

https://github.com/sorgerlab/indra_assembly_paper/blob/master/run_assembly/process_sources.py.  

 

Procedure for identifying duplicates and refinements 

The INDRA ontology graph combines entries across multiple ontologies and represents each entry as a 

graph node with a set of properties (namespace, identifier, standard name). There are three types of 

edges in the graph: xref (cross-reference meaning that the source node and the target node, often from 

different namespaces, are equivalent), isa (the source node is one of a set of entities represented by the 

parent node), and partof (the source node is part of a complex represented by the parent node). Each 

INDRA Agent has zero or more namespace/identifier pairs associated with it which constitute its 

grounding. 

When standardizing the grounding of INDRA Agents, the xref edges of the ontology graph are traversed 

following all directed paths starting from each available grounding for the Agent. The namespaces and 

identifiers of nodes visited along these paths are then added as grounding for the Agent. We then use a 

priority order of namespaces to assign a single canonical grounding to an Agent. If an Agent has no 

groundings available, its name is used as canonical grounding. 

 When determining whether two Statements are duplicates, we require that (1) the two 

Statements’ types are the same (2) all the Agent arguments of the two Statements are matching in their 

canonical grounding, (3) all states (activity, modifications, bound conditions, location, mutations) of the 

matching Agents of the two Statements are equivalent, and (4) all additional Statement arguments are 

equivalent (e.g., residue and position for a Modification Statement). To avoid making pairwise 
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comparisons, we construct an equivalence key from properties (1-4) needed to determine equivalence 

for each individual Statement, and then use a hash map data structure to group Statements efficiently by 

equivalence key. Groups of Statements having the same equivalence key are collapsed into a single 

Statement and their Evidences are concatenated. 

 For finding refinements among Statements, we make use of the INDRA ontology graph’s isa and 

partof edges. For determining a refinement, we require that the two Statements have the same type, and 

that one Statement is a refinement of the other with respect to at least one of the properties (2-4) 

described above, and that the other Statement does not refine the first one based on any of these 

properties. In other words, if one Statement is more specific than the other according to one property but 

less specific according to another property, there is no refinement relationship between them at the 

Statement level. 

Binomial, beta-binomial, and INDRA Belief models of Statement reliability 

The INDRA Belief Model 

The “INDRA belief model” represents the probability of a Statement being correct as the result 

of a two step-random process (Figure 4C). The first process considers the probability that a Statement is 

drawn from the pool of Statements that are always incorrect, regardless of the number of evidences they 

have. This probability is based on the systematic error parameter for each reading system. If the 

Statement is not from this pool, then its reliability is alternatively modeled to follow a binomial 

distribution assuming a particular random error rate for that source. Like the beta-binomial model, the 

INDRA belief model captures the plateau in Statement reliability (Figure 4D), though the predicted 

distributions for evidence correctness do not correspond well to the empirical U-shaped distribution 

(Figure S4A).  

The INDRA Belief Model is calculated based on evidences belonging to a Statement, each 

evidence having been produced by a source such as a text mining system or a pathway database 

integrated with INDRA. In the simple case of a single knowledge source, we define the belief of a 

Statement as 

1 � �
���� � 
����� �1 � 
������ 

where 
���� and 
����  are the systematic and random error parameters for the given source, respectively. 

This model can also be generalized to multiple sources as follows. Assume there are a total of � known 

sources � �  ��	, �
, … , ��  �, each associated with a random and systematic error rate. For source �� , 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.505688doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.30.505688
http://creativecommons.org/licenses/by/4.0/


 

 32 


�,���� will denote the systematic error rate, and 
�,���� the random error rate. Given a set of � 

evidences �
 � ��
,	, … , �
,��, with Source��
,�� �  � corresponding to the source of evidence of �
,�, 

we introduce �
,�, the number of evidences for Statement T from source ��: 

�
,� � � ���

��	

Source��
,��, ��� 

where �� , !� stands for the indicator function which evaluates to 1 if  � !, and 0 otherwise. We then 

define the belief of Statement T as follows: 

"�#� � 1 � $ 
�,���� % min�1, �
,���

��	

� 

�,����

��,� �1 � 
�,���� % min �1, N
,���. 
For the calculation of beliefs for a Statement that is refined by other Statements, we introduce the 

extended evidence set denoted as �*�#� which is defined as 

�*
 � + ,�
 , + �*�
����

- . 
Here  � .
 if and only if   refines #. In other words, we take the union of all pieces of evidence for 

the Statement itself and all the Statements by which it is refined, recursively. We then apply the equation 

for �
,� and "�#� to �*�#� instead of �*�#� in the obvious way. 

When the quality of fit of the three different models was compared using maximum likelihood 

parameter values, the original belief model performed very slightly better than the beta-binomial model 

for both the Reach and Sparser reading systems (Table 3). 

 

The Binomial and Beta-binomial belief models 

The binomial model treats every individual evidence sentence as a Bernoulli trial, where the probability 

of a single reading system being jointly incorrect for all sentences decreases according to a binomial 

distribution (e.g., the probability of incorrectly processing ten sentences is analogous to flipping a coin 

ten times and getting ten tails). The binomial model substantially overestimates the reliability of 

Statements with three or more evidences from Reach, due to the fact that it does not account for 

systematic errors (Figure 4A). In addition, the binomial model predicts that for a Statement with k 

evidences, the mode of the distribution of number of correct evidences is close to k/2 (bell shaped red 
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curves in Figure S4B), whereas the curation data shows that evidences are more likely to be either all 

incorrect (zero bars) or all correct (right-most bars). 

The binomial belief model has a single random error rate parameter �����  for each source, and – 

making use of definitions from the previous section – the belief for a Statement with evidences from 

multiple sources can be calculated as 

���� � 1 � 	 �
�,����

��,�   .
�

�	


 

The beta-binomial model is based on a binomial model where the probability of each mention 

being correctly extracted is itself drawn from a beta distribution (Wilcox, 1979). The beta-binomial 

model better captures the tendency of Statement reliability to plateau below 100% (Figure 4D) as well as 

the U-shaped distributions of the numbers of underlying correct evidences (Figure S4C). 

 

The beta-binomial belief model has two parameters for each source, � and 
, and for a Statement with 

evidences from multiple sources, it can be calculated as 

���� � 1 � 	 �������, ��,� � 
��
������� , 
��   .

�

�	


 

where ���� is the standard beta-function. 

 

Machine-learned models of Statement reliability 

Model types and evaluation. 

Classification models evaluated for their ability to predict Statement correctness were obtained from the 

Python package sklearn. Evaluated models included Support Vector Classification (sklearn.svm.SVC 

with probability estimation enabled), k-Nearest Neighbors (sklearn.neighbors.KNeighborsClassifier, 

used with default parameters), logistic regression with log-transformed mention counts 

(sklearn.linear_model.LogisticRegression), and Random Forests 

(sklearn.ensemble.RandomForestClassifier with n_estimators=2000 and max_depth=13, obtained by 

manual hyper-parameter optimization). Model performance was evaluated by 10-fold cross-validation; 

each fold was used to calculate the area under the precision-recall curve (AUPRC) for the held-out data. 

Values in Table 3 reflect the mean and standard deviations of AUPRC values across the 10 folds. 
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Encoding of features for Statement belief prediction. 

Reader mention counts. Mention counts for each reader were included as distinct features (columns) for 

each Statement. When incorporating evidence from more specific Statements (“specific evidences” in 

Table 3) these were added in a separate set of columns for each reader; a Statement could thus have two 

columns with Reach mention counts, one for mentions directly supporting the Statement, and another for 

mentions obtained from more specific Statements. 

Number of unique PMIDs. Unique PMIDs supporting each Statement were obtained from its mentions 

and added as a single feature.  

Statement type. Statement types were one-hot encoded (one binary feature for each type, Activation, 

Inhibition, Phosphorylation, etc.) 

Average evidence length. Mention texts directly supporting the Statement were split by whitespace; the 

number of resulting substrings were counted and averaged across all mentions and included as a feature. 

“Promoter” frequency. The number of mention texts containing the term “promoter” were counted and 

the resulting value was divided by the total number of mentions to obtain a frequency of the occurrence 

of this keyword. 

 

Availability of data and material 

The datasets generated and analyzed during the current study, as well as the source code used to 

generate results is available in the repository https://github.com/sorgerlab/indra_assembly_paper.  

INDRA is available at https://github.com/sorgerlab/indra under an open-source BSD 2-clause license. 

 

TABLES 

Table 1: Distribution of content types for literature corpus 

Content type Count Percentage 

PubMed abstract 384,628 67.8% 

Elsevier 81,567 14.4% 

PMC open access 74,654 13.2% 

PMC author’s manuscript 25,950 4.6% 

Missing 707 0.1% 

Table 2: Summary of statement curation dataset. Entries are formatted as “number correct (total curated)”. 

Reader 1 2 3 4 5 6 7 8 9 10 

Reach 57 (119) 26 (41) 25 (36) 16 (25) 26 (36) 24 (28) 26 (35) 29 (48) 18 (22) 20 (24) 

RLIMS-P 87 (109) 24 (26) 23 (25) 10 (10) 6 (6) 6 (6) 6 (6) 6 (6) 7 (7) 25 (25) 

TRIPS 
158 

(199) 
46 (51) 28 (29) 3 (3) 7 (7) 12 (12) 24 (26) 12 (13) 9 (11) 9 (9) 
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Sparser 9 (25) 13 (25) 9 (13) 6 (12) 11 (19) 6 (8) 0 (0) 0 (0) 3 (5) 10 (11) 

MedScan 42 (66) 22 (30) 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (7) 

 

Table 3: Maximum likelihood values for alternative belief models using best-fit parameters (lower values indicate a better 
fit). 

Model 
Reach -log(Max 

likelihood) 

Reach -log(Max 

likelihood) 

Binomial (1 param) 366.2 120.31 

Beta-binomial (2 params) 255.5 118.28 

INDRA Belief Model (2 params) 254.6 118.24 

 

Table 4: Frequencies of relations in corpus by total number of sources. 

Num. 
readers 

Freq. (%) 

1 81.3% 

2 14.42% 

3 3.55% 

4 0.67% 

5 0.05% 

 

Table 5: Correlations between reader mention counts 

Sparser MedScan RLIMS-P TRIPS 

Reach 0.611 0.633 0.072 0.374 

Sparser 
 

0.454 0.114 0.420 

MedScan   
0.034 0.338 

RLIMS-P 
   

0.096 

 

 

Table 6. Comparison of belief models (using AUPRC as the metric) depending on model type, sources included, additional 

features taken into account, and whether more specific evidences are takin into account based on statement refinement 

relations. (Note: Statement is abbreviated as Stmt in the table). 

Group Row Model Sources Additional Features 

More 
specific 

evidences AUPRC 
Reader counts 
only 

1 Belief Model Readers N/A No 0.918 

2 Random Forest Readers None No 0.895 

3 Logistic Regression Readers None No 0.912 

4 k-NN Readers None No 0.896 

5 SVC Readers None No 0.87 

More features 6 Random Forest Readers Stmt type, # PMIDs No 0.912 

7 Random Forest Readers 
Stmt type, # PMIDs, Avg. 
evidence len. 

No 0.918 
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8 Random Forest Readers Stmt type, # PMIDs, "promoter" No 0.923 

9 Random Forest Readers 
Stmt type, # PMIDs, 
"promoter", Avg. evidence 
len. 

No 0.927 

10 Logistic Regression Readers Stmt type, # PMIDs No 0.923 

11 Logistic Regression Readers 
Stmt type, # PMIDs, Avg. 
evidence len. 

No 0.923 

12 Logistic Regression Readers Stmt type, # PMIDs, "promoter" No 0.924 

13 Logistic Regression Readers 
Stmt type, # PMIDs, "promoter", 
Avg. evidence len. 

No 0.924 

14 k-NN Readers Stmt type, # PMIDs No 0.898 

15 SVC Readers Stmt type, # PMIDs No 0.879 

Reader counts 
only, specific 
evidences 

16 Belief Model Readers N/A Yes 0.919 

17 Random Forest Readers None Yes 0.913 

18 Logistic Regression Readers None Yes 0.914 

19 k-NN Readers None Yes 0.897 

20 SVC Readers None Yes 0.888 

More features, 
specific 
evidences 

21 Random Forest Readers Stmt type, # PMIDs Yes 0.925 

22 Random Forest Readers 
Stmt type, # PMIDs, Avg. 
evidence len. 

Yes 0.928 

23 Random Forest Readers Stmt type, # PMIDs, "promoter" Yes 0.931 

24 Random Forest Readers 
Stmt type, # PMIDs, 
"promoter", Avg. evidence 
len. 

Yes 0.933 

25 Logistic Regression Readers Stmt type, # PMIDs Yes 0.924 

26 Logistic Regression Readers 
Stmt type, # PMIDs, Avg. 
evidence len. 

Yes 0.924 

27 Logistic Regression Readers Stmt type, # PMIDs, "promoter" Yes 0.925 

28 Logistic Regression Readers 
Stmt type, # PMIDs, "promoter", 
Avg. evidence len. 

Yes 0.925 

29 k-NN Readers Stmt type, # PMIDs Yes 0.892 

30 SVC Readers Stmt type, # PMIDs Yes 0.9 

All sources, 
more features, 
specific 
evidences 

31 Belief Model Readers, DBs N/A Yes 0.927 

32 Random Forest Readers, DBs None Yes 0.933 

33 Random Forest Readers, DBs Stmt type, # PMIDs Yes 0.935 

34 Random Forest Readers, DBs 
Stmt type, # PMIDs, Avg. 
evidence len. 

Yes 0.936 

35 Random Forest Readers, DBs Stmt type, # PMIDs, "promoter" Yes 0.94 

36 Random Forest Readers, DBs 
Stmt type, # PMIDs, 
"promoter", Avg. evidence 
len. 

Yes 0.941 

37 Logistic Regression Readers, DBs None Yes 0.925 

38 Logistic Regression Readers, DBs Stmt type, # PMIDs Yes 0.934 

39 Logistic Regression Readers, DBs 
Stmt type, # PMIDs, Avg. 
evidence len. 

Yes 0.934 

40 Logistic Regression Readers, DBs Stmt type, # PMIDs, "promoter" Yes 0.935 

41 Logistic Regression Readers, DBs 
Stmt type, # PMIDs, "promoter", 
Avg. evidence len. 

Yes 0.936 

 

Table 7. Number of codependencies detected at a significance cutoff of p < 0.05 without multiple hypothesis correction or 

after one of three methods for multiple hypothesis testing correction (Bonferroni, Benjamini-Hochberg, and Benjamini-
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Yekutieli). Results are shown for a case in which no prior is used and data is analyzed directly (“No prior”), or when an 

INDRA prior is used (“INDRA prior / Total”). The rightmost column shows the number of novel codependencies recovered 

exclusively when an INDRA prior was used along with correction for multiple testing (“INDRA prior / INDRA only”).  

 

†Figures for uncorrected p-values do not apply to the “INDRA prior / INDRA-only” case because without correction for multiple testing, the prior does not 

play a role in determining significance. Figures are shown for the “INDRA prior / Total” case to establish the number of codependencies with uncorrected p-

values > 0.05 that fall within the scope of the INDRA network; this serves as an upper bound for the number of correlations determined to be significant with 

the different approaches to multiple testing shown in the bottom three rows.  

No prior INDRA prior 

Total INDRA only 

Number of comparisons (non-mitochondrial) 121,778,711 265,874 N/A† 

Correlations with uncorrected p < 0.05 21,526,511 63,926† N/A† 

Significant corrs after Bonferroni 99,544 4,982 1,836 

Significant corrs after Benjamini-Hochberg 5,025,535 30,127 7,506 

Significant corrs after Benjamini-Yekutieli 972,831 12,812 4,007 

 

 

FIGURE LEGENDS 
Figure 1. Conceptual overview of knowledge assembly. 

(A) Assembly of models from diverse knowledge sources. Structured (pathway databases) and unstructured 

(literature, expert input in natural language) biological knowledge is converted into machine-readable, 

mechanistic fragments. These fragments must be assembled into a coherent corpus before generation of specific 

models for data analysis. 

 (B) Mechanistic “fragments” capture incomplete but overlapping aspects of an underlying molecular mechanism 

(here, the phosphorylation of ERK by MEK). Fragments may also contain errors (highlighted in red). Assembly 

involves identifying relationships between fragments in order to arrive at a consensus representation that captures 

available information. 

(C) Artifacts involved in the collection of mechanisms from knowledge sources by INDRA, and their 

representation as INDRA Statements. Yellow boxes show key terminology used to refer to different artifacts with 

additional synonyms provided in quotes. 

(D) INDRA knowledge assembly transforms raw statements into assembled statements from which models can be 

generated. The individual steps of the assembly pipeline (Steps 1 to N, yellow background) operate on INDRA 

Statements and are configurable from a library of built-in or user-defined functions. 

 

Figure 2. The INDRA knowledge assembly pipeline used to create a Benchmark Corpus. 
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(A) The INDRA assembly pipeline for the Benchmark Corpus. The pipeline starts with ~570 thousand 

publications processed by multiple reading systems, as well as structured database sources including Pathway 

Commons and SIGNOR. Raw Statements extracted from these sources proceed through filtering (green), error-

correction (red), and assembly (blue) steps.  

(B) Number of INDRA Statements, by source, at key stages of the assembly pipeline shown in panel (A). 

(C) Combining duplicate Statements. INDRA identifies raw Statements that are identical and creates a single 

unique Statement with all of the associated mentions. 

(D) Distribution of mention counts (including both mentions in text and database entries) across all Statements in 

the Benchmark Corpus. Each point in the scatterplot represents the number of Statements with a given number of 

mentions. 

(E) Complement cumulative distribution of Statements as a function of the number of mentions supporting them 

(black) and the maximum likelihood estimate of a power-law fit to the distribution (red). 

(F) Assembly of Statements enriches curated mechanisms in pathway databases with literature evidence from text 

mining. Here, a reaction in Pathway Commons represents the ubiquitination of TP73 (p73) by the ubiquitin ligase 

RCHY1 (Pirh2). Reach, Sparser and MedScan each extract statements matching the one from Pathway Commons 

and provide references to PubMed identifiers and specific evidence sentences as provenance. 

 

Figure 3. Identifying refinement relationships among Statements. 

(A) Refinement by hierarchies of Statement elements as defined by INDRA. The two Statements shown contain 

the same number and types of information but all elements in the top Statement are refinements of the 

corresponding elements in the bottom Statement according to the INDRA Statement hierarchies. 

(B) Refinement by additional context. The upper Statement contains all information in the lower one but also 

provides additional detail, making it a refinement of the one below. 

(C) Example refinement graph for a Statement from the example corpus. For clarity, the transitive reduction of the 

hierarchy is shown, and each Statement object is displayed via its English language equivalent. Each node in the 

graph represents a statement with blue or red circles representing evidence from pathway databases or mentions 

extracted by machine reading systems, respectively. Next to each blue or red circle, the number of different 

sources is shown with the overall number of mentions from these sources in parentheses. For example, the 

statement “CREB1 is phosphorylated on S133” has 5 pieces of evidence from one pathway database source, and 

48 mentions extracted by three reading systems. Edges represent refinement relationships and point from more 

specific to less specific Statements. 

(D) Graph of family relationships (dotted isa edges) and Statements representing phosphorylation (solid edges, 

annotated with Statement identifiers from panel C), between different levels of specificity of the RSK and CREB 

protein families. 
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(E) Number of Statements based on the total number of other Statements that they refine. 

(F) Number of Statements with different depths of Statements that they refine (i.e., the length of the longest path 

in the graph of refinement relations starting with the given Statement). 

 

Figure 4. Estimating statement belief for a single machine reader. 

(A) A classification of sources of error and uncertainty in assembling causal models. Sources are classified 

according to whether they are external or internal to the INDRA system, and whether they arise at the level of 

individual Statements (atomic) or an integrated network or model (global). 

(B) Empirical precision of three reading systems based on the number of mentions supporting a given Statement 

extracted by that reader. 

(C) Mathematical formulas for Statement correctness for three different Belief Models. Each model specifies the 

probability that a Statement is incorrect overall given that a specific number k of mentions support it from a given 

source. erand: random error for the source; esyst: systematic error for the source;  B(�, β): Beta function. 

(D) Fits of the three belief models in (C) plotted against the empirical precision of Reach-extracted Statements. 

 

Figure 5. Estimating Statement belief with multiple machine readers combined 

(A) Upset plot (equivalent to a Venn diagram with more than 3 sets) of Statement support for five machine 

reading systems integrated by INDRA. For a given Statement, two or more readers intersect if they each provide 

supporting mentions for it. 

(B) Number of mentions from Reach and Sparser (left) and Reach and MedScan (right) for a given Statement, 

each Statement being represented by a red dot. Mention counts are plotted on a logarithmic scale. 

(C) The percentage of Statements for which an intersection (i.e.,  any overlap) between reading systems is 

observed as a function of the number mentions from a given reader; the data are plotted separately for each of the 

five reading systems. 

(D) Empirical Statement precision as a function of the number of mentions from Reach (left) and Sparser (right), 

plotting the cases for which only Reach or Sparser provides supporting mentions for a Statement (red) and the 

case where all Statements are taken into account (blue). 

 

Figure 6. Comparison of INDRA-assembled mechanisms with a curated resource, BioGRID. 

(A) Number of INDRA Statements representing PPIs (i.e., complex formation between two human proteins) 

grouped into bins by their belief score (as determined by a random forest belief model), differentiating whether 

the PPI represented by the Statement appears in BioGRID (orange) or not (blue). 

(B) Fraction of INDRA Statements representing PPIs that appear in BioGRID grouped into bins by their belief 

score. A gray dashed line shows the expected fraction of correct Statements in each belief bin. The space between 
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the gray and blue lines (i.e., between the expected fraction of correct Statements in each bin and the fraction of 

Statements that appear in BioGRID) represents an estimate of the set of correct Statements missing from 

BioGRID. 

(C) Plot showing estimated curation yield if Statements were reviewed by decreasing belief score for inclusion 

into a curated resource. The blue line plots the number of correct Statements expected to be found as a function of 

the number of Statements reviewed, with green and pink dashed lines serving as guides showing 100% return 

(i.e., every reviewed Statement is correct) and 25% return (i.e., 1 out of 4 reviewed Statements is correct). 

 

Figure 7. Detecting and explaining gene codependency in cancer cell lines using an INDRA-assembled 

network 

(A) CRISPR (left) and RNAi (right) data from DepMap showing the codependency of the CHEK2 and CDKN1A 

genes across a panel of cancer cell lines (each blue dot represents a cell line, placed according to normalized cell 

viability change upon gene perturbation). Black lines show the linear regression plot over the cell line viability 

values. 

(B) Percent of gene codependencies (i.e., correlations) involving one or two mitochondrial genes as a function of 

the absolute z-score corresponding to the codependency. 

(C) Patterns of network nodes and edges that constitute an “explanation” for an observed DepMap codependency, 

including “Direct” (a direct edge between two specific genes A and B), “Family/Complex” (two genes A and B 

are part of the same family or complex), and “Parent Link” (where one or both of the specific genes A and B are 

related via a parent family/complex they are part of). 

(D) Percent of codependencies/correlations explained using the INDRA network when considering all edges (red) 

or only edges supported by curated databases, excluding text mining (blue), with randomly shuffled controls 

shown. 

(E) Upset plot showing the intersection of explanations for DepMap codependencies provided by three networks: 

BioGRID interactions, the INDRA network, and Reactome pathways. 

(F) Upset plot showing the intersection of three types of explanation for DepMap codependencies provided by the 

INDRA Network, corresponding to explanation patterns shown in panel D. 

(G) An example explanation for the codependency between ROCK2 and MPRIP derived from the INDRA 

network. INDRA provides evidence for a complex in which ROCK (the protein family of which ROCK2 is a 

member) binds MPRIP in a three-way complex with PPP1R12A (also called MBS) through the mention shown at 

the bottom (extracted from Wang et al, 2009). 

 

Figure S1. Differences in curation practices across databases integrated by Pathway Commons 
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(A) A subgraph of the “paths-from-to” query between MAP2K1 and MAPK1 obtained from Pathway Commons 

and visualized using the ChiBE software (Babur et al., 2009). Each biochemical reaction (R1-R8) depicts a 

different curation of the same reaction in which MAP2K1 phosphorylates MAPK1. The original source database 

(e.g., NetPath) is shown next to each reaction. Inconsistencies include (i) the reaction structure itself, with some 

specifying a single step phosphorylation of two sites (e.g., R4) while others specify single-site phosphorylation 

(e.g., R1), or the explicit representation of ADP and ATP as part of the reaction (R8); (ii) the phosphorylation 

status of MAP2K1, with no phosphorylation status given in R1, R3, R5, R6 and R8, two phosphorylation sites 

indicated in R2, R4, and three phosphorylation sites in R7; (iii) the initial state of MAPK1, with R2 explicitly 

indicating unphosphorylated status, while other reactions do not make this explicit; (iv) the final state of MAPK1, 

with some reactions representing MAPK1 phosphorylation on an unspecified site (R1, R3), and others providing 

specific phosphorylation sites (e.g., R2); (v) the specification of active states, with R4 being the only reaction 

representing MAP2K1 explicitly as active, while R4 and R7 are the only reactions specifying that MAPK1 is 

active after phosphorylation; (vi) the presence of other co-factors such as IL17RD (R8) as part of the reaction. 

 

Figure S2. Ontology graph guiding INDRA knowledge assembly 

(A) A subgraph of the INDRA ontology graph showing the neighborhood of the node representing “prostaglandin 

E2” in the ChEBI database (CHEBI:15551). Edges represent “isa” relationships to more general terms (and from 

more specific terms), and “xref” edges represent identifier equivalence to nodes representing entries in other 

databases including MeSH, DrugBank, ChEMBL, CAS, PubChem, and NCIT. Each ontology graph node also 

provides a name that can be used for standardization and display purposes. 

(B) Example of three entities with inconsistent names and identifiers which, when standardized by INDRA using 

the ontology graph, are normalized to consistent entities with identical names and sets of identifiers. 

 

Figure S4. Observed and predicted distributions of mentions correctly extracted by Reach for Statements 

supported by up to 10 Reach mentions. 

(A) Frequencies of correct mentions predicted by the INDRA Belief Model. The blue bars in each subplot show 

the frequencies of statements with k correctly extracted mentions for n total mentions for the Statement 

(considering mentions from the Reach reader only). The red line in each subplot shows the frequencies of correct 

mentions expected by the INDRA Belief Model. The INDRA Belief Model expects a substantial proportion of 

Statements to have an intermediate number of correctly extracted mentions, whereas the empirical data suggests 

that Statements are more likely to be associated with mentions that are either all correct or incorrect. 

(B). Frequencies of correct mentions expected by the Binomial model. Blue bars are identical to (A).  
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(C). Frequencies of correct mentions expected by the Beta-binomial model. Blue bars are identical to (A) and (B). 

The Beta-binomial model differs from the INDRA Belief Model and Binomial models in that it predicts relatively 

greater proportions of Statements with mentions that are either all correct or incorrect. 

 

Figure S5. Reader overlap and Statement correctness. 

(A) Upset plot (equivalent to a Venn diagram with more than 3 sets) of Statement support for five machine 

reading systems integrated by INDRA. Data is identical to Figure 5A but intersection sizes are plotted on a log 

scale and all 32 possible reader combinations are shown. 

(B) Multi-reader mention counts and Statement correctness. Each subplot shows the relationship between mention 

counts from a combination of two readers for manually curated Statements. Blue points represent Statements that 

were curated as correct; red points were curated as incorrect. A small amount of random jitter has been added to 

each point to indicate the density of points with fewer mention counts. 
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