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Abstract

Producing de-novo genome assemblies for complex genomes is possible thanks to long-read

DNA sequencing technologies. However, maximizing the quality of assemblies based on long

reads  is  a  challenging  task  that  requires  the  development  of  specialized  data  analysis

techniques.  In  this  paper,  we present  new algorithms for  assembling long-DNA sequencing

reads from haploid and diploid organisms. The assembly algorithm builds an undirected graph

with two vertices for each read based on minimizers selected by a hash function derived from

the k-mers distribution. Statistics collected during the graph construction are used as features to
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build layout paths by selecting edges, ranked by a likelihood function that is calculated from the

inferred distributions of features on a subset of safe edges. For diploid samples, we integrated a

reimplementation  of  the  ReFHap  algorithm  to  perform  molecular  phasing.  The  phasing

procedure is used to remove edges connecting reads assigned to different haplotypes and to

obtain a phased assembly by running the layout algorithm on the filtered graph. We ran the

implemented algorithms on PacBio HiFi and Nanopore sequencing data taken from bacteria,

yeast,  Drosophila,  rice,  maize,  and  human  samples.  Our  algorithms  showed  competitive

efficiency  and  contiguity  of  assemblies,  as  well  as  superior  accuracy  in  some  cases,  as

compared to other currently used software. We expect that this new development will be useful

for researchers building genome assemblies for different species.

Keywords: genome assembly, bioinformatics, software, algorithms, haplotype phasing

INTRODUCTION

Contiguous  and  accurate  assembly  of  complex  eukaryotic  genomes  is  one  of  the  most

challenging tasks in current biotechnology and bioinformatics (Baker M 2012, Nurk et al. 2022).

Bioinformatic tools for genome assembly are used to sort and orient partial reads produced by

various sequencing technologies. Partial genome assemblies, including most gene-rich regions,

have been generated in the last decade. However contiguous and high-quality assemblies are

required  to  integrate  synteny  information  in  genome-scale  comparative  genomics  and

pangenomics,  to  study evolution  and dynamics  of  mobile  elements,  for  population  genomic

analysis, such as genome-wide association studies (GWAS), and for the discovery of genomic

footprints of selection (Amiri et al. 2018, Xu et al. 2020). High-quality assemblies are also useful

to understand the genome evolution of species (Hu et al. 2021), to identify structural variations

(Ouzhuluobu et al. 2020), and to define the gene repertoire including targets for resistance in
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plants and animals, as well as virulence factors and effectors in pathogens (Bhadauria  et al.

2019). This complete gene catalog is key for identifying interesting genomic target regions for

plant  and animal  breeding (Low et al.  2020,  Song et al.  2021), and personalized medicine.

Moreover,  genome assemblies  have been useful  in  pathogen surveillance  for  public  health

(Taylor et al. 2019).

The production  of  sequencing  data  has grown exponentially  in  the  last  years  and genome

assembly has become a routinary task; however most of the currently available genomes have

been sequenced using high-quality short-read technologies such as Illumina. Currently, long-

read  technologies,  such  as  PacBio  and  Nanopore,  have  improved  the  quality  of  data  and

allowed a better  de novo assembly of  genomes,  haplotype phasing,  and structural  variants

identification  (Hon  et  al.  2020).  Nanopore  sequencing  technologies  offer  the  advantage  of

producing the longest read lengths (Mbp range), the more common lengths being 10 to 30 Kb,

as  these are limited by the quality  and size  of  the DNA delivered  to  the sequencing  pore

(Amarasinghe et al. 2020). Furthermore, some of the Nanopore sequencers can be portable

and generate data in real time, proving useful for field research and diagnostics (Xu and Seki

2019). In contrast, PacBio single molecule real-time (SMRT) sequencing delivers reads of 30 Kb

on average, it has a low coverage bias across different values of G+C content, and allows for

the direct detection of DNA base modifications (Nakano et al. 2017). Nanopore and PacBio CLR

long-reads have an average error rate of ~15%. Nevertheless, PacBio has developed a new

method to generate HiFi reads (high-fidelity reads with an average error rate of ~0.5%), which

allow the assembly of complete chromosomes , even for diploid or polyploid organisms. Despite

the high assembly contiguity achieved with long reads, other strategies can be used to improve

assemblies, such as: Hi-C (Zhou et al. 2019), parental information (Wenger et al. 2019), and

Strand-seq (Hills et al. 2021).

Most of the commonly used tools to assemble long-read datasets implement the overlap-layout-

consensus (OLC) algorithm. These  were developed to assemble reads with high error rates,
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such as the Nanopore and PacBio  CLR reads.  Canu (Koren et  al.  2017) uses a MinHash

overlapping strategy (Berlin et al. 2015) with a tf-idf weighting to identify overlaps. Then, a linear

graph  is  constructed  using  a  greedy  best-overlap  algorithm.  WTDBG  (Ruan  and  Li 2019)

implements  minimizers  for  efficient  identification  of  overlaps.  Flye  (Kolmogorov  et  al.  2019)

implements  an  algorithm  to  resolve  repeats  from  a  possibly  inaccurate  initial  assembly.

FALCON (Chin et al. 2016) implements a simple haplotype phasing algorithm to perform read

clustering and to generate phased assemblies. After the emergence of PacBio HiFi reads,  new

algorithms have been developed to perform error correction. These algorithms aim for perfect

reads  in  which  single  nucleotide  differences  can  be  used  to  resolve  differences  between

repetitive elements (Nurk et al. 2020, Cheng et al. 2021). HiCanu is an improvement of Canu

that implements homopolymer compression to align and correct reads having base counts on

homopolymer tracts as main source of error (Nurk et al. 2020). HiFiASM integrates haplotype

phasing to perform haplotype aware error correction  (Cheng et al. 2021). Error correction of

long reads, especially Nanopore reads, remains an important step during genome assembly

and  is  usually  a  computationally  expensive  process.  NECAT  was  developed  as  an  error

corrector  and de novo assembler  for  Nanopore  reads (Chen  et  al.  2021).  In  NECAT error

correction is based on a two-step progressive method by which low-error-rate subsequences of

reads are corrected first, and then they are used to correct high-error-rate subsequences.  

In this work we introduce a new software implementation for genome assembly from long-read

sequencing data. It   includes new algorithmic approaches to build  overlap-layout-consensus

(OLC) assembly graphs, and to identify layout paths. Benchmark experiments on PacBio HiFi

and  Nanopore  data  from  organisms  of  different  species  including  Escherichia  coli,  yeast,

Drosophila melanogaster, rice, maize, and human show that our algorithms are competitive and,

in  some  cases,  more  accurate,  compared  to  previous  solutions.  These  algorithms  are

implemented as part of the Next Generation Sequencing Experience Platform (NGSEP) (Tello

et  al.  2019), allowing a tight integration with genome comparison and detection of  genomic
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variants  within  a  single  easy-to-use  tool  for  analysis  of  both  short  and  long  read  DNA

sequencing data.

RESULTS

K-mer count based hashing for efficient and accurate construction of assembly

graphs

We implemented a new hashing scheme for minimizers to efficiently identify overlaps and build

OLC graphs. Figure 1 shows the implemented algorithm to build an overlap graph and a layout.

The graph construction is similar to that of the Best Overlap Graph (Miller et al. 2008), having

two vertices for each read representing the start (5’-end) and the end (3’-end) of the read. In this

representation, the graph does not need to be a multigraph. Let  Xs and Xe be the two vertices

generated from each read X. If the end of read A has an overlap with the start of read B, this

overlap is represented with the edge {Ae,Bs}. Conversely, if the end of read A has an overlap

with the start of the reverse complement of B, this overlap will  be represented by the edge

{Ae,Be}. In our representation, the graph is completely undirected to take into account that reads

are sequenced from the two strands of the initial template with equal probability and hence,

there is no a-priori information on which one should be considered the positive strand. 

Similarly  to the graph construction implemented in  WTDBG (Ruan  and Li 2019),  we built  a

minimizers table from the reads, to identify overlaps in linear time relative to the total number of

sequenced  base  pairs.  However,  we  implemented  a  different  procedure  to  calculate  hash

codes, that changes the priority to select k-mers as minimizers. Before calculating minimizers,

we  first  build  a  15-mer  spectrum table,  calculating  the count  distribution  across  the reads.

Analyzing this distribution, the algorithm infers the mode that corresponds to the average read

depth,  and  estimates  the  assembly  size.  To  achieve  an  efficient  calculation  of  the  k-mer

distribution, the spectrum table is built with a fixed k-mer length of 15 (instead of the input k-mer
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length used later), because that is the maximum length to create the table as a fixed array of

length 230  in which the index of the array corresponds to a unique encoding of each possible

DNA k-mer. The data type of this array is a two-byte integer to store a count per k-mer up to 215,

which is enough for real whole genome sequencing datasets. This implementation ensures a

fixed memory usage of 231 bytes (about 2 gigabytes), regardless of the input size and genome

complexity.  The  15-mer  spectrum allows  not  only  to  approximate  the assembly  length  and

average read depth, but also to calculate the hash value of read k-mers.

Figure 1. Overview of the graph construction algorithm implemented in NGSEP for de-novo assembly of

long reads. A. Fixed array to calculate counts of 15-mers. B. The distribution of k-mer frequencies is used

to rank edges based on their distance from the peak corresponding to single copy regions. C. A hash

value is calculated from the rank to select minimizers and identify overlaps. Dynamic programming is

used to cluster k-mer hits.

6

128

129

130

131

132

133

134

135

136

137

138

139

140

141

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2022. ; https://doi.org/10.1101/2022.08.30.505891doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.30.505891
http://creativecommons.org/licenses/by/4.0/


To identify overlaps, k-mers of a user-defined length (up to 31) are calculated for each read.

Each k-mer is uniquely encoded as a 62-bit number b and the count x of the 15-mer suffix on

the 15-mer spectrum is calculated. A rank r(x) is calculated from the count, as two times the

distance from the mode corresponding to the haploid number. The hash value h(b) is calculated

as the number of k-mers with rankings smaller than r(x) plus the module of the division between

b and the smallest prime number larger than x. This last term is a simple scheme to simulate

randomness for k-mers within the same rank. This hashing scheme allows the prioritization of

real k-mers that are likely to come from single-copy regions of the haploid genome during the

calculation of minimizers. At the same time, k-mers from repetitive regions have larger hash

codes, which reduces their priority to become minimizers but does not discard them completely.

We  implemented  a  simulated  alignment  of  each  candidate  overlap  to  calculate  different

measures  associated  with  each  edge  in  the  overlap  graph,  avoiding  a  complete  pairwise

alignment  between  candidate  pairs  at  this  stage  of  the  process.  First,  matching  k-mers

(minimizers) between a subject (longer) read and a query (shorter) read are clustered based on

consistency of the prediction of overlap start that can be inferred from the relative location of the

k-mer in the subject sequence. Assuming that indel errors are randomly distributed across the

two sequences and that insertion and deletion errors have a similar probability of occurrence,

the inferred starting point for k-mers corresponding to a real overlap should be consistent (have

a  low  variance).  Conversely,  inferred  starting  points  for  matching  k-mers  supporting  false

positive  overlaps  due  to  repetitive  structures  (up to  a  certain  length)  should  have  a  larger

variance. We implemented a clustering procedure similar to k-means to group k-mer hits that

are likely to support the same alignment, using the inferred starting points as centroids. The

average number of k-mer hits for each k-mer is used to infer the number of different clusters

that can be expected. Up to two clusters with the largest k-mer count are retained as long as

they support two of the four possible alignment configurations (start-start, start-end, end-start,

and end-end). Because an overlap length can also be inferred from each matching k-mer, the
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overlap for a cluster of matching k-mers is inferred as the average of the inferences performed

from each matching k-mer.

Layout construction as an edge selection problem

The statistics collected during the simulated alignment step are used during the layout stage to

select edges that will  be part of the assembly paths. For each edge, derived from a k-mers

cluster, relevant statistics include the predicted overlap, the number of shared k-mers building

the overlap, the number of base pairs from the subject sequence covered by the shared k-mers

(CSK), and the first and the last position of both the subject and the query sequence having k-

mers supporting the possible overlap. The layout algorithm ranks and selects edges based on

the knowledge that can be inferred from the distribution of the different statistics. Although in a

real experiment true layout edges are unknown, we first identify edges that are reciprocal best

for their corresponding vertices, both in terms of overlap length and CSK, and that connect

vertices with total degree less than three standard deviations from the average. These edges

are termed “safe”  and it  is  assumed that  they will  be part  of  the layout.  Because they are

reciprocal best, these edges will generate an initial series of paths within the graph. Moreover, it

is assumed that the distribution of overlap length and CSK calculated from these edges would

be a good representation of the distributions calculated from all true layout edges. The cost of

each remaining edge is calculated as a likelihood of the edge features given the distributions

inferred from the safe edges. Whereas a normal distribution is fitted for the overlap and the

CSK, a beta distribution is fitted for the proportion of overlap calculated from the first and the

last overlap position supported by k-mers. Likelihoods are calculated as p-values of the edge

features. Log-likelihoods of the features are added to calculate the total edge likelihood and sort

edges based on this feature. Edges are then traversed in descending order to augment the

paths initially derived from safe edges. An edge is selected if it does not include an internal path

vertex and if it does not create a cycle. Figure 2 shows a schematic diagram of this procedure.
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Figure 2. Layout algorithm. A. Safe edges (blue) are selected as reciprocal best in both overlap and

coverage of  shared Kmers (CSK).  The red edge represents a false positive.  Bold  solid black edges

connect vertices of the same read. Bold dashed edges are true layout edges that are not reciprocal best.

Other dashed lines represent true non-layout edges. B. Distributions of overlap, CSK and proportion of

evidence  for  safe  edges  of  the  rice  20  Kbp  PacBio  HiFi  data  (details  in  the  next  section).  C.  Log

likelihoods are calculated for each edge based on the distributions; layout edges not selected in the first

step are selected based on their ranking.

Once paths are constructed, an initial consensus is built concatenating layout vertices. On each

step, the next read is aligned to the consensus end to recalculate the true overlap and the

consensus is augmented with the substring corresponding to the overhang of the alignment. At

the same time, embedded reads are recovered and mapped to the consensus. Once all reads

are mapped, the following polishing algorithm is executed to improve the per base quality of the

assembly: first,  pileups are calculated for each position to identify the base with the largest
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count  and update the consensus if  needed.  Then,  similar  to the process to call  variants,  a

second step calculates “active regions” across the alignment, which are defined as contiguous

regions in which each base pair is at most 5 bp away from an indel call. Once active regions are

calculated, a de-Bruijn graph is built from the read segments spanning the active region and a

mini-assembly is executed to calculate the corrected segment.

Benchmark with PacBio HiFi data

To test the performance of NGSEP with PacBio HiFi data, we assembled genomes from publicly

available HiFi reads of the indica rice variety Minghui 63 (15 Kbp and 20 Kbp reads), the B73

maize inbred line, and the human cell line CHM 13 using NGSEP and three commonly used

tools (Canu, Flye, and HiFiASM). Figure 3 shows the results of these benchmark experiments.

The contiguity of each assembly, measured as the Nx curve, is contrasted with the number of

misassemblies against a curated reference genome, as measured by Quast (Gurevich et al.

2013). The complete statistics are available in the Supplementary Table T1.

Regarding the rice data, the assemblies generated by HiFiASM and NGSEP have the highest

N50 values for the 15 Kbp and 20 Kbp datasets respectively. In both cases, at least 95% of the

genome (395 Mbp) was assembled in less than 20 contigs. Canu ranks third, close to NGSEP

for  the  15 Kbp dataset  and close  to HiFiAsm for  the  20 Kbp data.  Flye  shows  the lowest

contiguity in all datasets (Figure 3A). Conversely, for the maize and the CHM13 datasets,  the

assemblies  generated  by  NGSEP  have  lower  contiguity  compared  to  those  generated  by

HiFiAsm and Canu, but still have better contiguity compared to the assemblies generated using

Flye. For the maize dataset all the tools assembled the genome in more than 500 contigs with

minimum length of 50 Kbp. Using this dataset, the N50 value ranged from 4.4 Mbp (Flye) to 37

Mbp (HiFiASM). This is probably caused by a lower average read depth and higher complexity,

as compared to the rice datasets. The same behavior  was observed in the human cell  line
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where the assembled genomes were highly fragmented and the N50 value ranged from 29 Mbp

(Flye) to 86 Mbp (HiFiASM).

Figure 3. Assembly results for haploid or inbred samples. A. Nx curve B. Misassemblies(m1 error) and

local misassemblies (m2 error) reported vs reference genomes. Rice15k corresponds to Oryza sativa 15k

HiFi  reads, rice20k to O. sativa 20k HiFi reads, maize corresponds to  Zea mays B73 HiFi reads, and

chm13 corresponds to the human cell line chm13. C. Execution time (in minutes) for each experiment. 

Figure  3B  shows  the  number  of  misassembly  errors  identified  by  Quast,  using  a  curated

reference genome for comparison. Errors are classified as long-range misassemblies (m1) and

local misassemblies (m2). With the exception of the maize assemblies produced by NGSEP and

HiFiAsm, most assemblies reported more m1 errors than m2 errors. Flye assemblies reported

the lowest numbers of misassemblies for the plant samples, whereas the HiFiAsm assembly

reported the lowest number for CHM13. Conversely, HifiASM assemblies reported the highest
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total number of misassemblies for plant samples. The number of errors in assemblies generated

with  NGSEP  on  the  rice  samples  was  about  1.6  times  higher  than  the  number  of  errors

generated by Flye,  but  it  was up to 5 times lower than the number of  errors generated by

HiFiAsm.  Additionally,  in  the  maize  sample,  NGSEP  generated  fewer  misassemblies  than

HiFiAsm.

Regarding computational  efficiency,  Figure 3C shows a comparison of the runtimes (having

available 32 threads) required by each tool to assemble each of the datasets. HiFiAsm and

Canu are consistently the fastest and the slowest tools respectively. NGSEP requires a lower

runtime than Flye in all  datasets except for the rice 15 Kbp dataset, where Flye finishes 24

minutes faster than NGSEP. In absolute numbers, NGSEP is able to assemble the rice datasets

in less than 4 hours, the maize dataset in less than 8 hours, and the CHM13 dataset in less than

18 hours.

Combining  the  evaluation  of  accuracy  and  efficiency,  NGSEP  has  better  computational

efficiency than Flye and Canu and the assemblies have better contiguity than those of Flye, and

fewer  misassemblies  than  most  of  those  assembled  using  Canu.  Compared  to  HiFiAsm

assemblies,  NGSEP  assemblies  of  plant  samples  have  lower  error  rates  and  the  20  Kbp

NGSEP assembly showed the best contiguity for rice.

Assembly and haplotyping of diploid samples

We integrated our previous implementation of the ReFHap and the DGS algorithms to perform

single individual haplotyping of diploid heterozygous samples (Duitama et al. 2012). Unlike the

previous  implementation,  which  received  a  non-standard  file  with  base  calls  for  each

heterozygous site, the two algorithms can now be executed from the VCF file with individual

genotype calls and a BAM file with long reads aligned to the reference genome and sorted by

reference  coordinates.  Moreover,  we  integrated  the  ReFHap  algorithm within  the  assembly

12

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2022. ; https://doi.org/10.1101/2022.08.30.505891doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.30.505891
http://creativecommons.org/licenses/by/4.0/


process of diploid samples to obtain phased genome assemblies from HiFi reads. ReFHap is

executed independently on reads aligned to an initial assembly, which is generated using the

methods described above for haploid samples. The goal of this phase is to identify and break

edges in  the assembly graph connecting  reads sequenced from different  haplotypes.  Large

deletions and regions of homozygosity larger than the read length usually break each contig into

haplotype  blocks  (Cheng  et  al.  2021).  Read  depth  within  each  block  and  between  block

boundaries is calculated to break the contig in contiguous regions classified as true phased

regions, large heterozygous deletions, or regions with high homozygosity.  Edges connecting

reads within true phased regions and assigned to different haplotype clusters are removed from

the assembly graph.

To  validate  the  accuracy  of  the  complete  process  to  assemble  phased  genomes,  we  first

simulated two single chromosome diploid genomes. The first was constructed from two publicly

available MHC alleles. The second was constructed from the copies of the rice chromosome 9

corresponding  to  the  Nipponbare  and  the  MH63 assemblies.  A  high  heterozygosity  rate  is

expected  in  both  cases.  We  assembled  simulated  reads  from  both  individuals  using  both

NGSEP and HiFiAsm. For the MHC haplotypes, NGSEP was able to reconstruct the reference

allele in two contigs of lengths 4.4 Mbp and 0.3 Mbp, and the alternative allele in three contigs

of lengths 3.5 Mbp, 0.5 Mbp and 0.2 Mbp (Supplementary figure S1). No switch errors (changes

between real alleles within a contig) were detected in this assembly. Conversely, three contigs

assembled  by  HiFiAsm,  with  lengths  of  4.4  Mbp,  0.8  Mbp  and  1.6  Mbp,  mapped  to  the

alternative MHC allele and one contig of 2.8 Mbp mapped to the reference MHC allele. Hence,

the alternative allele was overrepresented, having the two smaller contigs embedded within the

largest contig. The largest contig was also larger than the original allele because the left 100

Kbp could not be mapped and the right 200 Kbp was duplicated. Conversely,  the reference

allele was sub represented. Figure 4 shows the reconstruction of the rice alleles by NGSEP and

HiFiAsm. NGSEP assembled one large contig having three switch errors and five additional
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contigs covering the regions not covered by the first contig. HiFiAsm assembled most of the

MH63 chromosome in two contigs and most of the Nipponbare chromosome also in two contigs.

Three switch errors were detected in this case. It also produced four small contigs (about 200

Kbp), two of them overlapping with longer contigs.

Figure 4. Results of a diploid assembly of a simulated diploid individual built from the chromosome 9

sequences of the rice japonica accession Nipponbare and the Indica accession Minghui63. Blue blocks

show Nipponbare haplotypes, whereas red blocks indicate Minghui63 haplotypes. Changes in color in the

same row represent switch errors.
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To  further  assess  the  performance  of  NGSEP  assembling  diploid  samples,  we  executed

assemblies  from  publicly  available  HiFi  reads  of  the  human  individual  HG002.  NGSEP

generated an assembly with a total length of 5,593.63 Mbp distributed into 12,318 contigs. The

NGA50 was 1.68 Mbp. In contrast, HiFiAsm produced an assembly of 5,979.17 Gbp distributed

into 851 contigs and a NGA50 of 91.07 Mbp. Despite the large difference in contiguity, we also

collected  some of  the metrics  proposed  by Cheng  et  al.  2021,  related to the ability  of  the

assembly to reconstruct the two alleles of each gene present in the diploid sample (Table 1).

For the case of HiFiAsm, we calculated the metrics for both the primary assembly and the

phased  assembly.  From  the  35,547  single-copy  genes  in  the  reference  genome,  NGSEP

recovered 81% of them, and HiFiASM recovered 89% in the phased assembly and 98% in the

primary assembly. However, the NGSEP assembly included the two alleles for 13,183 genes

(37.08%) whereas the phased assembly of HiFiAsm recovered two alleles for only 8,484 genes

(23,86%). The primary assembly of HiFiAsm, which is expected to be a haploid representation

of the genome, only has more than one copy for 156 single copy genes. NGSEP also identified

a  larger  number  of  multicopy  genes  compared  to  HiFiAsm,  although  the  total  number  of

multicopy reconstructed alleles was lower for the NGSEP assembly compared to the HiFiAsm

assembly. In terms of computational efficiency, both tools were able to reconstruct the genome

in about 50 hours using 32 threads.
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Table 1. Metrics for diploid assemblies using NGSEP and HiFiAsm over the human HG002

diploid cell line.

Metric NGSEP HiFiAsm

phased

HiFiAsm

primary

Length (Mbp) 5,593.63 5,979.17 3,109.3

NGA50 (Mbp) 1.68 91.07 69.24

Single copy genes in both the reference and the assembly 15,638 23,045 34,793

Single copy genes duplicated in the assembly 13,183 8,484 156

Single copy genes with exons mapped in different contigs 209 5 7

Single copy genes with 50%-99% of sequence mapped 674 93 67

Single copy genes with 10% - 50% of sequence mapped 477 23 3

Single copy genes with < 10% of sequence mapped 5,366 3,897 521

Duplicated genes in the reference found in the assembly 2,226 1,551 1,422

Total alleles of duplicated genes 7,499 8,187 8,266

Fraction of missing multicopy genes 0.61 0.73 0.62

Gene completeness (asmgene) (%) 81 89 98

Execution time (h) 49 52 52
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Benchmark with ONT data

To test the performance of our algorithms with Nanopore reads, we downloaded and assembled

datasets  of  Nanopore  reads  sequenced  from  samples  of  Escherichia  coli,  Saccharomyces

cerevisiae, and Drosophila melanogaster. We compared the assemblies obtained using Canu,

Flye,  and  NECAT,  as  well  as  NGSEP.  Figure  5  shows  the  statistics  of  these  assemblies

comparing these tools. Complete assembly statistics are shown in the Supplementary Table T2.

For E. coli, the most contiguous assembly was obtained with NGSEP after error correction using

NECAT. This genome was assembled in one contig by all tools except Flye, which reported two

contigs. Using this dataset, the N50 value ranged from 3.57 Mbp (Flye) to 4.62 Mbp (NGSEP).

The yeast genome was assembled in its 17 chromosomes by NECAT with an N50 of 0.94 Mbp

and by NGSEP with an N50 of 0.81 Mbp after performing error correction with NECAT. The next

best tool was Canu, reporting 33 contigs and an N50 of 0.81 Mbp. Finally, Flye assembled the

yeast  genome in 33 contigs with  N50 equal  to  0.8 Mbp.   The last  dataset  included  in  our

analyses consisted of reads from the fruit fly. This genome was assembled in 679 contigs (N50

0.91 Mbp) using NGSEP with NECAT error correction, which was the lowest number of contigs

obtained. However, Flye achieved an N50 of 1.1 Mbp, being the best result obtained for this

dataset. Canu reported 3858 contigs with an N50 of 0.43 Mbp. Unfortunately, NECAT failed to

assemble these sequences with the available computational resources, requiring more than 60

GB of RAM memory for this process.
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Figure 5. Haploid genomes assembly results using ONT reads. A. Nx curve B. Misassemblies (m1 error)

and local misassemblies (m2 error) reported for each genome vs reference genomes.

Other related features

Based on the development of  the genome assembler,  version 4 of NGSEP also includes a

module to calculate the spectrum of  k-mer counts,  either  from sequencing reads or from a

genome assembly. For a k-mer size less or equal to 15, the k-mer counts are stored in a fixed

array of 2-byte integers of size 230. This allows to create the spectrum with a fixed RAM usage

of 2 gigabytes for an arbitrary number of input reads. Based on this spectrum of k-mers, we

included a functionality  for  error  correction in  which substitution errors can be corrected by

looking at single changes producing k-mers within the distribution of k-mer counts. Moreover,

the minimizers table generated to perform efficient identification of read overlaps was also used

to create a reference alignment tool for long reads. To keep the algorithm memory tractable,

minimizers  appearing  1,000  or  more  times  within  the  reference  sequence  are  discarded.

Minimizers for each read are calculated and searched in the minimizers table corresponding to

the reference  sequence.  Minimizer  hits  are  interpreted  as  k-mer  ungapped  alignments  and
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clustered according to the read start site predicted for each read. We assessed the performance

of  the  minimizers  algorithm  implemented  in  NGSEP  for  aligning  simulated  long  reads,

comparing the results with the alignments obtained using Minimap2 (Li  H 2018). Both tools

achieved almost perfect accuracy for S. aureus and S. cerevisiae genomes. Minimap2 showed

3% higher mapping accuracy for the experiment with the human chr20 but NGSEP reported

lower root mean squared error (RMSE) values (Supplementary figure S2).

Finally,  for  circular  genomes  we  implemented  a  circularization  feature  as  an  option  of  the

genome assembler.  Given  an  input  set  of  possible  origin  sequences,  NGSEP maps  these

sequences to the assembled contigs using the long read alignment algorithm. Each presumably

circular contig is rotated and oriented based on the best alignment of an origin sequence.

DISCUSSION

In this work, we present the results of our latest developments to facilitate de-novo construction

of  genome  assemblies  using  long  reads,  which  includes  novel  algorithmic  approaches  to

perform the different steps of the Overlap-Layout-Consensus model. Experiments with a wide

variety of datasets indicate that our approach achieves competitive accuracy and efficiency,

compared to state-of-the-art tools. From the user perspective, NGSEP achieves nearly perfect

assemblies for several species and it  is able to reconstruct most gene-rich regions, even in

complex  genomes.  One  major  advantage  of  our  software  is  that,  combined  with  previous

developments, it offers an easy-to-use, open source and platform independent framework to run

a complete analysis of high throughput sequencing reads, including de-novo assembly, read

mapping,  variants  detection,  genotyping,  and  downstream  analysis  of  genomic  variation

datasets.

The algorithms designed and implemented in NGSEP contribute new alternatives to identify

solutions to the genome assembly problem. Although the graph construction with two vertices
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per  read  has been  used in  previous  works  (Miller  et  al.  2008,  Koren  et  al.  2017),  current

software tools seem to implement the classical directed string graph, which requires taking early

decisions on the orientation of each read (Cheng et al. 2021). We believe that the undirected

graph used in this work makes a better representation for DNA sequences compared to the

string graph because it takes into account that DNA is double-stranded and hence it captures

more information from the input reads. This allows devising algorithmic approaches different

from a greedy traversal of a curated string graph. Moreover, to achieve improved computational

efficiency, we avoided complete alignments between reads. Instead, we performed estimations

of  different  types of  information (overlap,  CSK and percentage of  the overlap supported by

evidence), that can be used as features to select edges building assembly paths based on a

likelihood calculation for each edge. The layout algorithm of NGSEP is inspired by the classical

Christofides algorithm for  the travel salesman problem, treating the path construction as an

edge selection process. Edge features are combined based on their likelihood, replacing edge

filtering by edge prioritization. This approach eliminates the need of hard filtering decisions and

makes the algorithm adaptable to genomic regions with different repeat structures, as well as to

the analysis of reads with variable sequencing error rates.

Taking  into  consideration  Nx  curves  and  misassemblies,  NGSEP  produces  high-quality

assemblies with higher contiguity than Flye and a lower number of errors compared to Canu

and HiFiASM. These statistics suggest that NGSEP can be used as an accurate alternative to

assemble  PacBio  HiFi  reads.  Although further  work  is  required to improve N50 in complex

assemblies (especially human diploid samples), our results indicate that the contiguity achieved

by NGSEP assemblies is enough to reconstruct most gene elements and, moreover, it seems to

perform a better allele reconstruction for diploid genomes, compared to HiFiAsm. As shown by

recent works (Garg et al. 2021, Nurk et al. 2022, Porubsky et al. 2021), contiguous haploid and

diploid assemblies of complex genomes still require the integration of data from technologies or

strategies  that  provide  scaffolding  and  phasing  information  such  as  Hi-C  or  parental
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sequencing.  However,  our  experiments  with  diploid  samples  indicate  that  new  algorithms

implemented  in  existing  or  novel  tools  could  significantly  improve  the  accuracy  of  phased

assemblies directly from long reads.

Regarding Oxford Nanopore reads with high error rates, NGSEP was able to perform accurate

assemblies  after  reads  were  corrected  running  the  specialized  algorithm  implemented  in

NECAT. This error correction step is crucial in the assembly process of current ONT reads.

However, upcoming improvements in the read quality are likely to produce ONT HiFi reads,

eliminating the need of a specialized error correction step.

We believe that the new algorithms presented in this manuscript make a significant contribution

to the development of bioinformatic algorithms and tools for genome assembly. Moreover, the

new functionalities of NGSEP facilitate the construction of genome assemblies to researchers

working on a wide range of species.

METHODS

Benchmark datasets

PacBio  and  Nanopore  publicly  available  raw  datasets  were  retrieved  from  NCBI.  Haploid

datasets  included  PacBio  HiFi/Circular  Consensus  Sequence  (CCS)  20k reads  from Oryza

sativa Indica MH63 accession (PRJNA558396) (Song et al. 2021) and 15k reads from Oryza

sativa Indica MH63 accession (SRR10188372),  PacBio CSS from  Zea mays B73 accession

(PRJNA627939) (Hon et al. 2020), and PacBio CCS from the CHM13 human haploid cell line

(PRJNA530776) (Nurk et al. 2022). The human male HG002/NA24385 was used as the diploid

dataset  (PRJNA586863).  Nanopore  reads for  Escherichia  coli  K12 were  obtained  from the

Loman Lab available at  http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/ (Loman

et al. 2015). We selected run MAP-006-1, which also corresponds to the dataset used by Canu
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in their tutorial. Nanopore reads for  Saccharomyces cerevisiae,  and  Drosophila melanogaster

were directly downloaded from http://www.tgsbioinformatics.com/necat/ (Chen et al. 2021).

Long read haploid genome assembly tools comparison

We compared the  performance  of  the  algorithm described  in  this  work  with  the algorithms

implemented in HiCanu (Nurk et al. 2020), Flye (Kolmogorov et al. 2019), and HiFiASM (Cheng

et al. 2021) for PacBio HiFi reads; and with the algorithms implemented in Canu, Flye, and

NECAT (Chen et al. 2021) for Nanopore reads. WTDBG (Ruan and Li 2019) was not included

because in some initial benchmark experiments it reported a much lower accuracy for complex

genomes,  compared  to  other  tools,  and  because  it  seems to  be replaced  by  HiFiAsm.  All

PacBio  assemblies  were run in  a Microsoft  Azure  Standard E64as_v4  (64 vcpus,  512 GiB

memory) virtual machine. The parameters used for each tool are detailed in the Supplementary

Table T3 and Supplementary Table T4.

Comparison of genome assemblies with reference genomes

To compare the assembly achieved by each tool against a reference genome, we used Quast

with default parameters (Gurevich et al. 2013). Whereas reference coverage, assembly length

and N50 were used as sensitivity measures, number and type of misassemblies were used as

specificity measures. We calculated and compared these statistics among all assemblies per

dataset. The Nx curve was also calculated for each assembly. The reference genomes used in

the comparison were Oryza sativa Indica MH63 (CP054676–CP054688) (Song et al. 2021), Zea

mays  B73  v.5  (GCA_902167145.1)  (Jiao  et  al.  2017),  human  haploid  line  CHM13  v2.0

(https://github.com/marbl/CHM13) (Nurk et al. 2022); the genomes of Drosophila melanogaster

v.6,  Escherichia coli K12,  and  Saccharomyces cerevisiae S288c were downloaded from the

NECAT web site (Chen et al. 2021).
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Diploid genomes benchmarking

Simulations: To assess the accuracy of the algorithm implemented in NGSEP for reconstruction

of diploid samples, we simulated two single chromosome individuals. First, we built a synthetic

individual joining two different MHC alleles: the reference allele extracted from GRCh38, and an

alternative reconstruction available at the NCBI nucleotide database (accession NT_167249),

generated as part  of  the MHC haplotype project  (Horton et  al.  2008).  Second,  we built  an

individual joining the rice chromosome 9 reconstructions of the reference genome (Nipponbare)

and MH63. We simulated 10,000 and 125,000 reads respectively from each simulated diploid

individual using the SingleReadsSimulator of NGSEP with average length of 20 Kbp, a standard

deviation of 5 Kbp, a substitution error rate of 0.5% and an indel error rate of 1%. 

HG002:  NGSEP v4.0.1 and  HiFiAsm v0.16.0  (Cheng et al. 2021) were employed to obtain a

diploid assembly for the Personal Genome Project Ashkenazi Jewish son HG002 (four runs with

accession numbers SRR10382244, SRR10382245, SRR10382248 and SRR10382249) . We

registered time of execution over a node with an AMD EPYC 7402 2.80 Hz, 24C/48T, 128M

Cache, a DDR4-3200 processor, 32 cores and  512Gb of RAM. We converted the output files

from  HiFiAsm  (*ctg.gfa)  to  fasta  (*.fa)  and  merged  the  haplotypes  (*hap1.p_ctg.fa  and

*hap2.p_ctg.fa)  to  calculate  the  main  metrics  and  compare  against  the  NGSEP  diploid

assembly. Metrics such as N50 and L50 were obtained using Quast v5.0.2. A validation of those

metrics was obtained using minigraph v0.19 (Li et al. 2020) and paftools v2.24-r1132-dirty (Li H

2018).

Structural  variations  are  commonly  mistaken  as  misassemblies  by  current  alignment-based

evaluations.  Hence, the reference-based asmgene method was  used to calculate both gene

completeness  and  the  number  of  missing  multi-copy  genes  as  additional  assembly-quality

indicators.   According  to  Cheng  et  al.  2021,  gene  completeness  equals  to
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∣{SCorMCinASM}∩{SCinREF}∣/∣{SCinREF}∣, where {SCinREF} corresponds to the set of

single-copy genes in the reference genome and {SCorMCinASM} refers to the union sets of

single-copy  and  multicopy  genes  in  the  assembly.  Likewise,  missing  multi-copy  genes  are

calculated as 1 - |{MCinASM} ∩ {MCinREF}| / |{MCinREF}|. For clarity purposes, a gene

is considered as a single copy (SC) if only one match is described into the reference genome (at

a 99% of identity), otherwise it is a multi-copy (MC) gene.

Accuracy assessment for long read alignment

Simulated  reads  were aligned  against  their  respective  reference  sequence  using  Minimap2

v2.17 (Li  H 2018) and the ReadsAligner command of NGSEP v4.2.1 with k-mer lengths of 15

(Default mode) and 20. Default parameters were used for all  aligners. For time performance

evaluation, we conducted all alignments using 4 cores of processing and 20 GB of memory. We

evaluated the accuracy of the aligners using percentage of aligned reads, as well as sensitivity

and false positive rate metrics. These metrics were calculated using a script  that, taking an

alignment file as input, infers the real position in the reference genome for each aligned read

from the read name and calculates the difference with the position where the read is aligned.

Total alignment rate and RMSE are calculated after the total number of aligned reads is counted

and the square error  rate  is  totalized  over  the  alignments.  This  script  is  available  with  the

NGSEP  distribution  (class  ngsep.benchmark.QualityStatisticsAlignmentSimulatedReads).

Accuracy metrics were computed for bam files filtered by alignment quality values from 0 to 80.
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