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Summary  15 

Dense local, recurrent connections are a major feature of cortical circuits, yet how they affect 16 
neurons’ responses is unclear, with some studies reporting weak recurrent effects, some 17 
amplification, and others showing instead local suppression. Here, we show that optogenetic 18 
input to mouse V1 excitatory neurons generates salt-and-pepper patterns of both excitation and 19 
suppression. Responses in individual neurons are not strongly predicted by that neuron’s direct 20 
input. A balanced-state network model reconciles a set of diverse observations: the observed 21 
dynamics, suppressed responses, decoupling of input and output, and long tail of excited 22 
responses. The model shows recurrent excitatory-excitatory connections are strong and also 23 
variable across neurons. Together, these results demonstrate that excitatory recurrent 24 
connections can have major effects on cortical computations, by shaping and changing neurons’ 25 
responses to input.  26 
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Introduction 
The cerebral cortex of mammals is specialized into areas that perform different functions1. 27 
Animals from rodents to primates have several different visual cortical areas, each containing 28 
neurons with different types of selectivity2–4. In principle, these different representations in 29 
different visual areas could be created purely by feedforward mechanisms, where 30 
transformations happen via projections from one area or layer to the next, without outputs of a 31 
neuron feeding back (directly or indirectly) to influence that neuron’s activity. In fact, in a variety 32 
of artificial neural networks, much or all computation is provided by feedforward mechanisms5.  33 

Yet in the brains of animals and humans, cortical recurrent connectivity is extensive. Most 34 
excitatory connections that a cortical neuron receives originate within a few hundred microns of 35 
their cell bodies6–8. Such recurrent connections can in principle have large effects on neural 36 
computation9, dramatically changing how cortical neurons respond to input.  37 

How recurrent connections affect cortical computation is not fully understood, but important 38 
aspects of the structure of cortical recurrent connectivity have been determined. Some features 39 
of cortical network activity, such as irregular firing, are well-described by balanced-state models 40 
which assume strong recurrent coupling between excitatory and inhibitory neurons (either 41 
moderately strong, yielding ‘loose balance’, or very strong, yielding ‘tight balance’10). Work using 42 
inhibitory perturbations has shown that not just excitatory-inhibitory connectivity is strong, but 43 
the average excitatory-excitatory connectivity is strong as well. More precisely, cortical recurrent 44 
excitatory coupling is strong enough that the excitatory network is unstable and self-amplifying, 45 
a phenomenon described by inhibition-stabilized network models (ISNs)11–14. 46 

While some consensus has developed on these average cortical connectivity properties (but 47 
see15), the effect recurrent connections have on transforming sensory or input signals has been 48 
less clear. For example, some recent studies have shown that certain patterns of excitatory 49 
input can be amplified by the cortical network16,17, consistent with some theoretical 50 
predictions18,19. On the other hand, however, some studies have shown that nearby neurons can 51 
be substantially suppressed by stimulation that excites a single or a small ensemble of 52 
excitatory cortical neurons20,21. How excitatory and inhibitory neurons might interact through 53 
recurrent connections to create such suppression has not been determined.  54 

Here, to understand how cortical neurons’ responses are shaped by the cortical recurrent 55 
network, we stimulate excitatory cells in the visual cortex optogenetically and record responses 56 
of local neurons with electrophysiology and two-photon imaging. First, we find that stimulation of 57 
excitatory cells leads to a salt-and-pepper pattern of local suppression, consistent with the 58 
pattern of excited and suppressed cells produced when animals see a strong visual stimulus. To 59 
understand how this suppression effect might arise from cortical recurrent circuitry, we examine 60 
both the patterns of firing rate changes and the dynamics of responses. Recent theoretical work 61 
has shown that cortical visual responses can be “reshuffled” by additional excitatory input22 — 62 
that is, strong average recurrent coupling allows individual neurons’ firing to change significantly 63 
in response to input while the distribution of population activity is little-changed23,24. We 64 
implement this scenario in a conductance-based simulation and find that it can explain the 65 
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suppression we observe. In addition, our data is consistent with substantial variability in local 66 
recurrent connectivity, with some neurons receiving large net recurrent excitation and others 67 
smaller or net suppressive recurrent input. Our results go beyond prior work that found strong 68 
average recurrent connectivity, showing that variance in excitatory-excitatory connectivity must 69 
also be substantial, and further show that this variance in recurrent connectivity can decouple 70 
neurons’ firing rate responses from the direct input they receive. 71 

The suppression we observe during excitatory cell stimulation occurs in individual cells, but the 72 
mean response is elevated. This increase in mean, however, seems at odds with the prior 73 
finding that single-cell stimulation leads to inhibition on average20. To resolve this, we simulate 74 
the effect of single cell stimulation and find that the difference in the two results can be 75 
explained by the activation state of the cortical network. Increasing activity in the network with 76 
visual stimulation results in a slight decrease in mean responses to stimulation, showing the 77 
prior results and our current results can be described in the same model framework.  78 

Thus, a balanced-state cortical model, with strong average coupling and variability in recurrent 79 
connectivity, explains many features of our data, including dynamics and neural response 80 
distributions. These results show how cortical neural suppression can be generated from 81 
excitatory input: variability in recurrent input means that firing rate responses are decoupled 82 
from (are only weakly affected by) the level of excitatory input we provide to that cell. This arises 83 
because much of the input a cell receives comes from recurrent sources. Because recurrent 84 
input varies from cell to cell, the result is many excited cells, but also a substantial number of 85 
suppressed neurons.  86 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2022.08.31.505844doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.505844
http://creativecommons.org/licenses/by-nc/4.0/


 4 

Results 87 

Strong visual input leads to salt-and-pepper distributed suppression in primary 88 
visual cortex 89 

We first measured local patterns of suppression in visual cortex in response to visual stimuli. 90 
We presented small high-contrast visual stimuli to headfixed mice while measuring activity in V1 91 
layer 2/3 neurons via two-photon imaging (Fig. 1A). We expressed GCaMP7s in all neurons via 92 
viral injection (AAV-hSyn-GCaMP). Animals were kept awake and in an alert state25 with 93 
occasional drops of water reward.  94 

 95 

Figure 1: V1 neurons show salt-and-pepper suppression to strong visual stimuli. (A) Experimental setup. 96 
Awake mice viewed a small (15 degree diameter) visual stimulus with rapidly changing frames of oriented noise 97 
(Methods). (B) Example 2-photon imaging data from layer 2/3 of V1 in response to the stimulus, during the transient 98 
and (C) steady-state periods. Time intervals used for averaging in (B-D) displayed in green and purple in (G). 99 
Intermixed (salt-and-pepper) elevated and suppressed responses emerge during the steady-state period. (D) 100 
Deconvolved responses from (C), projected onto segmented cell masks (Methods). (E) Example dF/F trace for one 101 
elevated and one suppressed cell. Shaded regions: SEM across trials. Shaded red: optogenetic stimulation duration. 102 
(F) Deconvolution of the traces in (E) reveals an initial transient period and then a steady-state response. (G) 103 
Average response for all elevated and suppressed cells in (B-D, N = 1, pos. neurons = 42, neg. neurons = 28). (H) 104 
Spatial distribution of elevated (red) and suppressed (blue) cells collapsed across animals (N = 3; 339 neurons), 105 
showing random distribution of neurons across the cortex (statistical analysis; Fig. S1F-H). (I) Visual response 106 
amplitudes are similar across animals. Thin lines: CDFs for individual animals, thick line: population CDF. Inset: 107 
medians are near zero, m1-m3: individual animals, error bars: ± SEM. (J) Proportion of cells suppressed in each 108 
mouse. Error bars: Wilson score 95% confidence intervals. Black line: group mean (44% ± 7%). See also  Fig. S1. 109 
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We imaged responses to two types of high-contrast visual stimuli, a fast-changing stimulus 110 
designed to minimize adaptation (“oriented noise”, Fig. 1A)26–28 and a drifting grating (Fig. S1D). 111 
We found a salt-and-pepper mix of suppressed and excited cells (Fig. 1B,C), with suppression 112 
stronger after the initial stimulus response (Fig. 1C). In other words, in response to both types of 113 
visual stimuli, we found some cells that responded with strongly elevated steady-state 114 
responses, and other cells that showed suppressed responses (Fig. 1C–F, Fig. S1A-E).  115 

Deconvolving fluorescence responses to yield a proxy measure of spike rate confirmed this salt-116 
and-pepper pattern, with substantial numbers of suppressed and excited neurons intermingled 117 
(Fig. 1D). The deconvolution revealed an initial transient response in excited cells (Fig 1F,G), 118 
followed by either an elevated or suppressed steady state. 119 

We confirmed that the spatial distribution of elevated and suppressed neurons was randomly 120 
scattered across the cortex (Fig. 1H). We found our data was consistent with random scatter 121 
(data vs 2d Poisson process model for spatial randomness, p > 0.05, Bonferroni correction, Fig. 122 
S1F-H). 123 

The viral expression strategy we used for these experiments results in both excitatory and 124 
inhibitory neurons that express GCaMP. However, the large fraction of suppressed neurons 125 
(Fig. 1D,H-J; proportion suppressed 44% ± 7%, N=3 animals, mean ± standard error) implies 126 
that it is not that a group of inhibitory neurons was suppressed by stimulation, but that many 127 
excitatory neurons were suppressed. Below, we confirm with electrophysiology and imaging that 128 
optogenetic excitatory input produces suppression in many excitatory cells. 129 

Optogenetic excitatory drive also results in sparse and distributed suppression  130 

To examine the influence of recurrent excitatory-inhibitory circuits on local response properties, 131 
we next measured V1 responses while optogenetically stimulating excitatory cortical cells (Fig. 132 
2A). Direct stimulation allows us to exclude some feedforward mechanisms for 133 
suppression — for example, to argue against the possibility that cortical suppression is 134 
generated principally by suppression of thalamic inputs29.  135 

We injected a Cre-dependent excitatory opsin (soma-targeted ChrimsonR, or stChrimsonR) in 136 
layer 2/3 of a mouse expressing Cre in excitatory neurons only (Emx1-Cre30), and expressed 137 
GCaMP7s in all neurons with a second virus (AAV-hSyn-GCaMP7s) (Fig. 2B,E).  138 

With optogenetic stimulation we also found a clear salt-and-pepper distribution of elevated and 139 
suppressed responses (Fig. 2C,F,H; short stimulation pulses Fig. 2B-D, long pulses with 140 
imaging of steady-state during stimulation, Fig. 2E-G). Neural responses to stimulation increase 141 
as power increases (Fig. 2D; asymptote may be due to opsin saturation.) As in the case of 142 
visual responses, we confirmed that the spatial patterns of responses were compatible with 143 
random scattering (all p’s > 0.05, Fig. S1F-H). The proportion of suppressed neurons with 144 
optogenetic stimulation (Fig. 2I,J; 38% ± 8%, mean ± SEM) was comparable to that seen with 145 
visual stimulation (Fig. 1IJ). These optogenetic data suggest that the network is being driven to 146 
a new steady state or fixed point by input. While there was a slight decay in the excited 147 
population’s response at high power (perhaps due to network effects, spike rate adaptation, or 148 
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opsin desensitization), at moderate stimulation power (1 mW, Fig. 2G), deconvolved firing rates 149 
are largely constant while stimulation is on.  150 

 151 

Figure 2: Salt-and-pepper elevation and suppression to optogenetic excitation. (A) Experimental setup, using 152 
two-photon imaging (GCaMP7s, all cells, 920nm) and optogenetic excitation of excitatory neurons (stChrimsonR, 153 
595nm). (B) Example field of view. (C) Deconvolved steady-state response (scaled to match dF/F %) to optogenetic 154 
stimulation (200 ms duration) from (B). Red: elevation of firing rate relative to baseline, blue: suppression. (D) 155 
Increasing power leads to stronger elevation and suppression (steady-state response) in their respective populations. 156 
Shaded region: SEM across cells. (E) Field of view from an example animal stimulated with long (4 sec) optogenetic 157 
pulses; stimulation during imaging flyback (Methods). Gray: areas omitted from analysis to exclude stimulation 158 
artifact. (F) Deconvolved response to stimulation, conventions same as (C). (G) Population timecourses for cells in 159 
(F). Red region: optogenetic stimulation period. Steady-state response averaging period: 200- 3750 ms. Light lines: 160 
individual cell traces, heavy lines: population averages. Shaded region (largely obscured by thick lines): SEM across 161 
cells. (H) Spatial distribution of elevated (red) and suppressed (blue) cells collapsed across all animals (N = 3), same 162 
conventions as Fig 1H. Statistical analysis: Fig. S1F-H. (I) Optogenetic response amplitudes are similar across 163 
animals. Conventions as in Fig. 1I. (J) Proportion of cells suppressed by optogenetic stimulation in each mouse. Error 164 
bars: Wilson score 95% confidence intervals. Black line: group mean (38% ± 8%).  165 

 166 
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We confirmed the opsin we used was expressed only in excitatory cells using fluorescence in-167 
situ hybridization. We labeled excitatory, inhibitory, and stChrimsonR-expressing neurons 168 
(RNAScope, ACD Inc; Fig. S2A,B). Excitatory neurons expressed the opsin (Fig. 2I), but as 169 
expected for AAV expression31, not all excitatory neurons were opsin-positive (59%, N = 170 
115/195, Wilson score 95% CI: [52.0%,65.7%], Fig. S2A). None of the inhibitory neurons (24% 171 
of neurons in the sample, N = 62/257) showed expression of the opsin (Fig. S2B).  172 

The two-photon imaging experiments showed a salt-and-pepper pattern of excitation and 173 
suppression within the imaging fields of view. To examine whether this salt-and-pepper pattern 174 
exists at larger distances from the stimulation site, we used electrophysiology. We recorded 175 
neural responses to stChrimsonR stimulation using a silicon electrode array (Fig. 3A,E) and the 176 
same viral strategy for opsin expression as we used with imaging.  177 

We found both elevation and suppression across all distances (Fig. 3B–D) and depths (Fig. 3F–178 
H) from the stimulation site, suggesting a similar salt-and-pepper organization of elevated and 179 
suppressed cells extends over distance. Across the population of recorded neurons, 56.6% (77 180 
of 136) showed an elevated steady-state response to the optogenetic stimulation, and 36.0% 181 
(49 of 136) showed a suppressed steady-state response, comparable to our two-photon 182 
measurements (Fig. 2). Both elevated and suppressed cells on average showed an initial 183 
(positive) transient followed by a (positive or negative) steady-state response (Fig. 3I,J).  184 

The electrophysiological recordings show similar dynamics as the deconvolved imaging 185 
timecourses (Fig. 2H), except for one feature: the recordings show an initial brief positive 186 
transient in the suppressed cells (Fig. 3B–D, F–H, blue lines; Fig. 3J) not just in the elevated 187 
cells as in the imaging data. This transient is likely concealed in the imaging data due to the 188 
slower timescale of imaging. The imaging frame rate (30 Hz; 33 ms frames) is slower than the 189 
transient, so within one frame the positive transient would be averaged with suppression, 190 
yielding a result near zero. In the case of elevated cells, the positive transient is averaged with 191 
an elevated steady state, and so the response in that frame remains positive. 192 

Global spatial patterns arise from trends in local salt-and-pepper suppression 193 

The neurophysiology data showed some evidence of a larger-scale organization on top of the 194 
local salt-and-pepper distribution of elevation and suppression. Over distances of more than a 195 
millimeter from the stimulation site, we found that the number of elevated units gradually 196 
decreased (Fig. 3K,L; Pearson’s chi-squared test, c2 = 51.31, df = 3, p < 0.001) and the number 197 
of suppressed units gradually increased (Fig. 3M,N; c2 = 44.83, df = 3, p < 0.001; see Fig. S2E-198 
H for unit counts as a proportion of total units). There was also a similar trend in neurons’ firing 199 
rates (Fig. S2I,J). Elevated single units showed less elevated firing rate with distance from the 200 
stimulation site, and suppressed single units showed more suppression with distance from the 201 
stimulation site, though the linear trend between distance and population response was stronger 202 
in unit counts than in average population firing rates (Pearson’s r = -0.11, df = 29, p = 0.56, 203 
Pearson’s r = 0.32, df = 46, p < 0.05; Fig. S2I,J). Notably, however, the number of elevated 204 
neurons did not go to zero even at 1.2 mm from the stimulation site: only the relative numbers of 205 
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 8 

elevated and suppressed neurons changed. This suggests that the salt-and-pepper organization 206 
we saw with imaging persists across the cortex. 207 

 208 

 209 

Figure 3: Stimulation of V1 excitatory neurons yields salt-and-pepper organization across the cortex. (A) 210 
Neural responses recorded across the cortex. Recordings in vivo from awake mice. (B, C, D) Example neurons at 211 
three distances from stimulation light (0 µm, 400 µm, 1200 µm), showing elevated and suppressed cells at all 212 
distances. (E) Neural responses recorded through cortical depth. (F, G, H) Example neurons recorded at three 213 
depths (250 µm, 550 µm, and 800 µm), showing elevated and suppressed cells at different depths. (I) Population 214 
average timecourses of elevated cells. Blue bar: interval for steady-state rate calculation. Shaded regions: SEM 215 
across cells. (J) Population time courses of suppressed cells, same conventions as (I). (K) Counts of elevated units 216 
(single and multi-units) by distance and depth, smoothed with a Gaussian kernel for display. (L) Distribution of 217 
elevated steady-state responses across horizontal distance, summed across depth. Shaded region: Wilson score 218 
95% CIs. Note lower limit of y-axis not zero. (M-N) Same as (K-L), but for units with suppressed steady-state 219 
responses. See also Fig. S2. 220 

 221 

The trends over distance we saw with physiology, however, give only a partial view into how 222 
population responses varied with distance from the stimulation site. To measure the extent of 223 
suppression across the cortex, we turned to widefield, mesoscale calcium imaging. For these 224 
experiments, we expressed GCaMP in all excitatory cells using a genetic mouse line (to 225 
maximize consistency of GCaMP expression across cortical distance; Fig. 4A; Ai148::Cux2-226 
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CreERT2, or Ai162::Cux2-CreERT2, see Methods). We restricted expression of stChrimsonR to 227 
excitatory cells using the CamKIIa promoter (AAV-CamKIIa-stChrimsonR) and stimulated while 228 
simultaneously imaging responses. 229 

We saw clear spatial patterns in widefield imaging, broadly consistent with the spatial trends we 230 
saw in the electrophysiology data. During the initial frame of stimulation (~7 Hz imaging, 140 ms 231 
frame period), we saw an increase in activity both at the center of the stimulation light and 232 
extending some distance outside the center of expression (Fig. 4B,E,H).  233 

 234 

Figure 4: Widefield imaging of excitatory neurons shows average center-surround organization during 235 
steady-state periods. (A) Experimental setup: stChrimsonR in excitatory neurons via viral transfection (AAV-236 
CamKIIa-stChrimsonR), expression of GCaMP via mouse line (either Ai148::Cux2-creERT2, GCaMP6f, or 237 
Ai162::Cux2-creERT2, GCaMP6s; induced with tamoxifen as adult; Methods). Right: imaging field of view for one 238 
animal. (B-C) Mean deconvolved response (see Fig. S3) during first frame (B) and during the late stimulation period 239 
(C) in an example animal (Fiber for light delivery slightly obstructs the imaging field, see Fig. S4D-F). (D) Average 240 
response to stimulation over time (N = 3). Red shaded region: stimulation period, orange bar: first frame, maroon bar: 241 
late stimulation (steady-state) time period. (E,F) Average responses, N = 3 animals. Responses for each animal were 242 
aligned spatially to the peak during the late stimulation period (Methods), smoothed for visualization. (G) Response 243 
as a function of distance, averaged from data in E, F. Smoothing: LOWESS. Shaded regions: bootstrapped 95% CIs. 244 
Vertical lines: zero crossings and inflection points. Zero crossings defined by shortest distance at which 95% CI 245 
included zero. Black lines: late stimulation period. Solid black: first zero crossing, dotted black: local minimum. Red 246 
dashed line: early response, first zero crossing. (H, I) Same as (E,F) but with superimposed circles whose radii 247 
correspond to lines in (G). See also Figs. S3-4. 248 
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A center-surround pattern emerged later in the stimulation pulse (Fig. 4C,F,I) consistent with the 249 
large-scale patterns in the electrophysiological recordings. The area with maximum 250 
stChrimsonR expression continued to show an elevated response, while a donut-shaped region 251 
around it was suppressed (see Fig. S4G-I for spatiotemporal response). The activated area in 252 
the center reflected the area of expression, measured with fluorescence imaging of the cortical 253 
surface (Fig. S4A-F). To examine these timecourses (Fig. 4D), we deconvolved imaging 254 
responses to yield approximations to spike rate changes. We compared several different 255 
deconvolution methods and found suppression in all cases (Fig. S3). The suppression was 256 
strongest about 500 µm from the center of our laser stimulus, and extended over 1 mm from the 257 
stimulation center (Fig. 4 G–I). In electrophysiology, the number of suppressed cells increases 258 
by a factor of two over approximately this distance (Fig. 3K-N), and therefore the increased 259 
number of suppressed individual neurons may be the substrate for the suppression in this 260 
imaging data. 261 

In summary, the physiology and imaging data together support the idea that suppressed and 262 
elevated neurons are locally organized in a salt-and-pepper pattern, and that the proportion of 263 
suppressed to elevated neurons increases with distance from the stimulation site. This change 264 
in the proportion of suppressed cells results in a center-surround pattern that can be seen with 265 
population-level imaging, with net suppression in excitatory cells emerging, after an initial 266 
positive transient, about 500 µm away from the stimulation site. 267 

Response dynamics support a balanced-state excitatory-inhibitory network that is 268 
driven to a new steady state by input 269 

If suppression is due to local recurrent network effects, we would expect excitatory cells to be 270 
recruited first by stimulation, and then inhibitory cells should receive inputs from excitatory cells 271 
and respond slightly later. After this first few milliseconds, balanced-state models predict that 272 
excitatory and inhibitory cells should later show similar response distributions10,11,32,33. This is in 273 
contrast to weakly-coupled models, or a feedforward inhibition framework, where excitatory and 274 
inhibitory populations change firing rates in opposite directions: that is, input drives inhibitory 275 
cells to increase their rates, inhibiting excitatory cells, which then decrease their rates.  276 
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 277 

Figure 5: Response dynamics are consistent with steady-state suppression shaped by a recurrent network 278 
mechanism. Wide-waveform (excitatory) units have slightly earlier onset latencies than narrow (inhibitory) units, but 279 
other quantities do not differ across neural populations. (A) Wide/narrow sorting approach. Bimodal widths 280 
(classification threshold: 0.445 ms). (B) Average traces for narrow- and wide-waveform units (Methods). Inset: 281 
enlarged view of laser onset, highlighting latency difference between narrow and wide units. Green markers: time to 282 
half peak. (C) Onset latencies slightly shorter for wide-waveform units. (D) Peak firing rate does not differ between 283 
wide and narrow units (medians, wide: 24.5 spk/s, narrow: 31.2 spk/s). (E) Steady-state firing rate does not differ 284 
(medians, wide: 4.0 spk/s, narrow: 5.1 spk/s). (F) Onset latencies do not differ for elevated and suppressed 285 
populations. Conventions as in C. (G) Time to steady state does not differ for elevated and suppressed populations. 286 
See also Fig. S5. 287 

 288 

Our data supports the balanced-state recurrent model (Fig. 5A) — we saw differences in 289 
excitatory and inhibitory responses in the first few milliseconds, but at later times distributions of 290 
excitatory and inhibitory rates were similar. 291 

We classified cells into putative excitatory and inhibitory classes by waveform (Fig. 5A). We 292 
have previously confirmed13 with in vivo pharmacology that narrow-waveform cells are inhibitory 293 
interneurons, likely PV-positive fast-spiking cells, while wide-waveform cells are primarily 294 
excitatory neurons. We saw here that wide-waveform (largely excitatory) neurons have a slightly 295 
faster onset latency than narrow-waveform inhibitory cells, faster by approximately 2.5 ms (Fig. 296 
5B, inset, 5C; narrow latency 7.9 ms, wide latency 5.4 ms, difference 2.5 ms, Mann-Whitney U = 297 
1256.0, p < 0.01; onset latencies computed via curve-fitting to rising phases, see Fig. S5A for 298 
details).  299 

If subgroups of excitatory and inhibitory cells composed the suppressed and elevated 300 
populations, we might expect to see differences in the dynamics of elevated and suppressed 301 
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cells. But we found no significant differences in onset time or time to steady state for elevated 302 
and suppressed neurons (Fig. 5F,G, onset time Mann-Whitney U = 1741.0, p = 0.17, time to 303 
steady state, Mann-Whitney U = 801.0, p = 0.32). This was also true when restricting the 304 
analysis to only wide-waveform cells (Fig. S5C,D). Another possibility could have been that the 305 
neurons with suppressed steady-state responses were cells that did not express opsin. But the 306 
similar onset latencies of the elevated and suppressed cells (Fig. 5F) excludes that possibility, 307 
and provides further support to the idea that instead a balanced-state recurrent network 308 
explains the suppression. 309 

Beyond the differences in onset latency, we found other response dynamics were not different 310 
between excitatory and inhibitory cells. Consistent with a recurrent network with strongly 311 
coupled excitation and inhibition, we found that both excitatory and inhibitory cell populations 312 
increase their average firing rate when excitatory cells are stimulated (wide mean ∆: 14.54 313 
spk/s, t = 5.52, df = 93, p < 0.001, narrow mean ∆: 13.53 spk/s, t = 3.07, df = 41, p < 0.01). That 314 
is, both excitatory and inhibitory populations contain elevated and suppressed neurons, though 315 
elevated cells dominate both averages (Fig. 5E). Further, the initial transient and steady-state 316 
firing rate medians were not detectably different between inhibitory and excitatory cells 317 
(transient: Mann-Whitney U = 1816.0, p = 0.23, steady-state Mann-Whitney U = 1866.0, p = 318 
0.31, Fig. 5D,E). Also, time to steady state for wide-waveform and narrow-waveform cells did 319 
not differ (Fig. S5B), consistent with the idea that the steady-state dynamics emerge from 320 
integration of both inhibitory and excitatory inputs. Overall, the response distribution and 321 
dynamics we observed in inhibitory and excitatory cells are consistent with a strongly-coupled 322 
recurrent network.  323 

A neuron’s response is only weakly predicted by optogenetic input to that neuron 324 

We used the imaging data to determine if the suppression we observed was explained by 325 
variation across cells in optogenetic drive. We found that while indeed there was variability in 326 
different cells’ responses, there was very little relationship between opsin expression and cells’ 327 
firing rate changes. To estimate the optogenetic drive to individual neurons, we measured 328 
fluorescence of mRuby2 (fused to stChrimsonR) in donut-shaped regions around each cell’s 329 
membrane using two-photon imaging (Fig. 6, Fig. S6). The measured in vivo distribution of 330 
opsin expression was well-fit by a lognormal distribution after excluding the 16.8% (Wilson score 331 
95% confidence interval: [12.7%, 22.1%]) of cells with low fluorescence (Fig. 6C, see Methods). 332 
The in vivo estimate of the percentage of non-expressing cells was lower than what we 333 
observed with histology, perhaps because we selected FOVs with dense opsin for in vivo 334 
imaging. At the same time, however, our in vivo observations are consistent with past work that 335 
finds that AAV transfects adult neurons in a non-uniform way, finding substantial variability in 336 
opsin expression from cell to cell13,31.  337 

We found that the amount of opsin-related fluorescence explained little of the variance in 338 
steady-state responses (Fig. 6A-D, Pearson’s r = 0.21, df = 106, p < 0.05, high fluorescence 339 
neurons excluded [> 0.5]; Fig. 6D-E, population: at 1 mW: Pearson’s r = 0.18, df = 219, p < 340 
0.01, at 2 mW: Pearson’s r = 0.17, df = 219, p < 0.01). 341 
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This striking decoupling effect — that the amount of opsin input barely predicts how cells’ firing 342 
rates are modulated by stimulation — suggests that a given cell’s response may not be dictated 343 
by input to that cell, but instead by recurrent inputs.  344 

Notably, both high-expressing cells and low-expressing cells showed little relationship between 345 
opsin expression and response (Fig. 6E, red and gray lines). This supports the idea that the 346 
decoupling is not due to cell-autonomous intrinsic properties but indeed due to recurrent 347 
network inputs. To further test this, we measured the variability of neural responses as a 348 
function of stimulation intensity. If a neuron’s response were in fact controlled primarily by its 349 
opsin expression (the optogenetic input to that neuron) and not network input, increasing the 350 
input intensity should keep the variance in response the same, or reduce it, because the fixed 351 
opsin level is the principal source of response drive (Fig. S2K). Or, if response was dictated by 352 
opsin level, increasing intensity might produce a bimodal response distribution as the 353 
optogenetically-driven neurons separate from non-expressing neurons (Fig. S2L). We found 354 
support for none of these possibilities. Instead, the response pattern increased in variance as 355 
stimulation grew stronger (Fig. S2M-O), supporting the idea that it was network input, not opsin 356 
level, that controlled cells’ responses.  357 

We next turned to simulations, fit to our data and building on the recent theoretical advances of 358 
Sanzeni et al. (in press), to more completely characterize recurrent network influences on 359 
neurons’ responses. 360 

 361 

Figure 6: stChrimsonR expression only weakly predicts 2-photon steady-state response. (A) Left: Red 362 
(stChrimsonR-mRuby2) and green (GCaMP7s) fluorescence of an example cell with a suppressed steady-state 363 
response during optogenetic stimulation. Right: donut-shaped region of interest (ROI), inner and outer boundary 364 
calculated by shrinking or expanding the cell border (CaImAn, Methods) (B) Same as (A), except for an example cell 365 
that shows an elevated steady-state response. The suppressed cell shows brighter red fluorescence than the 366 
elevated cell, quantified in D. (C) Distribution of opsin fluorescence intensity (N=3 animals). Orange: Lognormal fit, 367 
excluding non-expressing cells (gray; see Fig. S6). (D) Example relationship between opsin expression and 368 
response; only a weak relationship is seen. x-axis: red fluorescence in donut-shaped ROIs (n = 113 cells, N=1 369 
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animal; 2 mW stimulation power). Example cells are highlighted (colored markers, letters). (E) Population data: same 370 
as D for N=3 animals (N=244 neurons). Two laser intensities, 1 mW (brown), 2 mW (red). Heavy lines: LOWESS fits; 371 
shaded regions: bootstrapped standard error. Slight decline at high values may be due to response saturation or 372 
overexpression of opsin in a few cells. Inset: Zoomed view of area indicated by dashed box, cells with the least opsin 373 
expression show a slightly smaller response on average than other cells. See also Fig. S6. 374 

Input from the recurrent network dominates responses, as explained by a balanced-375 
state model 376 

Thus far, a moderately- or strongly-coupled balanced-state network seems consistent with both 377 
the response distributions and dynamics we observe. Indeed, recent theoretical work in rate-378 
based models22 has shown that this kind of heterogeneous network response (“reshuffling”) 379 
occurs in strongly-coupled cortical networks. To understand if our experimental data could be 380 
explained by this reshuffling mechanism, we examined recurrent network models with features 381 
reflecting our data, and determined which features of the recurrent network models were 382 
important to explain the suppression.  383 
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 384 

Figure 7: Strongly-coupled recurrent neural network model with heterogeneous connectivity describes the 385 
data. (A,B) Simulation design: (A) conductance-based spiking network model with 8000 excitatory cells and 2000 386 
inhibitory cells. (B) Network mean recurrent strength is varied to measure effects on neural 387 
responses. (C) Optogenetic input strengths sampled from a lognormal distribution fit from in vivo 2p measurements 388 
(Fig. 6C). (D) Schematic of data features simulations describe. (E) The tightly-balanced model fits the long tail of 389 
excitation and the proportion of suppressed neurons. (F-H) Responses to stimulation during (F) electrophysiology, 390 
(G) 2-photon experiments, and (H) simulations. (I) Left, Mean timecourse, elevated cells, strongest recurrent 391 
network. Right, same: but for suppressed cells. (J) Balance index (Ahmadian and Miller, 2021) of the 3 networks (B). 392 
The strongest-coupled network (purple) has a median index in the tight balance regime. (K) Schematic of types of 393 
input variability. Variation in input can arise from variation across cells in number of recurrent inputs, strength of 394 
recurrent inputs, or  optogenetic input strength. (L) Simulated neural responses to optogenetic input, with (left, same 395 
as Fig. 7F) and without (center) variability in number of recurrent inputs. Relationship between optogenetic input and 396 
response strengthens when variance sources are removed (R2 original = 0.50, R2 reduced conn. Num. var. = 0.66; R2 397 
reduced conn num and reduced strength var. = 0.77) (M) Steady-state firing rate distributions when input variability 398 
components are removed. Purple: network with parameters as in panels E (tight),H,I,L. Right: Same data, zoom to 399 
the suppressed portion of the distribution. Some suppression exists if either source of variance is removed, but 400 
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suppression nearly abolished when both sources of variance are removed. (N) Finally, reducing variance in synaptic 401 
weights (by a factor of 10) nearly removes response variability and suppression. See also Figs. S7-8. 402 

We simulated conductance-based spiking neural networks, varying network connectivity and 403 
opsin drive across neurons in these models, and measured network responses to excitatory cell 404 
stimulation (Fig. 7A,B).  405 

Each simulation consisted of two sparsely connected populations of conductance-based spiking 406 
neurons, one excitatory (80%) and one inhibitory population (20%). For each set of network 407 
parameters, we adjusted a background input current to either excitatory or inhibitory neurons to 408 
hold the spontaneous firing rate of the neurons at a value (~5.4 spk/s) consistent with the data 409 
(Fig. S8F). We drew the opsin input strength for each neuron from a distribution fit to the 410 
imaging data, and scaled that distribution until the 75th percentile of the network response 411 
matched the electrophysiology data (lognormal distribution, with 16.8% nonexpressing, Fig. 7C). 412 
We also ran these simulations using the percentage of nonexpressing neurons as estimated 413 
from the histology data (41%) and found no qualitative differences (Fig. S8I-M).  414 

We first manipulated the mean connectivity strength of recurrent connections. We constructed 415 
three different models, varying the average strength of recurrent coupling in each (schematic, 416 
Fig. 7B). The “tightly balanced” network had the strongest recurrent coupling, and we scaled 417 
down the synaptic weights by a factor of 2 or 4 to create more weakly-coupled “50%” and “25% 418 
strength” network simulations. We confirmed that each of these simulations showed paradoxical 419 
suppression of inhibitory cells, a sign of strong recurrent coupling within the excitatory network 420 
and the ISN regime, as observed in visual cortex11,13,34. We stimulated the inhibitory cells in 421 
each network and found, as expected, paradoxical suppression (Fig. S7A,B). 422 

Recurrent excitatory-inhibitory networks can be tightly or loosely balanced10, depending on the 423 
total amount of recurrent excitatory and inhibitory input to network neurons. To classify the 424 
networks, we calculated the balance index, a ratio that measures how completely inhibitory 425 
input cancels out the excitatory input for each neuron in the networks10 (see Methods). We 426 
found that all three networks we constructed are balanced, as expected due to their irregular 427 
spontaneous activity (balance index << 1), and the networks span a range from loose to tight 428 
balance (Fig. 7J).  429 

The model replicates the long tail of positive responses, suppressed responses, 430 
and dynamics 431 

Two characteristic features of the response data we observed are the long-tailed positive 432 
response and the substantial proportion of suppressed cells (Fig. 7D). All three simulated 433 
networks showed a long tail of elevated responses as in the data, with many neurons showing 434 
increases in firing rate to stimulation, and a few showing large increases (Fig. 7H). However, the 435 
amount of suppression depended on recurrent coupling strength. Increasing the total excitatory 436 
and inhibitory recurrent input by varying the mean coupling strength leads to more suppressed 437 
neurons when other network parameters are held constant (Fig. 7E). The network that best fit 438 
the fraction of suppressed cells we observed was the most strongly-coupled network, which was 439 
just inside the tight balance regime (Fig. 7E,J; suppression sensitivity to baseline rate and 440 
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coupling strength characterized in Fig. S8F-H). Additional model components could lead to 441 
similar results with networks of higher or lower balance index estimates. For instance, adding 442 
structured connectivity may reduce the required coupling strength22. However, our data 443 
underline that the recurrent coupling should be strong enough so that when input arrives to a 444 
population of neurons, many neurons’ responses are substantially controlled by their recurrent 445 
input.  446 

Excitatory and inhibitory cells’ response distributions were similar in the model, as also seen as 447 
in the data (Fig. S7E,F).  448 

Finally, to further demonstrate how well the model could reproduce the features of the observed 449 
response distributions, we simulated responses while parametrically increasing the strength of 450 
the input, and compared the results to the electrophysiological and 2-photon responses to 451 
increasingly strong experimental optogenetic stimulation. The shapes of the response 452 
distributions in the most tightly coupled model and the data were similar (Fig. 7F–H). 453 

Given the ability of a balanced-state model to describe the suppression, we checked if the 454 
model dynamics were consistent with the data. We found that model responses were 455 
qualitatively similar (Fig. 7I) to the timecourses of responses seen in the data (Figs. 2–3). 456 
Excitatory cells first showed a brief, positive transient response before the network settled into a 457 
new steady state, with some cells excited and some suppressed. The initial positive transient in 458 
suppressed cells is a key observation, as it suggests a network mechanism where input initially 459 
excites many excitatory neurons, but later recurrent inputs lead to suppression in many of the 460 
same neurons. A second similar feature of the dynamics in model and data is the offset 461 
dynamics in both elevated and suppressed cells: after stimulation ends, both show a slight 462 
suppression before returning to baseline. Finally, excitatory cells have earlier onset times, 463 
indicating that E cells were directly stimulated and I cells were recruited just a few milliseconds 464 
later (Fig. S7D), before both populations then evolved to a new steady state.  465 

One feature of the dynamics seen in the data but not the model is that for high stimulation 466 
powers there is a slight decay during the tonic or steady-state period (Fig. 3I). However, this 467 
decay effect is not seen at lower stimulation intensities, suggesting it arises from known opsin 468 
dynamics (inactivation at high light power, e.g.35) or other known biophysical, non-network, 469 
effects like spike-rate adaptation. 470 

In sum, this model recapitulates many of the features of our observations, suggesting that a  471 
excitatory-inhibitory mechanism with strong and variable recurrent coupling explains how V1 472 
neurons respond to input. 473 

Variability in recurrent input creates different responses in different cells, and 474 
explains the decoupling of a neuron’s response from its optogenetic input  475 

In our data, we saw strikingly little correlation between opsin expression and neural response to 476 
stimulation (Fig. 6), suggesting recurrent input strongly governs the response. In fact, the tightly-477 
coupled model showed the same pattern of responses (Fig. 7L, left). 478 
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We therefore asked which sources of variability were important to explain why neural responses 479 
were weakly related to optogenetic input. To do this we varied sources of input variability in the 480 
model (Fig. 7K). First, we reduced variability in either the number or strength of recurrent inputs 481 
and found that this created a stronger correlation between optogenetic input strength and 482 
response (Fig. 7L, middle and right) which made the model a worse fit for the data (Fig. 6). The 483 
original relationship was not recovered by increasing the recurrent strength of the network (Fig. 484 
7 Supp 3), implying recurrent connection variability was required to produce this effect and 485 
higher recurrent strength could not substitute for it. Next, we asked whether variability in opsin 486 
input across cells was also essential to explain the suppression we observed. Removing the 487 
variance in optogenetic input across cells (so that each excitatory cell with opsin received the 488 
same input) significantly reduced the number of suppressed neurons and also produced a 489 
worse fit to the data (Fig. 7M; right inset highlights suppressed neurons). 490 

If input variability was the primary source of variability in neural responses, then removing 491 
variability from both kinds of input — both optogenetic input variability and recurrent input 492 
variability — should substantially reduce the amount of suppression observed. This is what we 493 
found. Removing or reducing both types of variability produced a set of neural responses 494 
clustered tightly around the mean response (Fig. 7N) with no suppressed neurons. Thus, both 495 
variability in recurrent input and in optogenetic input are required to explain the data.  496 
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 497 

Figure 8: Single cell stimulation produces elevated firing rates in a small subset of cells, but widespread 498 
weak suppression across the population. (A) Simulation schematic: one cell stimulated (‘tight’ network, Fig. 499 
7B,E,H). (B) Single cell stimulation weakly modulates other cells. (C) Single cell stimulation reshuffles the distribution 500 
of responses; individual neurons change response (black, note variance of distribution), mean/median remain near 501 
zero. (D) Densities, same data as (C). (E) Defining cells by their connectivity to/from the stimulated cell (direct input 502 
from stimulated cell, FF, brown; input from an inhibitory cell receiving FF input, blue) reveals a small number of 503 
excited cells. N=1 instantiation of network (weight choice). (F) Means of E across many instantiations. Black: full 504 
population of E cells, Brown, blue: same conventions as E. Error bars: SEM. (G) Simulated visual input during 505 
stimulation leads to mean suppression. Red: lognormally distributed input + single cell stimulation, black: single cell 506 
stimulation alone. Red mean is negative. (H) Mean suppression increases with stronger input. 507 

 508 

Together these results show that both optogenetic input variability and recurrent connection 509 
variability help create the variability in different neurons’ responses. Each neuron’s firing rate is 510 
affected not just by the optogenetic input that particular cell receives, but also by recurrent input 511 
received from other neurons, and the other neurons themselves receive different amounts of 512 
optogenetic and recurrent input. When optogenetic input is delivered, the whole network 513 
changes state to a new set of firing rates, and each neuron’s new firing rates are only weakly 514 
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related to the optogenetic input to that neuron. Thus, the recurrent network explains the 515 
unexpected decoupling of optogenetic input strength from neural response strength that we 516 
observed experimentally (Fig. 6).  517 

A balanced-state network model with connection variability also explains expected 518 
responses to single cell stimulation 519 

Past work has found that stimulating a single cell in visual cortex leads to mean suppression in 520 
the surrounding population20 Our results seem initially to contradict this finding, because our 521 
data and simulations both find a net positive response across the population when we stimulate 522 
many excitatory cells.  523 

To determine if the effects of single-cell stimulation could also be explained by the balanced-524 
state simulation that describes our data, we performed simulations of single cell stimulation in 525 
the same tightly-coupled network (Fig. 7A,B), measuring the response of the non-stimulated 526 
population (Fig 8A,B). We found that, while single cell stimulation produced a range of individual 527 
cell responses (i.e. reshuffling, Fig. 8C), the mean response was not negative, but instead close 528 
to zero (Fig. 8C,D; mean firing rate 95% CI [-0.006, 0.021], t (9998) for nonzero mean = 1.13, p 529 
= 0.26). The excitatory cells that received a direct connection from the stimulated cell 530 
(feedforward, FF, cells, n=107 neurons) had an elevated response. Those that received a 531 
connection from the inhibitory cells which received a monosynaptic input from the directly 532 
connected E cells had a very slightly suppressed response (i.e. E-I-E connections, or feedback 533 
(FB) cells, n=4380 neurons; Fig. 8E). The small set of strongly excited cells average with the 534 
large number of weakly suppressed cells to lead to a mean response near zero (Fig. 8F,G).  535 

Single-cell stimulation in the model we fit, therefore, could not account for the mean suppression 536 
observed in previous studies. We hypothesized that this difference could be due to difference in 537 
the activation state of the network. Chettih and Harvey (2019) stimulated during visual input, 538 
while here we delivered optogenetic input during spontaneous activity. Such effects can be seen 539 
in balanced-state models: Sanzeni et al. (in press) found that increasing the firing rate of a 540 
similar network to our model reduced the mean response of the network. Further, in models of 541 
visual cortex with subnetwork connectivity (e.g. higher connectivity between neurons with similar 542 
orientation tuning36, it has also been shown that visual input can shift the network response to 543 
be more negative37. Therefore, to test whether additional network drive could reproduce mean 544 
suppressive responses, we simulated single-cell stimulation paired with an input that mimics 545 
visual drive (Fig. 8G; Methods). Indeed, this shifted the mean population response negative 546 
(Fig. 8G; firing rate change: mean: -0.05; 95% CI: [-0.07, -0.04]). This effect is quantitatively 547 
dependent on the strength of the simulated visual input: as simulated visual input grows 548 
stronger, the more negative the mean response to optogenetic input becomes (Fig. 8H).  549 

Thus, a strongly-coupled balanced state model is consistent with not just our data, but with past 550 
results on single-cell stimulation. Strong mean connectivity, as well as variability in recurrent 551 
connectivity, shape the responses of the network.  552 
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Discussion 553 

We found robust suppression in visual cortex in response to direct optogenetic drive to 554 
excitatory neurons, with intermixed elevated and suppressed neurons. This salt-and-pepper 555 
distribution of responses resembles what is observed during visual input, and arises without 556 
input to inhibitory neurons. The firing rate distributions and response dynamics suggest a 557 
network mechanism for the observed suppression: that recurrent input variability, combined with 558 
external input variability, decouples the optogenetic input strength from the firing rate response 559 
in individual cells. This yields a weak correlation between input and response (Fig. 6E), so that a 560 
high level of opsin in a cell does not necessarily mean that cell fires strongly in response to 561 
stimulation. This recurrent network mechanism seems likely to create variability in visual 562 
responses as well (Fig. 1), because these recurrent connections are present in the cortical 563 
network for all kinds of input, and so shape responses to visual input also. 564 

Intuitively, the network mechanism that creates the salt-and-pepper excitation and suppression 565 
is that external inputs first elevate the firing rates of excitatory cells (Fig. 5A-C), some more than 566 
others. That activation excites inhibitory cells, also some more than others. The result is the 567 
network settles into a new steady state (Fig. 5E–G) with a very broad distribution of excitatory 568 
cell firing rate changes (Figs. 6,7). Our measurements, showing a long tail of excited responses 569 
(Fig. 2I), a substantial number of suppressed cells, and response dynamics with initial transients 570 
followed by steady-state excitation and suppression (Fig. 3I,J), all confirm that recurrent inputs 571 
can explain the response patterns we see. 572 

The salt-and-pepper pattern of responses varies gradually over space, with suppressed cells 573 
becoming a larger proportion of neurons with distance from the stimulation site (Fig. 3,4). The 574 
salt-and-pepper distribution of responses we observe is therefore overlaid on top of the global 575 
trends we observed in widefield imaging. This global suppression, in a concentric surround 576 
region similar to surround suppression during vision (e.g.38), is driven by direct excitatory inputs, 577 
suggesting that visual surround suppression is not inherited from other regions but also arises 578 
from recurrent interactions.  579 

The role of inhibition and suppression in the cortex: sharpening or high-dimensional 580 
pattern modification? 581 
In principle, one role of suppression in the cortex could be to sharpen responses to input via 582 
attenuating responses in non-driven cells. The finding of distance-dependent suppression in our 583 
widefield data (Fig. 4) implies exactly this conclusion. Pioneering work using single-cell 584 
stimulation20 also found the same sort of suppression in non-stimulated neurons. They showed 585 
that suppression falls off with distance by averaging across recorded neurons. (Note that this is 586 
true across tuning properties: while like-tuned cells in Chettih and Harvey (2019) show less 587 
suppression than other neurons, the average effect in like-tuned cells is still suppression.)  588 

Our data and model extend this to show that sharpening is not the only, or likely even the 589 
primary, effect of cortical suppression. Using individual cells' responses with 2p imaging and 590 
electrophysiology combined with simulations, we demonstrate that cortical stimulation generates 591 
large response variability even in cells directly receiving input. That statement has significant 592 
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consequences for how the cortex transforms its input — it is not just that recurrent connectivity 593 
sharpens responses, but it can create much more complex and high-dimensional 594 
transformations21. Such transformations are central to neural coding and how neural codes are 595 
created from input. 596 

Variability in recurrent connectivity in the cortex: experimental evidence 597 
We find that variability in connection strength between L2/3 excitatory neurons is necessary to 598 
create the heterogeneous responses to input we, and others39, observe. Several observations 599 
suggest that the brain has recurrent variability at least as large, and possibly larger, than we use 600 
in the simulations. First, electrophysiological studies often find a long tail of synaptic strengths 601 
between pairs of neurons, with a few very large connections40–42. The variance of individual 602 
synaptic weights may be lower43, with the larger connection strengths due to multiple synaptic 603 
contacts between neurons (though see44 for evidence of long-tailed synaptic bouton sizes.) If 604 
there is a long tail in synaptic connection strengths, this would still support our finding of high 605 
recurrent variance, as it would increase the recurrent variability even beyond the weight 606 
distributions we used, which are truncated Gaussians with mean and variance equal. Second, 607 
we used a connection sparsity of 2%. We set the number of inputs a cell received from the 608 
recurrent network according to a binomial sum, with fixed connection probability between 609 
neurons. Connection probability in the brain may be higher, as for example paired recording 610 
studies have found connection probabilities of 10% or higher41,42. And higher connection 611 
probability will produce greater variance in net input into different cells, as binomially-distributed 612 
sums have a larger variance as connection probability increases (in the 0–50% range). Finally, 613 
patterned or subnetwork-specific connections, which we did not include, would also only 614 
increase variance, though specific connections seem to have just a moderate effect on 615 
connection probability — shared tuning changes the connection probability from 10–20% on 616 
average to 30–50% for like-tuned neurons, in some cases36. Taken together, the substantial 617 
recurrent variability that explains our data is consistent with experimental measurements of 618 
recurrent connection variability.  619 

Strong balance, loose balance: implications for models that describe cortical networks 620 
We find that a two-population excitatory-inhibitory model is sufficient to explain the data we 621 
observe. A priori, it could have been that a model with multiple inhibitory subtypes15,45 would be 622 
needed to reproduce the dynamics and population statistics we saw. Recent work has argued 623 
for particular roles for cortical inhibitory subtypes: that parvalbumin-positive (PV) neurons are 624 
the primary class providing inhibition stabilization13,46, while somatostatin-positive (SOM) cells 625 
are involved in gain control46. These separate roles are still consistent with our findings. PV cells 626 
are likely to be the primary inhibitory cell class in our data and model, as PV cells are the 627 
narrow-waveform cells that we identify in electrophysiology13 (see Fig. 5). Those cells show 628 
dynamic and response firing rate changes expected for the inhibitory population in an E-I model 629 
(slightly delayed onset latency, similar distribution of firing rate change as E cells). It is also 630 
plausible that stimulating cortical excitatory cells as we did does not cause gain to vary, so that 631 
a separate gain role of SOM neurons was not evident in our experiments. Thus, a two-632 
population inhibitory model (with PV cells likely making up a large part of the I population in the 633 
model) is sufficient to explain our data.  634 
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In addition to supporting the idea that recurrent connections between neurons have substantial 635 
variability, our results also confirm that the mean V1 recurrent connectivity is strong — i.e. V1 636 
operates as an inhibitory-stabilized network, meaning that the excitatory network is unstable if 637 
inhibition could be frozen11,13,14,22. Within the class of balanced networks, two sorts of balance 638 
have been distinguished: “loose” and “tight” balance10. The best network in our results (Fig. 7) is 639 
on the border of the tight- and loose-balance regimes, with individual cells falling in either the 640 
tight or loose-balance regimes. A network near the transition from loose to tight balance is 641 
broadly consistent with past experimental data (22, reviewed in ref. 10) which do not suggest a 642 
very tightly-balanced regime for the cortex (Fig. 7). Recent work has shown that adding 643 
structured (tuned subclass) connectivity allows substantial recurrent effects with looser 644 
balance22, further supporting the idea that our data support loose or moderate balance.  645 

The mechanism we find for suppression is strikingly different than paradoxical suppression in an 646 
ISN when inhibitory cells are stimulated12–14. In both cases, suppression is paradoxical: here we 647 
excite excitatory cells and see suppression of excitatory cells, and in an ISN, exciting inhibitory 648 
cells causes suppression in inhibitory cells. But in paradoxical inhibitory suppression, the mean 649 
firing rate of the inhibitory population decreases14. Here with excitatory cell stimulation, the 650 
mean firing rate change is non-paradoxical, as excitatory cell average rates increase. It is the 651 
substantial variability or heterogeneity of recurrent connections in combination with variability of 652 
input that causes many cells to be suppressed as others increase their firing. However, both 653 
types of paradoxical suppression, when excitatory or inhibitory cells are stimulated, are only 654 
present when the network operates as an ISN – that is, both effects happen in a network with 655 
strong average recurrent coupling13,22. The observed paradoxical suppression of excitatory cells, 656 
however, requires variability around that strong average recurrent coupling.  657 

Future: subnetworks, computation, and interactions between areas 658 
These results could be extended in a few ways. First, here we did not consider how subnetwork 659 
connectivity between excitatory neurons in the cortex might influence the effects. Ko and 660 
colleagues (2011) showed approximately a 2–3 fold increase in probability of connection 661 
between V1 excitatory neurons that had similar tuning (orientation or direction) compared to 662 
those with dissimilar tuning. Adding subnetwork connectivity would not qualitatively change our 663 
conclusions: that suppression results from recurrent influences, and that it depends on 664 
variability of connectivity within the network. However, future work stimulating within or across 665 
subnetworks might change the fraction of cells suppressed, given that input patterns would drive 666 
neuron populations with somewhat more or less connectivity with each other and the rest of the 667 
network. Cell-specific two-photon holographic stimulation16,47–49 seems well-placed to study how 668 
patterned activity in one subnetwork affects activity in another subnetwork. 669 

While local collaterals probably contribute the majority of recurrent cortical input, meaning 670 
nearby neurons influence each other via direct synapses, it is possible that long-range, inter-671 
areal, connections could contribute to the experimental results we observe.  Estimates of 672 
connectivity falloff show most connections to a given neuron come from local neurons6,7. But in 673 
principle, cells in other areas could form part of the recurrent population. This could happen for 674 
example if projections from V1 to the thalamus recruited neurons there which connect back to 675 
the cortex. However, our widefield imaging data (Fig. 4) shows that the suppression peaks a few 676 
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hundred microns from the stimulation site, suggesting relatively local influence. Therefore, it 677 
seems likely that the recurrent connections in the simulations primarily reflect local connections 678 
within V1 to nearby neurons. 679 

Conclusion 680 
Here we find paradoxical suppression of excitatory cells in the cortex when excitatory cells are 681 
stimulated. These results suggest that a primary purpose of recurrent connectivity in visual 682 
cortex is to change the steady-state firing rate of network neurons, beyond just how inputs are 683 
transformed by feedforward connections. Our results are a step forward in explaining how 684 
cortical networks change their firing in response to different patterns of input — a fundamental 685 
building block of neuronal computation. 686 
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STAR Methods 700 

Key resources table 701 
Reagent	or	resource	 Source	 	 Identifier		 Additional	

information	
Chemicals,	peptides,	and	recombinant	proteins	

Tamoxifen	 	 Sigma-Aldrich
	 	

T5648-5G		 	

Experimental	models:	organisms/strains	

Ai148	 The	Jackson	
Laboratory	

RRID:IMSR_JAX:030328	 	

Ai162	 The	Jackson	
Laboratory	

RRID:IMSR_JAX:022731	 	

Cux2-CreERT2	 	 MMRRC	 	 RRID:MMRRC_032779-MU	 	

Emx1-cre	 The	Jackson	
Laboratory	

RRID:IMSR_JAX:005628	 	

Bacterial	and	virus	strains	

AAV9-hSyn-jGCaMP7s-
WPRE	
	

Addgene	 RRID:Addgene_104487	 	

AAV9-Syn-DIO-
stChrimsonR-mRuby	

Addgene	 RRID:Addgene_105448	
	

	

AAV9-CamKIIa-
ChrimsonR-mScarlet-
KV2.1	

Addgene	 RRID:Addgene_124651	 	

Software	and	algorithms	

Mworks	 	 The	Mworks	
Project	 	

	 mworks.github.io	

Other	

C	and	B	Metabond	 	 Parkell	 S380	 	 	

Kwik-sil	 	 World	
Precision	
Instruments
	 	

KWIK-SIL	 	

 702 

Resource Availability 703 

• Lead Contact 704 
Additional information and requests for resources should be directed to the lead contact, 705 
Mark Histed (mark.histed@nih.gov) 706 

• Materials availability 707 
This work did not produce novel reagents. 708 

• Data and code availability 709 
Data and code will be published in a GitHub repository or on DANDI on acceptance for 710 
publication. 711 
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Experimental Model and Subject Details 712 
All procedures were approved by the NIMH Institutional Animal Care and Use Committee 713 
(IACUC) and conform to relevant regulatory standards. Emx1-cre animals30 of both sexes (N = 714 
14; https://www.jax.org/strain/005628) were used for 2-photon and electrophysiology 715 
experiments (5 for electrophysiology, 3 for visual stimulation imaging, 6 for optogenetic 716 
stimulation imaging). For widefield imaging experiments, Ai162 (N = 2; 717 
https://www.jax.org/strain/031562) and Ai148 (N = 1; https://www.jax.org/strain/030328) 718 
animals50 were crossed with the Cux2-CreERT2 line51 719 
(https://www.mmrrc.org/catalog/sds.php?mmrrc_id=32779), and GCaMP6f or GCaMP6s was 720 
induced via tamoxifen injection during adulthood (P22 or later, tamoxifen 2 mg intraperitoneally 721 
daily for 3 days). All animals were singly housed on a reversed light cycle. During experiments 722 
animals were water scheduled and given occasional water rewards to keep them awake and 723 
alert. To ensure animals did not drift into a quiet wakefulness or quiescent state, we monitored 724 
animals during data collection to verify they continued to drink the delivered reward. 725 

Methods Details 726 

Implants and injections 727 
Details of the headplate and window procedures are described in previous studies13,52. Optical 728 
glass windows (3 mm diameter) were placed over V1 (center: -3 mm ML, +1.5 mm AP, relative 729 
to lambda) for 2p and widefield imaging. Windows were also used before electrophysiology for 730 
imaging to localize V1. 731 

For Emx1-Cre animals, 300 nL of AAV9-syn-jGCaMP7s-WPRE (RRID:Addgene_104487) 732 
and/or AAV9-Syn-DIO-stChrimsonR-mRuby (RRID:Addgene_105448) were injected 250 µm 733 
below the dura (200 nL/min) prior to cementing the cranial window. For Ai148 and 162 animals, 734 
AAV9-CamKIIa-stChrimsonR-mRuby2 was generated by cloning the CaMKIIa promoter 735 
(RRID:Addgene_120219) into a pAAV backbone containing stChrimsonR-mRuby2 736 
(RRID:Addgene_105447) and packaged into an AAV (Vigene, Inc.). This was injected at the 737 
same depth as the hSyn-DIO-stChrimsonR virus, but with 100 nL volume at 100 nL/min.  738 

Electrophysiology 739 
Electrophysiological methods are described in detail in previous studies13, and are summarized 740 
here. Animals were head-fixed during recording. Before the first session of electrophysiology, 741 
the animal’s cranial window was removed and the craniotomy was flushed with saline. Between 742 
recording sessions, the craniotomy was covered using Kwik-Sil polymer (WPI, Inc.). A fiber optic 743 
cannula (400 µm diameter, 0.39 NA, Thorlabs) was placed to center light output at the center of 744 
stChrimsonR expression. For light intensity calculations, spot area was defined as the area 745 
inside the 50% contour of light spot intensity on the cortex, measured with a camera by imaging 746 
the spot on the brain surface. 1–2% agarose (Type IIIA, Sigma) was placed over the dura at the 747 
start of each session, and an array of four electrodes (4 probes, 32 sites in total, part #A4x8-748 
5mm-100-400-177-A32, NeuroNexus, Inc.) were lowered into the cortex using a 749 
micromanipulator (Sutter MPC-200). One probe was placed at the center of the light spot. 750 
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Probes were advanced 600–1000 µm below the point in which the first probe touched the dura. 751 
Probes were not moved for 1 hour prior to recording, as we found this improved recording 752 
stability. Recording data was sampled at 30 kHz (Cerebus, Blackrock Microsystems.) 753 

Optogenetic stimulation was performed with randomly interleaved stimulation light pulses with 754 
several intensities over the range 0.2 mW/mm2 to 15 mW/mm2. Stimulation pulses were 600 ms 755 
long and delivered with a 4 s period.  756 
 757 
For spike recordings, waveforms (bandpass filtered, 750 Hz – 7.5 kHz) were digitized and saved 758 
by storing a short data section around points where amplitude exceeded 3 times the RMS noise 759 
on that channel. Single units were identified (OfflineSorter, Plexon, Inc) based on clusters in the 760 
waveform PCA that were separate from noise and other clusters, had unimodal spike width 761 
distributions, and inter-spike intervals consistent with cortical neuron absolute and relative 762 
refractory periods. A single-unit score was assigned to each unit manually based on these 763 
factors 13,23. To compare these populations quantitatively, we calculated SNR for both single and 764 
multiunits53,54. Median SNR for single units was larger than median SNR for multiunits (SU: 765 
3.32, MU: 2.26; Fig. S2C), consistent with prior reports13,53,55. 766 

Histology 767 
Following completion of electrophysiology experiments, mice were anesthetized with isoflurane 768 
and injected intraperitoneally with pentobarbital sodium (150 mg/kg), and perfused transcardially 769 
with cold (4°C) PBS followed by cold 4% paraformaldehyde. Brains were extracted and fixed in 770 
4% paraformaldehyde for 6–12 hr and then cryoprotected in a 30% (% w/v) sucrose solution in 771 
PBS until they sank. Tissue was cryosectioned at 10µm and mounted on charged slides.  772 
Fluorescence in situ hybridization was done using RNAscope’s Multiplex Fluorescent Assay 773 
v256. Inhibitory neurons were labeled with a VGAT probe (Slc32a1, #319191-C2; Alexa Fluor 774 
488), excitatory neurons were labeled with a VGLUT1 probe (Slc17a7, #416631-C3; Cy5), and 775 
an mRuby2 probe (#487361; Cy3) labeled stChrimsonR-mRuby2 expressing neurons. Slides 776 
were coverslipped with DAPI. We imaged slides on a Zeiss LSM780 confocal microscope with a 777 
40x oil immersion objective. We imaged each fluorophore separately with a single excitation 778 
laser, and collected all three emission channels. To compensate for bleedthrough where the 779 
other two fluorophores might be weakly excited by a laser selected for another fluorophore, we 780 
subtracted a scaled version of the primary emission channel image for each non-selected 781 
fluorophore from the primary channel for the selected fluorophore. Five representative areas 782 
were quantified independently by two observers. 783 

Visual stimulation 784 
Visual stimuli were presented using MWorks (https://mworks.github.io/). Grating stimuli 785 
(sinusoidal contrast variation, 0.1 cyc/deg, orientation = 0 deg) were masked with a circular 786 
raised-cosine envelope (15 deg FWHM). Visual stimuli were displayed on an LCD display, with 787 
center positioned 0-10 degrees of visual angle temporal to the central meridian. Oriented noise 788 
stimuli were generated by filtering white noise pixel arrays (each pixel drawn independently from 789 
a uniform distribution) with a spatial band-pass filter (peak orientation = 0 deg, orientation 790 
bandwidth = 10 deg, peak spatial frequency = 0.05, frequency bandwidth = 0.05). Frames were 791 
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generated at 60 Hz and the noise pattern was independent from frame to frame26–28. Visual 792 
stimuli were presented for 3 or 5 seconds, depending on the experiment. 793 

2-photon imaging 794 
During 2-photon experiments, animals were awake, water-scheduled, and given periodic water 795 
rewards (20% probability per trial, reward once every 30 s on average). If animals stopped 796 
licking in response to the rewards, data collection was ended. We imaged GCaMP7s responses 797 
(920 nm excitation) with either a galvo-galvo (5 Hz) or resonant scanning (30 Hz) two-photon 798 
microscope. stChrimsonR-mRuby2 expression was imaged at 1000 nm. The microscopes used 799 
for imaging were built using MIMMS components (https://www.janelia.org/open-science/mimms-800 
21-2020) and other custom components, built in-house or provided by Sutter Inc. A second light 801 
path, combined with the 2p stimulation light path before the tube lens using a dichroic, was used 802 
to stimulate stChrimsonR using 530nm light (CoolLED, pE-4000). For 200 ms long optogenetic 803 
pulses, we measured responses in the first frame after stimulation. For 4 s long optogenetic light 804 
pulses (6 s period), we imaged while stimulation was ongoing. To do this, we avoided 805 
stimulation artifacts by stimulating only during horizontal flyback (approximate pulse duration 19 806 
µs, off time 44 µs, duty cycle 30%, line rate 8kHz).  807 

Widefield imaging 808 
For widefield imaging experiments, we used Ai162;Cux2-creERT2 or Ai148;Cux2-creERT2 809 
animals, expressing GCaMP6f or 6s in L2/3 excitatory cells. Animals were head-fixed and 810 
awake during widefield imaging experiments. Prior to imaging, a fiber optic cannula was aimed 811 
at the center of the focal stChrimsonR expression. Images were collected using a Zeiss 812 
microscope (Discovery V12) with a 1.0x objective using excitation light with wavelength 813 
centered at 475 nm (Xylis X-Cite XT720L). A Zyla 4.2 sCMOS camera (Oxford Instruments) 814 
collected images (100 ms exposure time, approximately 140 ms frame period) with 4-pixel 815 
binning. Laser powers were randomly interleaved, with 50 repetitions per laser power. Laser 816 
pulses were 600 ms long, and presented with 6 s period. 817 

Analysis of electrophysiology data 818 
For spike rate plots, spike counts were binned (1 ms bins), and smoothed via LOWESS57. To 819 
classify units as having elevated or suppressed responses, we measured spike rate over 145–820 
400 ms after stim onset, relative to baseline (-1020 ms–0 ms relative to stim onset) for 6 821 
mW/mm2 stimulation intensity. To classify cells as wide- or narrow-waveform, we used a spike 822 
width threshold of 0.445 ms based on the bimodal distribution of waveform widths (Fig. 5B). 823 
This threshold is consistent with pharmacological segregation of inhibitory and excitatory cells13. 824 
 825 
For analysis of onset times, we fit a sigmoid (logistic function) to each cell’s response from 100 826 
ms before to 100ms after laser pulse onset: 827 

𝑓(𝑥) = 	
𝐿

1 +	𝑒!"($!$!)
+ 𝑏 828 

 829 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2022.08.31.505844doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.505844
http://creativecommons.org/licenses/by-nc/4.0/


 29 

L: upper asymptote, b: lower asymptote, k: slope, x0: onset latency. X0 was constrained to the 830 
range [onset+0.5 ms, onset + 30 ms]. We defined onset latency as x0, the time to half-max. To 831 
estimate the time to steady-state, the same function was fit to data from 500 ms before and after 832 
the laser onset, with the spike rates within a 50 ms window around the initial transient blanked 833 
by setting to the baseline firing rate. Each cell’s time to steady-state was computed as the 834 
difference between the steady-state onset and the initial onset (difference between the x0 835 
parameters of the two fits). 836 

Analysis of 2-photon data 837 
For short optogenetic stimulation (200 ms pulses) during two-photon imaging, we avoided 838 
stimulation light influencing imaging responses by measuring responses in the frame after the 839 
stimulus offset. For long pulses (4 s), we stimulated during imaging frames by restricting 840 
stimulation to imaging line flyback and intensities we give are the average intensity, corrected 841 
for the 30% stimulation duty cycle. Because we found that the LED device we used for 842 
stimulation (pE-4000, CoolLED Ltd; specified bandwidth 100 kHz) had some variability in 843 
onset/offset for each line, we removed pixels (~40% of frame) at left and right edges of field of 844 
view to ensure no stimulation light could affect images. Image frames were motion corrected 845 
using NoRMCorre through CaImAn58. Deconvolution was done with OASIS59 via CaImAn. To 846 
ease interpretability of the deconvolution signals, each neuron’s deconvolved signal was 847 
normalized to have the same maximum value as the dF/F of the corresponding fluorescence 848 
trace. To separate populations into elevated and suppressed cells, we performed a one-sample 849 
t-test (a = 0.05, different from zero, two-tailed) on the deconvolved dF/F during the stimulation 850 
period (long pulses) or the frame just after the stimulation period (short pulses). For the short 851 
pulses, we used the frame just after stimulation to estimate responses for each neuron per trial. 852 
For the long pulses, we averaged data within the period 750 ms after stimulus onset to the 853 
stimulus offset in order to capture the steady-state response. For visual response data, data 854 
were preprocessed in the same manner as the short optogenetic stimulation experiments. We 855 
averaged steady-state responses from 750 ms after stimulus onset to stimulus offset. 856 

For spatial analyses, we used the spatstat package60 in R (ver. 4.2.3). For each individual 857 
animal, we tested the spatial distributions of elevated and suppressed responses against an 858 
inhomogeneous Poisson process model using the Linhom and Lcross.inhom functions. We 859 
used an inhomogeneous process as signal properties (e.g. slight tilt of imaging field) and 860 
biological properties (e.g. vasculature) may produce inhomogeneities in rate/intensity that could 861 
be mistaken for clustering. The L function estimates the expected number of discovered 862 
neurons for different diameter circular search areas centered on each neuron, given the 863 
modeled Poisson process. We corrected for windowing in the selected field-of-view using 864 
Ripley’s isotropic correction. Global envelopes were generated (using the envelope function) 865 
with p < 0.05, Bonferroni-corrected. 866 

For 2-photon opsin measurements, for each field of view we corrected for neuropil signal by 867 
manually selecting a region of neuropil with no visible cell bodies/processes and subtracting that 868 
intensity. We measured red fluorescence in donut-shaped regions of interest around the border 869 
of each cell mask. Each animal’s distribution of opsin was normalized by dividing by their 870 
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maximum opsin fluorescence, and then combined. We fit a lognormal distribution via least-871 
squares (details in Fig. S6). 872 

Analysis of widefield imaging data 873 
Widefield fluorescence images were motion corrected for rigid translation, and any linear trend 874 
across the full imaging session was estimated via regression and subtracted. Deconvolution 875 
was done via Widefield Deconvolution61, which differs from single-neuron deconvolution 876 
algorithms like OASIS by dropping the sparsity assumption useful for spike trains of single 877 
neurons. This algorithm produces better results for aggregated signals, such as that from a 878 
single pixel during widefield imaging61. We rescaled the deconvolved signals to the maximum 879 
dF/F of the imaging data, as with the two-photon deconvolution. Comparison of Widefield 880 
Deconvolution, OASIS, and first-differencing is given in Fig. S3. For timecourse analyses, center 881 
and surround ROIs were defined as as the top 30% of elevated or suppressed pixels within a 1 882 
mm radius of the center of response. To average images across animals, images were aligned 883 
on the basis of their maximum response during the late stimulation period. For quantification of 884 
spatial falloff (Fig 4G–I), we found the peak, averaged the responses radially, and then fit a 885 
curve to the responses vs. distance (LOWESS; 95% CI via bootstrap). Crossing points are the 886 
minimum distance at which the 95% confidence interval contains zero.  887 

Spiking network model 888 
We simulated a conductance-based neural network model with 10000 neurons (8000 excitatory, 889 
2000 inhibitory) to understand the recurrent features that contribute to the response properties 890 
we observe during excitatory cell stimulation. Simulations were performed using Brian262. 891 

 892 
 893 
Membrane and synaptic dynamics evolve according to the following equations: 894 
 895 

(1) 𝐶 &'
&(
= 𝑔)(𝐸) − 𝑉) + 𝑔*(𝐸* − 𝑉) + 𝑔+(𝐸+ − 𝑉) + 𝐼,-."/0123& + 𝑐 ∙ 𝐼14(1(𝑡) 896 

(2) &/"
&(

=	−𝑔* 𝜏*⁄  897 

(3) &/#
&(
=	−𝑔+ 𝜏+⁄  898 

Each synapse was stepped by its corresponding connection weight for every presynaptic spike.  899 

Connections between neurons were made with 2% probability, independently for each potential 900 
connection36,41,63.  901 

Parameter	 Value	 	 Parameter	 Value	
tE	 5	ms	 	 Mean	WII	 4.0	nS	
tI	 10	ms	 	 Variance	WII	 4.0	nS	
EL	 -60	mV	 	 Mean	WIE	 5.0	nS	
EI	 -80	mV	 	 Variance	WIE	 5.0	nS	
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EE	 0	mV	 	 E	cell	Ibackground	
Full	Network	 260	pA	

gL	 10.0	nS	 	 I	cell	Ibackground	
Full	Network	 140	pA	

Mean	WEE	 0.4	nS	 	 E	cell	Ibackground	
50%	Network	

227.5	
pA	

Variance	WEE	 0.4	nS	 	 I	cell	Ibackground	
50%	Network	

172.5	
pA	

Mean	WEI	 0.8	nS	 	 E	cell	Ibackground	
25%	Network	

208.5	
pA	

Variance	WEI	 0.8	nS	 	 I	cell	Ibackground	
25%	Network	

191.5	
pA	

Table 1: Spiking neural network model parameters 902 

Synaptic weights were drawn from truncated (rectified) Gaussian distributions. Mean 903 
connectivity parameters were based on published measurements, with excitatory connection 904 
strength an order of magnitude weaker than inhibitory connection strength36,64,65 and I-to-E 905 
connectivity stronger than I-to-I connectivity65. Background currents were chosen for inhibitory 906 
and excitatory cell populations to fix baseline firing-rates for each constructed network to data 907 
(Fig S8F). Network parameters shown in Table 1.  908 

Optogenetic stimulation simulations 909 

Optogenetic stimulation was an additional constant current for the length of the stimulation 910 
period, with onset and offset ramped linearly over 3 ms. The strength of the optogenetic 911 
stimulation (c in Eq. 1 was chosen from a lognormal distribution derived from data (Fig. 6), or 912 
held constant (Fig. 7M,N). For each simulation, this stimulation distribution was scaled by a 913 
constant to reproduce the response rate from data, at the 75th percentile across excitatory cells. 914 
Steady-state response was measured for each cell as their firing rate during the 1 s baseline 915 
period subtracted from the firing rate during the last 500 ms of the stimulation period. To reduce 916 
connection strength variability (Fig. 7N), we reduced the variability of the truncated Gaussians 917 
that define connection strength by a factor of 100 (setting both the synaptic strength variability 918 
and connection number variability to zero produced a network that was less stable).  919 

Single cell stimulation simulations 920 

A single cell was stimulated with intensity from maximum of input distribution (Fig. 7H). Controls: 921 
same parameters but no stimulation. To simulate single cell stimulation with visual input, we 922 
provided single cell stimulation during either the lognormal optogenetic stimulation, as 923 
previously described, or during uniform input of both excitatory and inhibitory cells. 924 

Balance index 925 

We computed the balance index as described by Ahmadian and Miller (2021). For each neuron, 926 
we computed this index as the net current (excitatory + inhibitory) divided by the excitatory 927 
current. The index becomes smaller as balance becomes tighter, with component currents 928 
becoming larger, and the index becomes larger as inhibitory input from the network shrinks.  929 
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Quantification and Statistical Analysis 930 
All analyses, unless specifically noted in Methods Details, were performed in python using 931 
NumPy and SciPy packages57,66. Degrees of freedom and statistical tests are described in the 932 
results text. Error metrics plotted in figures are listed in the figure legends. Significance was 933 
adjusted for multiple testing using a Bonferroni correction when appropriate.  934 
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Supplemental Figures 1125 

Figure S1  1126 

 1127 

Figure S1: (A-E): Both grating patches and oriented noise stimuli produce steady-state 1128 
elevation and suppression in layer 2/3 of V1. (A) dF/F response at each imaging pixel to 1129 
oriented noise stimuli (small stimulus, FWHM = 15 deg, stimulus approximately aligned to cells’ 1130 
receptive fields measured outside this experiment, same animal as in Fig. 1), corresponding to 1131 
the deconvolved cell responses shown in Fig. 1B. Here and in Fig. 1B, responses are measured 1132 
beginning 750 ms after stimulus onset to focus on steady-state response (Methods.) Evidence 1133 
of suppression is seen here but is more evident when data is deconvolved (compare this panel 1134 
to Fig. 1B), as expected for sustained suppression preceded by a transient, as the initial 1135 
transient seen in Figs. 2, 3, 7. (B) dF/F response to a drifting grating (Gabor patch, spatial 1136 
frequency 0.1 cpd, FWHM 15 deg), from the same animal, showing cells that are elevated and 1137 
suppressed in response to drifting gratings. Overall pattern of responses to noise stimulus and 1138 
grating is similar. (C) Deconvolved population response to oriented noise stimulus (replicated 1139 
from Fig. 1F for comparison.) Stimulus on during time indicated by light red shaded box. (D) 1140 
Deconvolved cell responses to Gabor patch, same data as in (B). Gabor patches drive both 1141 
steady-state elevation and suppression, though show signs of stronger off responses and 1142 
potentially a larger onset transient. (E) Population deconvolved response to oriented noise 1143 
stimulus in two additional animals, consistent with effects from example animal. (F-H): Spatial 1144 
distributions of elevated and suppressed cells are consistent with an inhomogeneous 1145 
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spatial Poisson process, independent within and across classes. (F-H) Example L-1146 
functions (Baddeley et al., 2015) from a typical animal (blue: data, black: expectation from 1147 
Poisson process model, error bars: global envelopes of Poisson process model), showing 1148 
agreement with the Poisson process model within elevated, suppressed, and across 1149 
populations, respectively (all p > 0.05, Bonferroni correction). See Methods for analysis details.  1150 
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Figure S2 1151 

 1152 

Figure S2: (A-B): Viral approach expresses opsin in only excitatory cells. (A) Selective 1153 
expression of opsin in excitatory cells only, as expected for the double-inverted lox-site AAV 1154 
vector and excitatory Cre mouse line (Emx1-Cre). The stChrimsonR opsin was fused to 1155 
mRuby2, so we measured mRuby2 mRNA (red) and VGLUT1 mRNA (white), a marker of 1156 
excitatory cells, via fluorescent in situ hybridization (RNAscope; Methods). Cell counting showed 1157 
76% of neurons are VGLUT1 positive (N = 195/257). Arrows highlight a few example neurons. 1158 
As expected, all cells that express the opsin are excitatory, but not all excitatory neurons 1159 
express the opsin (59% of VGLUT1 cells are mRuby2 positive: N = 115/195). (B) mRuby2 1160 
mRNA (red) and VGAT mRNA (green), a marker of inhibitory neurons. 24% of neurons are 1161 
VGAT positive (N = 62/257), and zero express the opsin. (C-D): Sorting and quality of 1162 
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electrophysiology data (C) Single units demonstrate higher SNR (N=136, median = 3.32) than 1163 
multi-units (N=184, median = 2.26). (D) Mean spike-waveform of putative excitatory units (wide) 1164 
in red (N = 94), mean spike-waveform of putative inhibitory units (narrow) in blue (N = 42.) 1165 
Bimodal histogram of spike widths is shown in Fig. 5B. (E-H): Number of detected elevated 1166 
and suppressed units by depth and horizontal distance, presented in terms of proportion 1167 
of the units in the population. (E-F) Fraction of neurons found at each depth and horizontal 1168 
distance for elevated (red) and suppressed (blue) neuron populations. (G-H) Same as A-B, but 1169 
summed across depth. Error bars: Wilson score 95% CIs. Steady-state firing rates of 1170 
neurons in layer 2/3 follow a weak spatial gradient with similar trends as the spatial 1171 
distribution observed in cell counts. (I) Elevated cell steady-state rates, with the highest and 1172 
lowest powers for comparison. Rate is the difference in firing rate during stimulation relative to 1173 
baseline. (J) Suppressed cell steady-state rates, with the highest and lowest powers for 1174 
comparison, measured in relation to decreases from baseline. (K-O): Shape and variance of 1175 
response distributions are inconsistent with cell-autonomous effects. (K) Competing 1176 
hypotheses for response distribution shape. If the variance in responses is driven by network 1177 
input, we would expect that responses would not be strongly correlated to opsin expression 1178 
levels, and also as stimulation increases, response variance would also increase. (L) If cell-1179 
autonomous features like opsin expression levels drive the responses at high powers, the opsin 1180 
input should dominate network input, leading to variance decreases and/or a bimodal response 1181 
distribution. (M) Histograms of the electrophysiological response for increasing laser intensities. 1182 
(N) Variance of the distributions in (A), plotted across laser intensity. Shaded blue: standard 1183 
error. (O) Two-photon response variance to optogenetic stimulation, sorted by estimates of 1184 
opsin expression. We see an increase in variance in both the opsin positive and negative cells, 1185 
which does not support the cell-autonomous account.  1186 
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Figure S3 1188 

 1189 

Figure S3: Center-surround organization is present regardless of deconvolution method. 1190 
(A) Mean whole-frame dF/F GCaMP response in an example animal. (B) We tested 3 different 1191 
methods of deconvolution, OASIS 59, first-differences (i.e. subtracting one frame from the 1192 
previous), and Widefield Deconvolution 61. Widefield Deconvolution is expected to be the best 1193 
method, as it is designed for data like this and does not incorporate the sparse-event constraints 1194 
of OASIS, which is designed for single neurons. We found similar time-series results for each of 1195 
the methods. The first-differences method (i.e. deconvolution with an kernel that decays 1196 
immediately) seems to overestimate decreases in firing rate, as might be expected. All panels 1197 
use the same dataset. (E, F, G) Spatial distribution of responses during the early laser period. 1198 
All deconvolution methods produce a qualitatively similar excitatory response during this early 1199 
period. (H, I, J) Spatial distributions of responses during late laser period demonstrates slight 1200 
differences in size of surround, but overall a qualitatively similar center-surround organization 1201 
with all methods. (K, L, M) Spatial distributions of response during the late laser period, but with 1202 
dashed contours depicting the manually-drawn regions of interest (ROIs) that we used to 1203 
produce the time-series data in (B, C, D), with red dashed contours representing the center 1204 
ROIs, and blue dashed contours representing the surround ROIs. 1205 
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Figure S4 1206 

 1207 

 1208 

Figure S4: (A-C): Stimulation response correlates to the pattern of stChrimsonR 1209 
expression. (A) Example animal’s response during the late stim period. (B) Example animal’s 1210 
stChrimsonR expression pattern (gray: fluorescence) with overlaid contours of fluorescence 1211 
intensity. (C) Example animal’s response during the late stim period overlaid with their 1212 
stChrimsonR contours. (D-F): Expression and surround response of each mouse in the 1213 
widefield dataset. (D-F) Field-of-view showing GCaMP expression (green image), 1214 
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stChrimsonR expression (red image). Contours: black = 80% of maximum illumination, red = 1215 
80% of maximum expression, blue = local minimum of the surround suppression. (G-I): 1216 
Spatiotemporal response pattern of widefield response to excitatory cell stimulation. (G) 1217 
Response over time, each frame corresponding to a timepoint in the timecourse in (B). Group 1218 
ROIs were selected as the top 30% of positively or negatively responding pixels within 1 mm of 1219 
the center of response and were used to compute the timecourses in (B); Methods. (H) 1220 
Timecourse of the response in the center and surround in the group-averaged signal. Error: 1221 
standard deviation across pixels. (I) Reproduction of Fig. 4D. Same as (B), but each animal’s 1222 
timecourse was generated from their individual data and then averaged, resulting in less 1223 
smoothing between center and surround due to small variations in optogenetic expression 1224 
region size across animals. Error: standard error across animals. 1225 
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Figure S5 1227 

 1228 

Figure S5: Differences in dynamics are restricted to those seen between the onset of 1229 
wide- and narrow-waveform cells. The excitatory and inhibitory (wide- and narrow-) onset 1230 
latency difference is shown in Fig. 7C. Other quantities shown here do not differ: wide- vs 1231 
narrow (excitatory vs inhibitory) time to steady state (B), and onset time and time to steady state 1232 
(C,D) for elevated and suppressed groups of wide-waveform excitatory cells. (A) Example 1233 
single neuron firing rate with fits. To obtain the onsets for individual cells, each cell’s mean 1234 
timecourse was smoothed with width dependent on the detectability of the transient signal 1235 
(SNR; Methods), then a logistic function was fit to data from time range [-100ms, 100ms]. The 1236 
onset time (latency) was defined as the time to half-max of the logistic function. (B) No 1237 
difference in median time to steady state was found across narrow-spiking and wide-spiking 1238 
cells. (C) No difference in median onset time for elevated and suppressed groups of wide-1239 
waveform (excitatory) cells. (D) Same as B, but difference in median time to steady-state.  1240 
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Figure S6 1241 

 1242 

Figure S6: Distributions of opsin fluorescence measured in vivo. (A) Red channel after 1243 
neuropil correction (Methods). Y-axis, first derivative of CDF, smoothed with LOWESS; point 1244 
separating non-expressing neurons (left, below dashed line) and expressing (above dashed 1245 
line) is set at the local minimum. Error bars (light blue): bootstrapped standard error (N=244 1246 
neurons, N=3 animals). (B) Histogram, same data. The log-likelihoods (LLs) indicate that a 1247 
lognormal distribution (orange) fits the observed distribution better than a Gaussian (green). 1248 
Shown: fits used for simulations, excluding non-expressing neurons (gray). LLs, lognormal = 1249 
109.0, Gaussian 49.0. (LLs when including all neurons: lognormal = 95.3, Gaussian = 47.5).  1250 
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Figure S7 1251 

 1252 
Figure S7: (A-B): Networks at all tested recurrent strengths operate within the ISN regime. 1253 
(A) To examine paradoxical suppression, we record the steady-state responses of the I cells in 1254 
response to different levels of stimulation. We performed this experiment on all networks 1255 
presented in Figure 8. (B left) Steady-state responses of the I cell population to 5 levels of 1256 
stimulation. Error bars are standard error to the mean. Graph has been zoomed into the region 1257 
which clearly shows paradoxical suppression in all 3 networks. This paradoxical suppression is 1258 
predicted for both loosely and tightly balanced networks. Our simulations used three recurrent 1259 
strength values, one in the tight-balance regime and two in the loose-balance regime, and we 1260 
confirmed that all three showed paradoxical effects of suppression when I cells are stimulated 1261 
(B right) Same as (B left) but input normalized by the input value calculated in Fig. 8 to drive 1262 
each network to the same firing rate (input level that achieves same value of the 75th percentile 1263 
of evoked rates; see Fig. 8). (C-F): Inhibitory neurons in balanced state model show similar 1264 
responses to excitatory neurons but are recruited after initial stimulation. (C) Mean 1265 
timecourses for elevated and suppressed inhibitory cells (left and right, respectively) show the 1266 
same characteristic transient response followed by steady-state responses. (D) Cross-1267 
correlation analysis of E- and I-cell response. Network has no synaptic delays built into the 1268 
model. E-cells respond to direct stimulation, and then I-cells are recruited after. (E) Population 1269 
distribution of steady-state responses is similar across E- and I-cells, though excitatory cells 1270 
show a slightly longer-tailed positive response (true in the data as well; Fig. 5E), as seen 1271 
through the distribution of responses or their corresponding CDFs (F) 1272 
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Figure S8 1273 

 1274 

Figure S8: (A-E): Increasing strength of recurrent connections does not substitute for 1275 
recurrent connection variability. (A) Cumulative distribution of responses to optogenetic 1276 
stimulation in model with 1x recurrent strength, matched to the 75th percentile of the response 1277 
measured using electrophysiology. Negligible recurrent variability in this simulation (same 1278 
number of recurrent connections to each neuron, variability in recurrent strength ~1% of mean, 1279 
see Methods), and so spread in responses as a function of input is due to optogenetic input 1280 
variability. Distribution of input is inferred from data in Fig. 6 (lognormal fit; Methods.) (B) Same 1281 
as (A) but in model with 2.5x recurrent strength. (C) Relationship between input and steady-1282 
state response in the model with 1x recurrent strength. Marginal distribution of response show 1283 
on the right. (D) Same as (C), but in model with 2.5x recurrent strength.  1284 
Note that both stimulations produce similar variability between input strength and firing rates. 1285 
This variability is seen as spread in the red cloud of points around an imagined curve that could 1286 
be fit through the points. (E) Estimated mean absolute error of the relationship between the 1287 
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input and output as measured by a LOWESS fit across all recurrent strength manipulations.  (F-1288 
H): Sensitivity analysis demonstrates that matching suppression is achievable within 1289 
confidence bounds observed baseline firing rates, but only in the network with the 1290 
strongest recurrent connectivity strength. (F) Bootstrapped distribution of baseline firing rate 1291 
estimated from electrophysiology data. 95% confidence intervals are drawn from the 1292 
bootstrapped distribution. (G) Bootstrapped distribution of the proportion of the population that is 1293 
suppressed following optogenetic stimulation, estimated from the electrophysiology data. (H) 1294 
The network baseline firing rate and recurrent strength were systematically manipulated, finding 1295 
that the only networks that can replicate the proportion of suppression we observe within the 1296 
baseline firing rate we observe are networks with strong recurrent connectivity. (I-M): Models 1297 
with 41% of cells without opsin replicate steady-state dynamics, noisy relationship 1298 
between opsin input and steady-state response, and response distribution. (I) Distribution 1299 
of opsin input was generated by sampling from a lognormal distribution fit to our observed opsin 1300 
fluorescence, and in order to replicate the sparse expression we observed in histology we set 1301 
41% of cells to 0 at random. (J) Mean timecourse of response to stimulation in elevated cells 1302 
maintains the same transient and steady state dynamics observed in the main simulations. (K) 1303 
Same as (B), but in suppressed cells. (L) Relationship between opsin input and steady state 1304 
response remains weak but positive, marginal distribution shown on right. (M) Cumulative 1305 
response distribution to stimulation shows typical long tail and large proportion of suppressed 1306 
responses. 1307 
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