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Summary 2 

Memories of past events can be recalled long after the event, indicating stability. But new 3 

experiences are also integrated into existing memories, indicating plasticity. In the hippocampus, 4 

spatial representations are known to remain stable, but have also been shown to drift over long 5 

periods of time. We hypothesized that experience, more than the passage of time, is the driving 6 

force behind memory plasticity. We compared the stability of place cells in the hippocampus of 7 

mice traversing two similar, familiar tracks for different durations. We found that the more time 8 

spent in an environment, the greater the representational drift, regardless of the total elapsed time. 9 

Our results suggest that spatial representation is a dynamic process, related to the ongoing 10 

experiences within a specific context, and is related to the accumulation of new memories rather 11 

than to passive forgetting.  12 

 13 

INTRODUCTION 14 

Place cells in the hippocampus1–3 are thought to be involved in the representation of episodic 15 

memories4,5. When recalling a memory that involves the hippocampus, the memory is reinstated 16 

in the pattern of cell activity in the CA1, according to the synaptic strengths at the moment of 17 

encoding6,7. To represent such memories, place cells must be both stable enough to hold the core 18 

memory8, yet dynamic enough to allow the introduction of changes to the memory, thus enabling 19 

memory updating9. 20 

Indeed, the representation of place cells in the hippocampus has been shown to gradually change 21 

over time, within the same context. Referred to as gradual remapping8,10,11, and also as 22 

representational drift, this process occurs over a period of hours to days, of repeated exposures to 23 

the same environment12–15, although it has been shown that context representation may be 24 

preserved16. Two mechanisms could potentially contribute to representational drift. One 25 

mechanism is time dependent, whereby the passage of time weakens memories, leading to partial 26 

forgetting of the original representation. The second mechanism involves context updating, by 27 

which memories that are more malleable to change, due to the specific context and the amount of 28 

experience accumulated within them, are continuously updated. The question arises as to whether 29 

the malleability of memories is more affected by their relative use, or rather by the absolute passage 30 

of time.  31 
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To address this question, we used a behavioral paradigm that dissociates time and experience. A 32 

mouse traversed two familiar connected environments in the same imaging session. The mouse 33 

visited one of the environments for only short periods at the beginning and at the end of the session, 34 

while spending the remaining hours of the session in the other environment. Thus, the absolute 35 

time interval between the first and last recording in each environment was identical, while the time 36 

spent in each environment differed by an order of magnitude. We found that spatial representations 37 

in the hippocampus changed differently in the two environments, such that the rate of change 38 

depended on the level of use: the longer a memory in a certain context was active, the more 39 

malleable it was to change.  40 

 41 

RESULTS 42 

Context-dependent change of representation is a function of accumulated experience in CA1 43 

We set out to distinguish between the effects of passage of time and experience in a context, on 44 

the representational drift in the hippocampus. Thus, we designed a U-Shaped Maze consisting of 45 

two linear tracks of similar length, connected by an intermediate chamber with two doors that open 46 

to either track (Figure 1A). Mice were trained to traverse both tracks, running back and forth, and 47 

collecting food rewards at both ends of the track. The habituation period was 4-6 days; on each 48 

day the animals ran 20 minutes in each arm of the maze until they were consistently able to run 49 

back and forth to collect the food rewards. 50 

We performed Ca2+ imaging of neuronal activity in the dorsal CA1 (dCA1) in freely moving mice 51 

using a one-photon miniature microscope and a micro-endoscope probe (mean ± SD: 456 ± 146 52 

cells per session) (Figure 1B). On the day of the experiment, the mice were first placed inside the 53 

intermediate chamber. Subsequently, they were released into track A, where they spent 10 minutes, 54 

while their neuronal activity was imaged (A0). We then opened the doors into track B, which the 55 

mice traversed for 200 minutes. The activity of cells in track B was imaged for the first 10 minutes 56 

only (B10). Subsequently, the mice returned to track A through the intermediate chamber for 10 57 

additional minutes of imaging (A200), and finally to track B where the cells were imaged for an 58 

additional 10 minutes (B210). This yielded a total of four 10-minute recordings (Figure 1C). The 59 

experimental design ensured that the absolute time that had passed between A0 and A200 was 60 

identical to the absolute time passed between B10 and B210. 61 
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Visually comparing activity (Figure 1D, E) across recordings indicated greater resemblance in the 62 

spatial maps of track A (A0 and A200) than of track B (B10 and B210) (Figure 1F, Supplementary 63 

figure 1A). To quantify changes over time in the representations in tracks A and B, we calculated 64 

the correlations between the population rate maps in each pair of recordings (Figure 1G, 65 

Supplementary figure 1B). To obtain a baseline correlation value, within a recording period, we 66 

divided each 10-minute period into two five-minute periods and correlated these with each other. 67 

We found a significantly lower correlation between the maps in the B10 and B210 recordings than 68 

in the maps of the A0 and A200 recordings (Figure 1H, Supplementary figure 1C). To quantify the 69 

extent of representational drift, we calculated the positional shift of the center of mass of each 70 

place field, between the first and last recordings in each track. This yielded a significant increase 71 

in positional shift of place cells in track B, compared to track A (Figure 1I, Supplementary figure 72 

1D). Overall, these results indicate greater change in representation of a context while the animal 73 

is in that context, relative to when it is not. 74 

 75 

Representational drift is a gradual process 76 

To investigate the dynamics of the representational drift observed in track B, we repeated the 77 

behavioral protocol described above, while introducing repetitive recordings. Specifically, we 78 

performed 10-minute recordings every 50 minutes in track B, resulting in a total of five recordings 79 

(B10, B70, B130, B190 and B210), and two recordings in track A (A0 and A200) (Figure 2A). Rate maps 80 

of place cells underwent gradual change, from B10 to B210 (Figure 2B). This was also reflected in 81 

a gradual decrease in inter-map correlations as a function of the time interval between these maps 82 

(Figure 2C, D, Supplementary figure 2A, B). In this experiment, we reproduced the initial finding, 83 

namely, higher correlations between the first and last recordings in track A compared to the first 84 

and last recordings in track B (Figure 2E, Supplementary figure 2C). The positional shift increased 85 

as the correlations decreased (Figure 2F, G, Supplementary figure 2D).  86 

 87 

Representational drift is a context-wide process  88 

We were interested in further investigating the extent of the context-related representational drift 89 

and whether it is related to specific sub-contexts within the bigger one. To check this, we needed 90 

a more variable behavior and a different occupancy time than is possible in a linear track. Thus, 91 

we repeated the experiment in two rectangular arenas connected by a door (Figure 3A). We used 92 
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the same extended experimental protocol as before (Figure 2A). We recorded the activity in dCA1 93 

in the two dimensional (2D) shaped arenas (Figure 3B), and we observed a similar effect. The 94 

correlations of rate maps were significantly greater for place cells in context A than for place cells 95 

in context B, albeit with a smaller effect size than in the linear track (Figure 3C, D). 96 

Our results thus far indicate a role of experience within a specific context, in accelerating 97 

representational drift. We sought to examine whether this was also true for sub-regions. To 98 

examine this, we divided the 2D arena in arena B to two virtual halves and checked the 99 

representational drift in each half. For this analysis, we focused on the subset of neurons whose 100 

maximum firing field was initially in each sub-region (see the example in Figure 3E). We noticed 101 

that in many instances the reduction in correlation was not related to the time spent in each sub-102 

region (e.g. Figure 3F for mouse 9819). We grouped the neurons by each mouse’s preferred sub-103 

region, i.e. the region in which it spent more time, and measured the correlations between the rate 104 

maps of these neurons, for each pair of recordings. No significant dependence was found between 105 

the time spent in a sub-region and the reduction in correlation (Figure 3G). There was even a slight 106 

non-significant tendency for an increase in correlation when the time spent in a sub-region 107 

increased (Figure 3H). Note that in the specific experimental setting, this analysis cannot be 108 

reliably done in a linear track, as the mice tended to spend an equal amount of time throughout 109 

such a track. In the 2D arena, each mouse had a preferred sub-region where it spent more time, 110 

thus enabling testing the hypothesis. In summary, representational drift appears to occur as a single 111 

entity in the entire context, unrelated to the occupancy time within sub-regions of the context. 112 

 113 

Spatial information content of place cells increases while the number of place cells decreases, 114 

as more time is spent in an environment 115 

To understand how representational drift affects the spatial encoding of the environment, we 116 

measured parameters of spatial information and encoding. We examined the spatial information 117 

content of place cells in each of the recordings. Spatial information of place cells increased with 118 

the time spent in the environment (Figure 4A left). The increase in spatial information was 119 

significantly higher in track B than track A (Figure 4A right). To investigate the cause of the 120 

increased spatial information content of the place cells, we examined the out-of-field event rate, 121 

the maximum bin event rate, and the field size over the course of the experiment. Both the out-of-122 

field event rate and the field size decreased as the experiment progressed (Supplementary figure 123 
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3A, B), while the maximum bin rate did not change significantly (Supplementary figure 3C). For 124 

a given recording, we observed a decrease in the proportion of place cells of the population of 125 

active cells, as more time was spent in the environment (Figure 4B left). The proportion of active 126 

place cells in B210 was significantly lower than that of A200 (Figure 4B right). This reduction in the 127 

proportion of place cells was not accompanied by a concordant reduction in the overall number of 128 

active cells in each imaging recording (Figure 4C). The increase in spatial information content of 129 

place cells was correlated with the decrease in the proportion of place cells (Figure 4D). This 130 

suggests that the encoding power did not change, despite the decrease in the number of active place 131 

cells. To examine the combined effect of the changes in spatial information and the proportion of 132 

place cells, on the population encoding of space, we trained a maximum likelihood estimator 133 

(MLE) for decoding and cross-decoding the neural activity (see the methods for more details). We 134 

observed a slight insignificant increase (A0 - A200: 0.74 cm; B10 - B210: 3.66 cm) in the decoding 135 

error, throughout the experiment (Figure 4E). This suggests that the population of place cells 136 

retained its capacity to encode spatial information, despite the substantial reduction in the number 137 

of cells. To further assess the effect of the representational drift, we performed a cross-decoding 138 

analysis of the place cell population, between recordings (see methods). This revealed more 139 

accurate cross-recording decoding in track A than track B (Figure 4F). Taken together, these results 140 

suggest that the efficiency of hippocampal representation increases with experience, without 141 

compromising its accuracy. 142 

 143 

DISCUSSION 144 

We examined the stability over a number of hours, of spatial representations in the hippocampus, 145 

in mice traversing two familiar environments in which they spent substantially different amounts 146 

of time. We found that the representations of a track in which the mouse spent relatively little time 147 

(20 min. in total, in two visits) were highly correlated between the visits, three hours apart. In 148 

contrast, the representations of a track in which the mouse spent a much longer time (about 3 149 

hours), were significantly less correlated between two recordings, three hours apart. This indicates 150 

more malleability to change with longer time spent in an environment, even an environment 151 

without any noticeable physical difference from a previously experienced one or from the 152 

surrounding area.  153 

 154 
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Representational drift depends on accumulated experience  155 

Previous studies reported gradual decreases in spatial correlations, with repeated exposures to the 156 

same environment12,14, over a period of days. In our study we observed a comparable decrease in 157 

correlation, but over a period of three hours rather than days. We attribute the steeper decrease in 158 

correlations seen in our study to the long time spent in the track. However, while the largest change 159 

in representation was in track B, where the mouse spent most of its time, we also observed a change 160 

in representation in track A, though it was visited for only short periods. This representational drift 161 

may reflect the previously suggested continuous sparsification of the representation, even in the 162 

absence of active use, as the brain’s way of compressing experiences, thereby achieving greater 163 

efficiency by using less resources17,18. The lesser change in representation in track A could also be 164 

due to context generalization, as the two tracks were interconnected19. 165 

The correlations of the spatial representations gradually decreased as the time spent in a given 166 

track increased. This suggests a constant representational drift of the place cell population, as has 167 

been shown in consecutive re-exposures to the same environment13,14. Moreover, in a similar 168 

recording task in a rectangular arena, we found that the decrease in correlation in each half of the 169 

arena did not depend on the time spent there. This suggests that the rate of representational drift 170 

was related to accumulated experience in the context, rather than to the specific locations within 171 

it. 172 

 173 

A decrease in active place cells is accompanied by an increase in spatial information  174 

Previous studies reported that spatial information content increased with repeated exposures to the 175 

same environment20,21. In our experiment, this effect was also mediated by the time spent in a 176 

familiar environment. The increase in spatial information per cell was accompanied by a decrease 177 

in the number of overall active place cells. Thus, as time progressed in a specific context, fewer 178 

place cells were in use, but their individual information content was higher. We suggest that this 179 

increases the efficiency of representations, as more experience is accumulated within an 180 

environment, thus reducing the resources needed as the network becomes more tuned.  181 

To test this efficiency hypothesis, we used a maximum-likelihood decoder to decode the animals’ 182 

position at each time point. We found that the decoding quality did not substantially degrade 183 

between the start and the end of the experiment, suggesting that the increase in spatial information 184 

per cell compensated for the decrease in the number of place cells. This hints to the possibility that 185 
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the hippocampus balances the amount of spatial information within its network by decreasing the 186 

number of place cells with accumulated experience, while increasing the spatial information per 187 

cell, such that the total information does not change much, but the load on the network is 188 

reduced21,22. 189 

In summary, our results indicate that even in the absence of perceived change, memory of a given 190 

environment is constantly updated, thereby inducing a continuous representational drift that is 191 

dependent on the amount of time spent in that environment. This resonates well with the 192 

phenomenon of lability to change after activation, known as reconsolidation23. The notion that 193 

hippocampal memory may be subject to change, when active, indicates a tight link between 194 

activity within context, and plasticity of hippocampal representations.  195 

 196 

 197 

STAR methods 198 

Contact for Reagent and Resource Sharing: Further information and requests for resources, 199 

reagents and Matlab code should be directed to and will be fulfilled by the Lead Contact. 200 

 201 

METHODS 202 

Mice and surgical procedures  203 

All the surgical and experimental procedures were approved by the Animal Care and Use 204 

Committee of the Technion – Israel Institute of Technology. All the mice were from the same 205 

C57BL/6 background from Jackson Laboratories. The mice were aged 8-12 weeks at the start of 206 

the procedures. They were housed separately and underwent two surgical procedures under 207 

isoflurane anesthesia (1.5-2% volume) accompanied by buprenorphine analgesia (0.7 mL of 1:60 208 

saline-diluted 30 mg/ml buprenorphine). 209 

The mice were injected with the viral vector AAV1-syn-jGCaMP7f-WPRE (~1!" vg/mL, 210 

Addgene) into the dCA1 (stereotactic coordinates: -2.1 mm anteroposterior, 1.25 mm mediolateral, 211 

-1.4 mm dorsoventral from bregma) of the hippocampus using a pulled glass micropipette. These 212 

injections were 250-300 nL in volume, at a rate of 0.05 μl a minute. Two weeks after the injections, 213 

the mice underwent a second surgery. A craniotomy (1mm in diameter) was performed in the same 214 

coordinates as the GCaMP injection. We removed the dura and cortex above the CA1 by suction 215 

with a 29-gauge blunt needle while constantly washing the exposed tissue with sterile PBS. Then 216 
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we implanted a GRIN lens (ProViewTM Lens Probes 1.0mm diameter, ~4.0mm length, Inscopix, 217 

Palo Alto, CA) directly above the CA1, and sealed the space between the skull and the lens with 218 

kwik-sill (WPI, Sarasota, FL). Afterwards, we used Metabond (Parkell, Edgewood, NY) to cover 219 

the exposed skull and the lateral sides of the lens. Two weeks after, a baseplate (Inscopix) was 220 

installed above the lens. This was done by lowering the miniature microscope (Inscopix) until it 221 

reached an in-focus imaging plane, after which the baseplate was attached to the Metabond 222 

(Parkell) covered skull using light-cured dental cement. 223 

 224 

Food restriction, training, and reward habituation 225 

After at least one-week recovery following the implantation surgery, the animals were food 226 

restricted to 2.5-3 g of food pellets (Altromin 1324 IRR complete animal feed for laboratory 227 

animals) to maintain 85%-90% of their original body weight. The mice were trained to run back 228 

and forth in the linear track, receiving small banana-flavored food pellet rewards at both ends of 229 

the track. This was done for 3-5 days prior to the experiment to familiarize the animals with the 230 

track and to obtain good coverage during the experiments. Training was finished when the animals 231 

could do at least 10 runs back and forth (20 meters) in 10 minutes while eating all the food rewards 232 

offered. After completing the training, the animals were ready for the experimental phase. 233 

 234 

Experimental setup 235 

The experimental setup consisted of a custom-made maze composed of two linear tracks 236 

measuring 100 cm in length, 10 cm in width, and 10 cm in height. The tracks were painted black 237 

and suspended 40 cm above the ground using a small table. We used overhead lights to illuminate 238 

the track, and black curtains surrounded the track from all sides. At the beginning of each 239 

experiment, the animals were first connected to the miniature microscope (Inscopix) in the home 240 

cage while we made sure to return to the same field of view before the start of the imaging 241 

recording. Mice were placed inside the intermediate chamber, and then released into track A where 242 

they spent 10 minutes, while the activity of their cells were imaged (A0). We then opened the doors 243 

to track B, which the mice traversed for 200 minutes. The activity of cells in track B was imaged 244 

for the first 10 minutes only (B10). After 200 minutes, the mice returned to track A through the 245 

intermediate chamber, for 10 additional minutes of imaging (A200), and finally to track B, where 246 

the cells were imaged for an additional 10 minutes (B210), resulting in a total of four 10-minute 247 
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recordings (Figure 1B). The linear track surface was cleaned after each session with 70% ethanol. 248 

For the 2D experiments, the same behavioral protocol described above was repeated, only in a 249 

different maze. This maze consisted of two similar rectangular arenas connected by a door (Figure 250 

3A).  251 

 252 

Ca2+ imaging and processing of the data 253 

We imaged the calcium signal using a miniature microscope (nVista, Inscopix) at 20 Hz. 254 

Recordings were synchronized with the behavioral camera mounted above the track. We processed 255 

the imaging data using the Inscopix data processing software (IDPS) (1.3.1) and custom written 256 

MATLAB codes. To ascertain similar processing for all recording epochs, analysis of imaging 257 

data was combined for all recording epochs of the same experiment. For processing the imaging 258 

data, we followed previously described routines13. Specifically, we spatially downsampled the 259 

videos in each dimension. Then we applied a 3x3 median filter to fix any defective pixels due to 260 

unequal illumination or defects in the sensor itself. Subsequently, a spatial bandpass filter was 261 

applied using the IDPS (low cut-off: 0.005, high cut-off: 0.5 𝑝𝑖𝑥𝑒𝑙#!) to achieve a smoothed 262 

version of the original video. This enhanced the appearance of the blood vessels and was later used 263 

to make the motion correction more effective. We then applied a motion correction algorithm using 264 

IDPS (correction type: translation and rotation; reference region with maximum registration value 265 

(r = 20 pixels)). For calcium signal extraction from putative single CA1 neurons, we used the 266 

constrained non-negative matrix factorization – extended algorithm (CNMF-E) using 267 

MATLAB24,25. The algorithm isolated the putative single units from the processed imaging videos 268 

automatically. Isolated putative units that did not match spatial or temporal features of the neurons 269 

were discarded and not used in subsequent analyses. All the analyses used the deconvolved activity 270 

inferred by CNMF-E. 271 

 272 

Place fields 273 

We computed spatial firing rates (rate maps) by dividing the one-dimensional track to 25 spatial 274 

bins (4 cm/bin). We divided the neural and behavioral data by conducting direction runs to the left 275 

and to the right. Events that occurred and position information that accumulated during non-276 

movement epochs (< 1 cm/sec) were excluded. We also excluded the last bins at the two ends of 277 

the tracks, where the mice were generally stationary due to consumption of food rewards. We then 278 
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divided the number of events in each spatial bin by the amount of time the mouse spent in that bin 279 

per direction. We used a Gaussian smoothing factor (sigma = 3 cm) for each bin and normalized 280 

each place field by its maximum value. Unvisited spatial bins were marked for exclusion in later 281 

analyses. Place fields with less than five events (Ca2+ imaging) were excluded from the analysis. 282 

For place cells included in the analysis, we calculated the spatial information (SI, bits/event) for 283 

each cell, as previously described:  284 

𝑆𝐼 = ∑$ 	𝑝$	(𝑟$/𝑟̅)𝑙𝑜𝑔2(𝑟$/𝑟̅) 285 

Where 𝑟$ is the rate of the neuron in the ith bin; 𝑝$	 is the probability of the mouse being in the ith 286 

bin (time spent in the i-th bin/total session time); 𝑟̅ is the overall mean rate; and i indicates running 287 

over all the bins. We then performed a temporal shuffling procedure for each rate map, to test for 288 

statistical significance of spatial information. Event timestamps were moved in a random non-289 

repeating circular shift relative to the position time in each trial, 1000 times for each cell. We 290 

computed rate maps and spatial information for every iteration. A cell was considered as spatially 291 

modulated during a trial if its spatial information score was higher than 950 of the shuffled data 292 

instances of spatial information, for a significance level of p < 0.05. 293 

 294 

Single-cell correlation 295 

We calculated the correlation between the activity of each two corresponding neurons in a 296 

particular imaging recording, using the rate maps of these neurons. We calculated the Spearman's 297 

correlation between the maps for each two neurons. Then we batched all the cell-pair correlations 298 

of all the mice from the same sessions together. 299 

 300 

Positional shift 301 

For each neuron, we calculated the positional shift as the absolute difference between the positions 302 

of the peak event rate (Gaussian smoothing factor sigma = 3 cm) on the track in two recordings. 303 

Then we averaged all the positional shifts for the neurons of all the mice in the same sessions. 304 

 305 

Decoding position from activity 306 

To decode the position of the mouse from the neural activity, we used a maximum likelihood 307 

estimation (MLE) decoder. We assumed that neural events were uncorrelated, which is practically 308 

untrue and diminishes decoding accuracy but greatly simplifies calculation time. In addition, 309 
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because events are so sparse that most time bins are either empty of activity or contain only one 310 

event, we used a maximum filter (𝑠𝑖𝑧𝑒 = 250[𝑚𝑠]) over each neuron’s activity vector. The 311 

likelihood function can then be written as: 312 

𝐿(𝑦&; 𝑥&) = 	?𝑃(𝑥&$; 𝑦)
'

$(!

 313 

Where 𝑥&$ is a binary variable that represents whether neuron 𝑖 fired at time 𝑡, 𝑁 is the number of 314 

place cells used for the decoding, 𝑃(𝑥&$; 𝑦) is the 𝑦 bin of the 𝑖&) neuron normalized unsmoothed 315 

rate map if the neuron fired, and the inverse normalized rate map if it did not fire. The position can 316 

then be decoded using maximum likelihood. 317 

𝑦C& = 𝑎𝑟𝑔𝑚𝑎𝑥* 	?𝑃(𝑥&$|𝑦)
'

$(!

 318 

Because the probabilities are very small, we used the following adjusted formula to avoid 319 

numerical errors; and as the transformation is monotonous, the decoding is not changed: 320 

𝑦C& = 𝑎𝑟𝑔𝑚𝑎𝑥* exp IJ𝑙𝑜𝑔K1 + 𝑃(𝑥&$|𝑦)M
'

$(!

− 1O 321 

 322 

To test the decoder’s error, we split the recording data such that the rate maps were estimated based 323 

on 75% of the linear track traversals (in each direction) and the MSE was calculated over the 324 

remaining 25%. For the cross decoder, we calculated the rate maps based on the first recording 325 

and the error over the second recording.  326 
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Main figure titles and legends 399 

 400 

Figure 1 401 

 Context dependent change of representation as a function of the relative time in the dorsal CA1. 402 

A. Left: Illustration of the maze, composed of two linear tracks, A and B, connected by an 403 

intermediate chamber. Right: Illustration of the injection site and viral vector used, together 404 

with the lens implantation. 405 

B. Example of an imaging field of view. 406 

C. The timeline of the experiment. The colors correspond to the different recordings; grey color 407 

indicates experiment time without imaging. 408 

D. Three examples of place cell calcium traces in all the recordings. 409 

E. Examples of three place cells, showing the firing rate of the cells as a function of position in 410 

the track (right) and the Ca+, events (left) along the different recordings (color code as in B). 411 

F. Place cell population in all the recordings for mouse 9855. In each row are shown average rate 412 

maps for individual cells along the linear track, during left or right traversals of place cells that 413 

were active in that specific period, normalized by peak activity. In the nth row, place cells were 414 

selected and sorted according to the nth imaging session. Note that each column displays data 415 

from the same session. The red and blue rectangles emphasize the comparison between the 416 

first and last sessions in tracks A and B, respectively.  417 

G. Pairwise Spearman correlations of the individual place cells shown in “e”, between recordings. 418 

H. Pairwise correlations of all the place cells from all the mice (n=3 mice, 1441 cells) as a function 419 

of elapsed time. The 5-minute point was computed by splitting the recordings in half and 420 

correlating the activity of place cells between consecutive halves. The correlations in track B 421 

were lower than in track A (mean±s.e.m: A200=0.46±0.01; B210=0.31±0.01; p<0.001, 422 

Kruskal-Wallis with Dunn’s test). 423 

I. Left:  Positional shift of the center of mass of the place cells of all the mice (n=3, 1441 cells), 424 

between the first and last recordings in tracks A and B. Right: The overall positional shift of 425 

the center of mass of the place cells, between tracks A and B. Positional shift increased in track 426 

B compared to track A (mean±s.e.m: A200=22.46±0.76; B210=25.77±0.8; p<0.001 Mann-427 

Whitney U test). 428 

 429 
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Figure 2 430 

Representational drift is a gradual process. 431 

A. Timeline of the experiment, the colors correspond to the different recordings, grey color 432 

indicates experiment time with imaging off. 433 

B. Examples of two place cells, showing the firing rate of the cells as a function of their positions 434 

in the track (right) and the Ca+, event times as a function of position (left), over the course of 435 

the recordings (same colors as in panel a). 436 

C. The place cell population in all the imaging sessions for mouse 6065. The maps show average 437 

rate maps for individual cells along the right or left traversals of the linear track of the place 438 

cells that were active during the specific recording, normalized by the peak activity. In the nth 439 

row, place cells are selected and sorted according to the nth recording. Note that each column 440 

displays data from the same recording. 441 

D. Average pairwise correlations of individual cells, between imaging sessions for the same 442 

mouse. 443 

E. Pairwise correlation of all place cells (n=5 mice, 4280 cells) as a function of elapsed time. 444 

Correlations in track A were higher than in track B (mean±s.e.m: A200=0.45±0.01; 445 

B210=0.26±0.008; p<0.001, Kruskal-Wallis with Dunn’s test). 446 

F. An example of positional shift of the center of mass of all place cells from the same mouse 447 

shown in "c". 448 

G. Positional shift compared between recordings in track A and recordings in track B, p<0.001, 449 

Kruskal-Wallis with Dunn’s test. 450 

 451 

Figure 3 452 

Representational drift is a context-wide process. 453 

A. Illustration of the maze. 454 

B. Two examples of place cells from all the recordings. In each example, top row: rate maps as a 455 

function of position in the track; bottom row: trajectory of the animal (black) and Ca+, events 456 

(red). 457 

C. Pairwise single-cell correlations between imaging sessions, in both tracks, for mouse 9819. 458 
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D. Pairwise correlation of all the place cells from all the mice (n=3 mice, 1829 cells) as a function 459 

of the time passed. Correlations after 200 min. were lower in track B than track A 460 

(mean±s.e.m: A200=0.40±0.01; B210=0.35	±0.01, p<0.001; Kruskal-Wallis with Dunn’s test). 461 

E. Left: Illustration of the division of the arena into halves. Right: Two examples of place cells in 462 

the first and last imaging sessions in track B. 463 

F. Correlation from the top and bottom halves of the arena, for mouse 9819. The top half slope=-464 

0.002, p=0.019; the bottom half slope=-0.005, p=0.026, two tailed t-test. 465 

G. Pairwise correlations of all the place cells from all the mice (n=3 mice, 1676 cells), as a 466 

function of the time passed. The two lines correspond to neurons whose maximal firing rate 467 

occurred in the sub-region where the mouse spent more time (green) and less time (gray). There 468 

was no significant difference between the two halves (p=0.075, Kruskal-Wallis with Dunn’s 469 

test). 470 

H. Normalized correlations as a function of the normalized time spent in each half of the arena, 471 

for all (n=3) mice. Slope=0.117, p=0.081, two tailed t-test. 472 

 473 

Figure 4  474 

As the time spent in an environment increased, the spatial information content of place cells 475 

increased and the number of place cells decreased. 476 

A. Spatial information content (n=8 mice) divided into runs north and south throughout the 477 

imaging sessions in both contexts. Left: The fitted regression line between spatial information 478 

and the time spent in the context was significant (R+=0.23, p<0.001); the spatial information 479 

of place cells increased as the time spent in the context increased (β=0.08, p<0.001). Right: 480 

bar plot of the spatial information content in the first and last recordings in tracks A and B. 481 

The effect of time on spatial information was statistically significant, F(1, 34) =79.29 p<0.001 482 

(two-way repeated measures ANOVA). The spatial information was higher in B210 than in B10 483 

(mean±s.e.m: B10=2.09±0.03; B210=2.69±0.08; p<0.001), and in A200 than in A0 484 

(mean±s.e.m: A0=2.04±0.05; A200=2.29±0.07; p=0.004). At the end of the experiment, the 485 

spatial information was higher in track B than track A (B210 - A200 p<0.001, T-test with 486 

Bonferroni correction for multiple comparisons). 487 

B. The proportion of place cells from all the active cells, in the same recording, during all 488 

recordings for both contexts. Left: The fitted regression model between the overall proportion 489 
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of active place cells and the time spent in the context was significant (R+=0.293, p<0.001); the 490 

proportion of active place cells decreased as more time was spent in the context (β=-0.02, 491 

p<0.001). Right: The effect of time on the proportion of place cells was statistically significant, 492 

F(1, 34) = 4.80 p=0.035 (two-way repeated measures ANOVA). The proportion of place cells 493 

active in each session was smaller in B210 than in B10 (mean±s.e.m: B10=0.23±0.01; 494 

B210=0.11±0.01; p<0.001), and was also smaller in A200 than in A0 (mean±s.e.m: A0495 

=0.26±0.01; A200 =0.18±0.01; p=0.006). The proportion of place cells in B210 was lower than 496 

in A200 (p=0.009, T-test with Bonferroni correction for multiple comparisons). 497 

C. The number of active cells in each session. Left: The regression model for the number of active498 

cells in each recording was not significant (R+=0.027, p=0.108). Right: The number of active 499 

cells did not differ significantly between recordings, F(1, 34) = 1.62 p=0.212 (two-way 500 

repeated measures ANOVA).  501 

D. The difference in spatial information content between the first and last recordings in both502 

tracks  (n= 62 recordings), normalized by the values of the first recording ([SInfo-./0 −503 

SInfo123/0]/SInfo123/0), plotted as a function of the normalized difference in the proportions of 504 

place cells between the first and last sessions in each track ([%PC-./0 −%PC123/0]/%PC123/0), 505 

r=-0.515, p<0.001 (Pearson’s correlations). 506 

E. Decoding error of the maximum likelihood estimator (MLE) decoder in the imaging sessions.507 

The decoding error increased moderately as more time was spent in the context (R+=0.09, 508 

p=0.039), although differences between the groups were not significant (t-test with Bonferroni 509 

correction for multiple comparisons). 510 

F. Cross-decoding error of the MLE decoder. The cross-decoding error was smaller in track A511 

than track B (p<0.001; t-test with Bonferroni correction for multiple comparisons). 512 
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Supplementary figure 1: Rate maps and correlation examples (related to figure 1). 

A. Two examples of rate maps across recordings of two mice. In each row are shown average

rate maps for individual cells along the linear track of place cells that were active during that

specific session, normalized by peak activity.

B. Pairwise correlations of the individual cells between recordings, for the same mice shown in

a.

C. Pairwise single-cell correlations, according to mice and to runs in different directions (north

and south).

D. Positional shift of the center of mass of all the place cells, according to mice and to runs in

different directions (north and south).
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Supplementary figure 2: Examples of rate maps and correlations of the extended protocol 

(related to figure 2) 

A. Two examples of rate maps across recordings of two mice in the extended imaging protocol. 

In each row are shown average rate maps for individual cells along the linear track of place 

cells that were active during that specific recording, normalized by peak activity. 

B. Pairwise correlations of individual cells between different imaging sessions for the same mice 

shown in a. 

C. Pairwise single-cell correlations, as a function of the time difference between sessions, for 

mice in the south-heading runs (top) and the north-heading runs (bottom). 

Positional shift of the center of mass of all the place cells, for mice in the south-heading runs (top) 

and the north-heading runs (bottom). 
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Supplementary figure 3: The effect of place field size, maximum firing rate of each bin, and out 

of field firing on spatial information content of place cells (related to figure 4) 

A. The out-of-field event rate (n=8 mice) according to runs north and south along the recordings 

in both contexts. Left: The fitted regression line between the out-of-field event rate and the 

time spent in the context was significant (𝑅!=0.196, p<0.001). The out-of-field event rate of 

place cells decreased as the time spent in the context increased (𝛽=-0.004, p<0.001). Middle: 

bar plot of the out-of-field event rate in the first and last recordings in tracks A and B. The 

effect of time on the out-of-field event rate was statistically significant, F(1, 30) = 22.5 p<0.001 

(two-way repeated measures ANOVA). The out-of-field event rate was lower in B210 than in 

B10 (mean±s.e.m: B10=0.12±0.004; B210=0.09±0.004; p<0.001), but not in A200 compared to 
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A0 (mean±s.e.m: A0=0.13±0.003; A200=0.11±0.005; p=0.237). At the end of the experiment, 

the spatial information was greater in track B than track A (B210 - A200 p<0.001, T-test with 

Bonferroni correction for multiple comparisons). Right: The difference in spatial information 

content between the first and last sessions in both tracks, normalized by the values of the first 

recording (see figure 4d for the equation), plotted as a function of the normalized difference 

in the out-of-field event rate between the first and last recordings in each track. r=-0.26, 

p=0.037 (Pearson’s correlations). 

B. The max bin rate for runs north and south along the imaging sessions in both contexts. Left: 

the fitted regression line between the max bin rate and the time spent in the context was not 

significant (𝑅!=0.007, p=0.58). Middle: bar plot of the max bin rate in the first and last 

imaging sessions in tracks A and B. The effect of time on the max bin rate was not statistically 

significant, F(1, 30) = 0.576 p=0.454 (two-way repeated measures ANOVA). Right: the 

difference in spatial information content between the first and last recordings in the two 

tracks, normalized by the values of the first recording plotted as a function of the normalized 

difference in the max bin rate between the first and last recordings in each track. r=0.13, 

p=0.312 (Pearson’s correlations). 

C. Field size for the runs north and south along the imaging sessions in both contexts. Left: The 

fitted regression line between field size and the time spent in the context was significant 

(𝑅!=0.403, p<0.001). The out-of-field event rate of place cells decreased as the time spent in 

the context increased (𝛽=-0.607, p<0.001). Middle: bar plot of the field size in the first and last 

recordings in tracks A and B. The effect of time on the out-of-field event rate was statistically 

significant, F(1, 30) = 103.87, p<0.001 (two-way repeated measures ANOVA). The field size 

was lower in B210 than in B10 (mean±s.e.m: B10=28.9±0.3; B210=25.05±0.43; p<0.001) and in 

A200 than in A0 (mean±s.e.m: A0=29.9±0.44; A200=28.3±0.25; p=0.001). At the end of the 

experiment, the spatial information was greater in track B than track A (B210 - A200 p<0.001, T-

test with Bonferroni correction for multiple comparisons). Right: The spatial information 

content difference between the first and last recordings in both tracks, normalized by the 

values of the first session (see figure 4d for equation), plotted as a function of the normalized 
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difference in the out-of-field event rate between the first and last recordings in each track. r=-

0.288, p=0.023 (Pearson’s correlations). 
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