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Abstract 
 

Classic models consider working memory (WM) and long-term memory as distinct 

mental faculties that are supported by different neural mechanisms. Yet, there are significant 

parallels in the computation that both types of memory require. For instance, the representation 

of precise item-specific memory requires the separation of overlapping neural representations of 

similar information. This computation has been referred to as pattern separation, which can be 

mediated by the entorhinal-DG/CA3 pathway of the medial temporal lobe (MTL) in service of 

long-term episodic memory. However, although recent evidence has suggested that the MTL is 

involved in WM, the extent to which the entorhinal-DG/CA3 pathway supports precise item-

specific WM has remained elusive. Here, we combine an established orientation WM task with 

high-resolution fMRI to test the hypothesis that the entorhinal-DG/CA3 pathway retains visual 

WM of a simple surface feature. Participants were retrospectively cued to retain one of the two 

studied orientation gratings during a brief delay period and then tried to reproduce the cued 

orientation as precisely as possible. By modeling the delay-period activity to reconstruct the 

retained WM content, we found that the anterior-lateral entorhinal cortex (aLEC) and the 

hippocampal DG/CA3 subfield both contain item-specific WM information that is associated with 

subsequent recall fidelity. Together, these results highlight the contribution of MTL circuitry to 

item-specific WM representation.  

 

Keywords: Working Memory, Medial Temporal Lobe, Item-specific Information.  
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Introduction 

 

Working memory (WM) actively retains a small amount of information to support ongoing 

mental processes 1. This core mental faculty relies upon distributed brain regions 2, ranging from 

lower-level sensory areas 3 (but see 4) to higher-level frontoparietal networks 4–7. This distributed 

neocortical network, however, often does not involve the medial temporal lobe (MTL), which is 

traditionally attributed to long-term episodic memory 9,10. This distinction is grounded in the 

separation between WM and long-term memory in classic models 11,12 and in early MTL lesion 

case studies 13,14. Yet, this classic view is not free of controversy. A growing body of research 

has suggested that the MTL is involved in tasks that rely on information maintained in WM 15–24. 

Furthermore, MTL lesions can disrupt WM task performance 25–28. Despite these recent findings,  

however, major theories have not considered the MTL as a mechanism underlying WM 

representation 8,29. First, it is unclear what computation process of the MTL is involved in WM 29. 

Furthermore, the MTL tends to engage more in a WM task when long-term memory becomes 

relevant, for example when task loads are higher 17,21,23 or when task stimuli are complex 
15,19,20,24,30,31. As a result, contributions from the MTL to WM are often deemed secondary 8,29.  

Clarifying this issue requires specifying how the MTL contributes to WM representation 

and the extent to which this contribution holds even when WM task demand is minimized. 

Although WM and long-term memory are traditionally considered separate mental faculties, the 

functional parallels in both types of memory suggest potential shared neural mechanisms 32–35. 

For example, the ability to retain precise item-specific memory would require the computation to 

distinguish neural representations of similar information – a process known as pattern 

separation 36. This aspect of long-term memory is widely thought to emerge from various 

properties of the MTL’s entorhinal-DG/CA3 pathway 36–43, such as abundant granule cells and 

strong inhibitory interneurons in the hippocampal DG, as well as powerful mossy fiber synapses 

between the DG and CA3 subfields 42,44. These properties make it possible to enable sparse 

coding to ensure a sufficient representational distance among similar information 45,46. As these 

hippocampal substructures communicate with other neocortical areas via the entorhinal cortex 
38,42, there is a proposed gradian of pattern separation along the entorhinal-DG/CA3 pathway to 

support item-specific long-term episodic memory 37. These ideas are supported by evidence 

based on animal and human behaviors 47–49, electrophysiological recordings 50–52, and human 

fMRI 37,38,40,53. However, the extent to which the entorhinal-DG/CA3 pathway is involved in WM, 

especially in humans other than animal models 54, has remained unclear.  
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Several challenges faced in past research may add to this uncertainty. For example, it is 

difficult to infer signals from MTL substructures, especially those within the hippocampus, based 

on human fMRI using a standard spatial resolution 4,5 or intracranial direct recording with limited 

electrode coverage 19–22. Furthermore, the use of complex task designs with multiple memory 

items 31 might also be suboptimal to reveal item-specific WM information in MTL subregions 

without taxing too much on the WM storage limit. To investigate these issues, here, we leverage 

an established retro-cue orientation WM task 3–5 and a high-resolution fMRI protocol to test the 

key prediction that the MTL’s entorhinal-DG/CA3 pathway retains item-specific WM information 

of a simple surface feature. In this task, participants are directed to retain the orientation 

information of a cued stimulus from two sequentially presented orientation gratings (separated 

at least by 20°; Figure 1A). After a short delay (5 TRs; 1TR = 1.75s), they try to reproduce the 

cued orientation grating as precisely as possible using the method of adjustment. As 

participants are retrospectively cued to retain only one item during the delay, they are expected 

to encode both items but then only keep one in mind during the delay period. This design 

imposes a task demand on the observer to correctly select the cued orientation while resisting 

the interference from the internal representations of other similar orientation gratings. This post-

encoding information selection function during a short delay has been considered a hallmark of 

WM 55,56, regardless of the presence or absence of sustained neural activation 57,58. If the MTL’s 

entorhinal-DG/CA3 pathway indeed supports this function, it is expected that the recorded 

delay-period activity should contain more information about the cued item, as compared with the 

uncued item, even though both items are initially remembered with an equal likelihood 3–5. If, 

however, information about the cued item and the uncued item is equally present during the 

delay period, the MTL may play a limited role in the representation of task-relevant information 

in WM but more during the initial encoding.  
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Results 

 

Participants’ memory performance is quantified as recall error – the angular difference 

between the reported and the actual orientations of the cued item 59. As the effective memory 

set size is low at one memory item, participants’ performance is high with an average absolute 

recall error of 12.01° ± 0.61° (mean ± s.e.m.). Furthermore, the recall error distribution is 

centered around 0° with most absolute recall errors smaller than 45° (~97% trials; Figure 1B). 

These behavioral data suggest that participants in general have remembered high-fidelity 

orientation information of the cued item during the delay period. 

Fine discrimination of Remembered WM Content in the MTL  

Of primary interest, we examined whether precise orientation information of the cued 

item is retained during WM retention in anatomically-defined MTL regions of interest (ROIs; 

Figure 2A), including the entorhinal cortex (anterior-lateral, aLEC & posterior-medial, pMEC), 

the perirhinal cortex, para-hippocampus, and hippocampal DG/CA3, CA1, subiculum, as defined 

in the previous studies 53,60. Additionally, we chose the amygdala as a theoretically irrelevant but 

adjacent control region, because the involvement of the amygdala for emotionally neutral 

orientation information is expected to be minimal 61. This allows us to gauge the observations in 

MTL ROIs while controlling for the signal-to-noise ratio in fMRI blood-oxygenation-level-

dependent (BOLD) signals in deep brain structures.  

As recent neural theories of WM have proposed that information retained in WM may not 

rely on sustained neural activation 5,58,62, we inspected how the multivoxel activity pattern in 

each subject-specific ROI is correlated with the retained WM content predicted by the cued 

orientation gating (Figure 2B). We found that certain voxels in an ROI could respond more 

strongly to a particular cued orientation, even when the average BOLD activity across voxels 

does not show preferred coding for a certain orientation (see an example in Figure S1). We 

then assessed the consistency of these stimulus-related multivoxel activity patterns in the MTL 

and the amygdala control region based on stimulus-based representational similarity analysis. 

In this analysis, we correlated the angular similarity of every pair of cued orientation gratings 

with the similarity of the evoked BOLD patterns in these trials. The rationale is that if orientation 

information is retained within an ROI, the recorded neural data should track the relative angular 

distance between any two cued orientation gratings (hence fine discrimination 63). Informed by 
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the previous research 3,5, we performed this analysis using the raw fMRI BOLD signals from the 

middle 3TRs out of the 5-TR retention interval to minimize the contribution of sensory process or 

anticipated retrieval, hence maximizing the inclusion of neural correlates of WM retention 64. A 

time-varying version of this analysis is summarized in Figure S6. 

In line with our prediction, we found that stimulus similarity for the cued item was 

significantly correlated with neural similarity across trials in the aLEC (t(15) = 4.29, p = 6.48e-04, 

pBonferroni  = 0.0052, Cohen’s d = 1.11) and DG/CA3 (t(15) = 3.64, p = 0.0024, pBonferroni  = 0.019, 

Cohen’s d = 0.94; Figure 2C). In contrast, stimulus similarity for the uncued item across trials 

could not predict these neural similarity patterns (p’s > .10). Furthermore, the evoked neural 

similarity patterns in these regions were significantly more correlated with the cued item than 

with the uncued item (aLEC: t(15) = 2.66, p = 0.018, Cohen’s d = 0.69; DG/CA3: t(15) = 3.64, p 

= 0.0024, Cohen’s d = 0.94). While the rest of the MTL showed similar patterns, we did not 

obtain significant evidence in other MTL ROIs following the correction of multiple comparisons 

(see Table S1 for full statistics), suggesting attenuated effect sizes in these regions. 

Furthermore, neural evidence related to the cued item in the aLEC and DG/CA3 was 

significantly stronger than that in the amygdala control ROI. This was supported by a significant 

cue (cued vs. uncued) by region (combined aLEC-DG/CA3 vs. amygdala) interaction effect on 

the correlation between stimulus and neural similarity patterns (F(1, 15) = 4.97, p = 0.042). 

Together, these results suggest that delay-period activity patterns in the entorhinal-DG/CA3 

pathway are associated with retrospectively selected task-relevant information, implying the 

presence of item-specific WM representation in these subregions.  

Reconstruction of Item-specific WM Information based on Inverted Encoding Modeling  

To directly reveal the item-specific WM content, we next modeled the multivoxel patterns 

in subject-specific ROIs using an established inverted encoding modeling (IEM) method 5. This 

method assumes that the multivoxel pattern in each ROI can be considered as a weighted 

summation of a set of orientation information channels (Figure 3A). By using partial data to train 

the weights of the orientation information channels and applying these weights to an 

independent hold-out test set, we reconstruct the assumed orientation information channels to 

infer item-specific information for the remembered item – operationalized the resultant vector 

length of the reconstructed orientation information channel normalized at 0° reconstruction error 

(Figure S2). As this approach verifies the assumed information content based on observed 

neural data, its results are interpretable within the assumed model, even though the underlying 
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neuronal tuning properties are unknown 5,65. Based on this method, previous research has 

revealed item-specific WM information in distributed neocortical areas, including the parietal, 

frontal, and occipital-temporal areas 4,5,66,67. We have replicated these effects in the current 

dataset (Figure S3).  

Moving beyond these well-established observations in distributed neocortical structures, 

we found that the amount of reconstructed item-specific information for the cued item during 

WM retention was also significantly greater than chance level in two anatomically defined MTL 

subregions, aLEC (t(15) = 4.41, p = 5.07e-04, pbonferroni  = 0.0041, Cohen’s d = 1.14) and the 

hippocampal DG/CA3 (t(15) = 4.73, p = 2.68e-04, pbonferroni  = 0.0021, Cohen’s d = 1.22; Figure 

3B). These effects were specific to the maintenance of the cued item, as information related to 

the uncued item was not statistically different from chance (p’s > .10) and was significantly less 

than that for the cued item (aLEC: t(15) = 2.75, p = 0.015, Cohen’s d = 0.71; DG/CA3: t(15) = 

3.83, p = 0.0016, Cohen’s d = 0.99). Critically, the amount of information specific to the cued 

item in the aLEC and DG/CA3 was significantly greater than that in the amygdala control ROI, 

which is supported by a significant cue (cued vs. uncued) by region (combined aLEC-DG/CA3 

vs. amygdala) interaction effect on IEM reconstruction outcomes (F(1, 15) = 7.16, p = 0.016).  

Collectively, results from complementary analytical procedures suggest that the MTL’s 

entorhinal-DG/CA3 pathway retains precise item-specific WM content for a simple surface 

feature (e.g., orientation) to allow fine discrimination of different items in the feature space. As 

such, the stimulus-based prediction of neural similarity is highly correlated with the amount of 

reconstructed information based on IEM, even though these two analyses are based on 

different analytical assumptions (e.g., correlation between IEM and representational similarity 

analysis for the cued item, aLEC: r = 0.87, p < .0001; DC/CA3: r = 0.78, p < .0001, Figure S4).  

Reconstruction of WM Item Information in the MTL is associated with recall fidelity  

Next, we examined the extent to which WM information retained in the MTL’s aLEC-

DG/CA3 circuitry is related to an observer’s subsequent recall behavior. As the angular 

resolution of the reconstructed orientation information is 20° in the current study, our data 

therefore suggest that the MTL can distinguish similar orientation information in WM that is at 

least 20° apart. This neural separation should be consequential for later recall performance, in 

that trials with greater item-specific information reconstructed from the MTL should be 

associated with higher WM recall fidelity. To test this prediction, we grouped the trials from each 
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participant into two categories. The first category contains small recall error trials, where 

participants make an effective recall response within one similar item away from the cued item 

(absolute recall error < 20°; 149 ± 3 trials [mean ± s.e.m.]). Another category contains larger 

recall error trials (27 ± 3 trials) with absolute recall errors that are greater than 20° but smaller 

than the 3 standard deviations (SD) of the aggregated recall error distribution (Figure 4A). 

These trials would capture participants’ imprecise recall responses for the cued item, instead of 

those with an extra-large recall error that could be attributed to other factors such as attentional 

lapses 68. The two identified categories of trials together account for about 98% of the total trials 

(i.e., 176 out of 180 trials). We have obtained similar results based on another thresholding 

heuristic by just using 45° of absolute recall error as a cut-off (i.e., half of the 90° range; see 

Supplementary Information).  

We performed the leave-one-block-out analysis to obtain trial-by-trial IEM 

reconstructions based on delay-period BOLD signals aggregated from the aLEC and DG/CA3. 

We then averaged the IEM reconstructions from the small- and larger-error trials separately. As 

the trial counts between categories were not balanced, we resampled the data from the small-

error trials based on the number of larger-error trials for 5,000 times. We took the average of 

IEM reconstruction across iterations to obtain robust subject-level trial-average estimates with a 

balanced trial count across different behavioral trial types 24,69,70. By contrasting these estimates 

at the subject level, we found that the small-error trials yielded significant IEM reconstructions 

for the cued item (t(15) = 4.50, p = 4.21e-04, Cohen’s d = 1.16), whereas the larger-error trials 

did not (t(15) = 0.03, p = 0.98, Cohen’s d = 0.007, Figure 4B). Furthermore, the reconstructed 

WM information in the combined aLEC-DG/CA3 showed better quality in the small-error trials, 

as compared with that in the larger-error trials (t(15) = 2.45, p = 0.027, Cohen’s d = 0.61). These 

results suggest that higher-quality WM representation in the entorhinal-DG/CA3 pathway during 

the delay period is associated with better subsequent recall fidelity.  
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Discussion 

 

Based on high-resolution fMRI, this current study uncovers an often-neglected role of the 

MTL’s the entorhinal-DG/CA3 pathway in item-specific WM representation at a minimal task 

load. Our data suggest that the entorhinal-DG/CA3 circuitry retains item-specific information to 

allow fine discrimination of similar WM items across trials. The quality of item-specific WM 

information in the entorhinal-DG/CA3 pathway is associated with an observer’s subsequent 

recall fidelity. Together, these findings fill a missing link in the growing literature regarding how 

the MTL contributes to WM 22,29.  

Theoretically, our findings align well with the established literature on the entorhinal-

DG/CA3 circuitry and the formation of high-fidelity long-term episodic memory 36–43. This 

function has been linked with various neuronal properties along the entorhinal-DG/CA3 pathway 

– such as abundant granule cells, strong inhibitory interneurons, and powerful mossy fiber 

synapses – which could enable sparse coding of information to minimize mnemonic interference 
42,44–46. As such, similar information can be retained with a sufficient representational distance to 

support behavioral discrimination 37,38,40,47–53. Our data add to this literature by supporting a 

parsimonious hypothesis that the same MTL mechanism can also be used to support the quality 

of WM representation 71. Specifically, potential interference between items either across or 

within trials would place a demand on pattern separation even over a short delay 72. As such, 

the MTL circuitry involved in the resolution of mnemonic interference 42 would play a key role in 

reducing inference between WM content and other similar information in the feature space. 

These findings, therefore, clarify the functional or computational relevance of the MTL in WM, in 

contrast to the classic view that the MTL is only secondary for WM 8,29. These interpretations are 

consistent with the recent development of neural theories of WM that have highlighted the 

involvement of distributed brain areas 2,29,73, including mechanisms in the MTL that are 

traditionally deemed irrelevant for human WM 25,31,32,74.  

Empirically, our results have resolved an issue concerning the decodability of item-

specific WM content in the MTL for simple stimulus features. Previously, MTL activity has been 

shown to scale with WM set size of letters and color squares without decodable item-specific 

WM content 21,23. One conceptual uncertainty is whether the MTL primarily responds to task 

difficulty or retains item-level information in WM. Our data suggest that the MTL retains item-

level WM information even when the effective WM set size is one. The lack of significant 

observations in some previous studies using the same paradigm may be due to the lack of 
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granularity in MTL recordings 5. To investigate this, we aggregated data from all the voxels in 

the hippocampus to examine whether blurred MTL signals would be sufficient to reveal item-

specific WM content using the current IEM procedure. As CA1 and subiculum voxels contain 

less robust WM information (Figure 3B), we predicted that this aggregation procedure would 

attenuate the evidence for WM information due to the reduction in signal-to-noise ratio. Our data 

are in line with this prediction (Figure S5). These results, therefore, highlight the importance of 

fine-grained MTL signals in revealing item-specific WM content.  

Alongside these theoretical and empirical contributions, our data also provide additional 

insights into the conditions under which the MTL is relevant for WM. First, our findings suggest 

that the MTL’s contribution to WM does not depend on whether task demands exceed a limited 

WM capacity 8, although this account has been proposed when interpreting some recent 

findings for WM tasks using complex stimuli or a higher memory set size 8,15,19–21. Second, our 

analysis has focused on the mid-delay activity 64 and hence our findings could not be explained 

by the MTL’s contribution to WM retrieval 75. Furthermore, while our findings do not preclude the 

potential involvement of the MTL during perceptual encoding 76, perceptual involvement could 

not account for the results based on the comparison between the cued and uncued items 3–5. If 

the MTL primarily contributes to perceptual encoding instead of WM retention, we should have 

observed a comparable amount of information for both study items in the MTL, as they are 

presented in the same data acquisition TR before cue onset. Since participants do not know the 

cued item ahead of time, they need to initially remember both items. In line with this 

interpretation, a time-varying IEM analysis shows that aLEC-DG/CA3 indeed contains a 

comparable amount of information related to both the cued and uncued items at an earlier time 

point in the task (Figures S6A & B). Yet, during the mid-delay period (Figures S6A & C), 

aLEC-DG/CA3 contains significant information for the cued relative to the uncued item – in a 

similar way as that shown in the previous research 3,5. Although it is well acknowledged that the 

current recording method has its inferential limitations in the time domain, these data suggest 

that the entorhinal-DG/CA3 pathway supports the representation of a retrospectively selected 

memory item during a short delay – a hallmark of WM 55,56. 

 Several open questions remain to be addressed by future research. First, it is unknown 

how WM representation in the MTL is compared with that retained in distributed neocortical 

areas 2,29,73. Although the IEM approach allows the reconstruction of information in neural 

signals, it is not well-suited to directly compare information reconstruction across brain regions. 

Such a comparison would be complicated by several issues, including the difference in the 
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number of voxels involved and the lack of interpretability of null results when both brain regions 

contain some WM information. To improve interpretability, we have used the results based on 

the uncued item as a within-ROI control and contrasted how information specific to the cued 

item (cued vs. uncued) differs between MTL ROIs and a theoretically irrelevant control region 

(i.e., the amygdala). One additional potential approach is to examine how the representations of 

remembered items are correlated across brain regions (Figure S7A). The rationale is that 

delay-period neural patterns across trials should be correlated for two brain regions containing 

the same information 77, as compared with brain regions that do not hold consistent information 

(Figure S7B). We tested this conjecture by examining the neural similarity across trials between 

the aLEC-DG/CA3 and a benchmark ROI in the superior temporal lobule (SPL) – a region that is 

consistently linked with item-specific information during visual WM retention both in the current 

data (Figures S5) and in the previous research 4–6. Supporting this prediction, we found that the 

similarity of neural patterns between the aLEC-DG/CA3 and the SPL has increased from the 

pre-stimulus baseline to the WM retention period (Figure S7C), which contrasts with the lack of 

changes in the correlation of across-trial neural patterns between aLEC-DG/CA3 and the 

amygdala control ROI (Figure S7D). These data suggest that the information content present in 

delay-period entorhinal-DG/CA3 activity shows some shared variance across trials with that in a 

well-recognized neocortical area related to visual WM 4–6. Future research with direct recordings 

should further investigate the fine-scale temporal dynamic underlying these similar neural 

patterns across brain regions during WM. 

Second, it remains to be clarified how the MTL circuitry is tuned to a certain orientation, 

although one of the analytical tools we used was inspired by findings based on neuronal tuning 

properties from the visual cortex 65,78. This is because the assumed orientation channels in IEM 

do not reflect the underlying neuronal tuning properties and are interpretable only within the 

assumed model 65,79. Previous research using this method thus has primarily focused on 

inference related to the presence or absence of information content in the neural data 4,5,66,67,78, 

instead of properties of neural tuning. In the current study, these IEM results are supported by 

the less assumption-laden results based on stimulus-based representational similarity analysis 
63. These two approaches are therefore complementary to each other.  

Third, the often-neglected role of the MTL in visual processing needs to be further 

explored. Our findings suggest that the entorhinal-DG/CA3 pathway in the MTL may play a role 

in retaining of task-relevant item-specific visual WM content, which could not be attributed to 

perceptual processing alone. These data adds to a growing body of literature that considers the 
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MTL as an important part of the visual system, serving functions ranging from retinotopic coding 
80 to predictive coding 81. Although retinotopic coding as a form of perceptual processing could 

underlie WM representations for orientation information, our data highlight that the MTL is 

sensitive to the retrospectively selected information – a hallmark of WM 55. In addition to 

generalizing these findings from orientation to other surface features such as colors and 

shapes, future research should further examine how frontal-parietal mechanisms related to 

visual selection and attention interacts with the MTL system 56. 

Conclusion 

In sum, our data demonstrate that the MTL’s entorhinal-DG/CA3 pathway retains precise 

item-specific WM information, similar to that present in other distributed neocortical areas 4,5. 

These results suggest that the same neural mechanisms underlying the fidelity of long-term 

episodic memory 36,37,39–43 is involved in representing precise item-specific WM content. Our 

data, therefore, provide broader insights into the fundamental constraints that govern the quality 

of our memory across timescales. 
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Materials and Methods 

 

Participants 

Sixteen right-handed participants (mean ± s.e.m.: 21.32 ± 0.73 years old, 8 females) 

were recruited for the study with monetary compensation ($20/hour). This sample size was 

designed to be no smaller than that involved in the prior studies using similar experimental 

paradigms and analytical procedures 3–5. All participants reported normal or corrected-to-normal 

visual acuity and no history of neurological/psychiatric disorders or prior psychostimulant use. 

They provided written informed consent before the study, following the protocol approved by the 

Internal Review Broad of the University of California, Riverside.  

Visual WM task 

Participants performed an orientation visual working memory task adapted from previous 

studies 3,5 inside an MRI scanner (Figure 1A). Briefly, on each trial, we sequentially presented 

two sine-wave gratings (~4.5° of visual angles in radius, contrast at 80%, spatial frequency at ~1 

cycle per visual degree, randomized phase) at the center of the screen. Each grating appeared 

for 200 ms, with a 400-ms blank screen in between. The two gratings had different orientations 

randomly drawn from nine predefined orientations (0 to 160° in 20° increments) with a small 

random angular jitter (± 1° to 5°). Following the offset of the second grating of each pair by 400 

ms, we presented a cue (“1” or “2”, corresponding to the first or second grating, respectively) for 

550 ms to indicate which grating orientation the participant should remember and maintain over 

an 8,750-ms delay period. We instructed participants to remember only the cued grating and to 

ignore the uncued one. After the delay period, we presented a test grating initially aligned to a 

random orientation. Participants then pressed the response box buttons to continuously adjust 

the test grating until it matched the orientation of the cued grating based on their memory. We 

asked the participants to make a response within 3,500 ms following the onset of the test 

grating (averaged median response time across participants: 2,929 ± 156 ms). After the 

response, we provided feedback to the participants by presenting a line marking the correct 

orientation, which was followed by an inter-trial interval of 3,500 or 5,250 ms. Participants 

completed 10 blocks of 18 trials, yielding a total of 180 trials inside the scanner. Before 

scanning, they completed 2 blocks of 18 trials outside the scanner for practice. The cue position 

and the orientations of presented gratings were randomly intermixed within each block.  
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Under an effective set size of one item, participants’ recall performance was high 

(Figure 1B), with most recall errors centered around ± 45° of the cued orientation (~97% of the 

trials) within the ± 90° range. Hence, we have retained all trials when investigating the amount 

of WM information in the recorded neural data during the delay period. We use the absolute 

recall error as a trial-level estimate of recall fidelity 56, assuming that large recall errors were 

driven by imprecise WM instead of other factors, such as occasional attentional lapses 68. To 

minimize the contamination of these factors in linking the neural data with the behavioral data, 

we have focused on the trials where participants have recalled within the 3 SD of the 

aggregated recall error distribution (Figure 4A; see details in a subsequent section).  

MRI Data Acquisition and Pre-processing 

We acquired neuroimaging data using a 32-channel sensitivity encoding (SENSE) coil in 

a Siemens Prisma 3.0-Tesla scanner. We first acquired a high-resolution 3D magnetization-

prepared rapid gradient echo (MP-RAGE) structural scan (0.80 mm isotropic voxels) and then 

functional MRI scans consisted of a T2*-weighted echo-planar imaging (EPI) sequence: TR = 

1750 ms, TE = 32 ms, flip angle = 74°, 69 slices, 189 dynamics per run, 1.5 ´ 1.5 mm2 in-plane 

resolution with 2 mm slice thickness, FOV read = 222 mm, FOV phase = 86.5%. This sequence 

was optimized for high-resolution functional MRI with whole-brain coverage for the scanner. 

Each functional run lasted 5 minutes and 30.75 seconds. At the end of the experiment, we 

acquired two additional scans with opposite phases to correct for EPI distortions 82. 

We preprocessed neuroimaging data using the Analysis of Functional NeuroImages 

(AFNI) software 83. Briefly, functional data were de-spiked (3dDespiked), slice timing corrected 

(3dtshift), reverse-blip registered (blip), aligned to structural scan (align_epi_anat.py), motion-

corrected (3dvolreg), and masked to exclude voxels outside the brain (3dautomask). To avoid 

introducing artificial autocorrelations in later analyses, functional data were not smoothed. For 

the same reason, we extracted the raw BOLD signals from the middle 3 TRs of the 5-TR 

retention interval for later analyses without fitting the data to the hemodynamic model 5. These 

raw BOLD signals were z-scored within each block/run, before extracting the TRs of interest. In 

particular, we convolved the data from the 5 TR delay period with a set of weights (i.e., 0, 1, 2, 

1, 0) that resembled the TENT function in AFNI to maximize the inclusion of mid-delay activity 

for later analysis 64. This approach factors in 5-6 s of hemodynamic adjustment 84 and has been 

considered fundamentally conservative in estimating delay-period activity 85. This approach also 

provides a reasonable estimate for the BOLD response around a given TR with an improved 

signal-to-noise ratio without assuming the shape of the underlying hemodynamic response 86. 
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We also performed the time-varying version of this analysis by shifting the peak of the TENT 

function over time (see Figure S6 for details).  

To retain the consistency with the prior research, we defined participant-specific MTL 

ROIs (bilateral hippocampal DG/CA3, CA1, and subiculum, entorhinal/perirhinal cortex, and 

parahippocampus, see Figure 2A) based on the T1 image using the same segmentation 

algorithm from the previous studies 53,60. In brief, using the Advanced Normalization Tools 87, 

this algorithm aligns an in-house segmented template to each participant’s T1 image. This 

template contains manually labeled ROIs for hippocampal subfields (DG, CA3, CA1, subiculum) 

and other verified MTL subregions (aLEC, pMEC, perirhinal, and parahippocampus). The efforts 

to select and verify these MTL ROIs have been detailed in previous studies 53,88. In brief, in 

addition to the commonly identified perirhinal and parahippocampus ROIs, hippocampal 

subfields were manually identified and aggregated from a set of T1 and T2 atlas images based 

on prior harmonized efforts 89. Entorhinal ROIs (aLEC and pMEC) were added to the template 

from a previous study 90. For functional analysis, we combined DG and CA3 subfields as a 

single label given the uncertainty in separating signals from them in fMRI data 60. In addition, we 

also verified our findings in hippocampal subfields based on a different segmentation protocol 

via FreeSurfer 91, which yielded consistent findings (Figure S8). Therefore, our current 

observations are unlikely to be limited to a specific parcellation procedure of hippocampal 

subfields. 

Furthermore, we identified subject-specific segmented amygdala as a control ROI based 

on participant-specific Freesurfer parcellation 92. The amygdala is a part of the limbic system 

traditionally considered a central brain region processing emotion-laden information. Because 

the task stimuli (orientation gratings) and testing procedure (no reward manipulation) in the 

current study are emotionally neutral, the amygdala is therefore theoretically irrelevant for the 

current study 61. Furthermore, as its signal-to-noise ratio is similar to adjacent structures, the 

amygdala can serve as a control site for the observation in other MTL ROIs. 

Stimulus-based Representational Similarity Analysis 

To examine whether MTL delay-period activity can distinguish different cued orientation 

gratings, we performed a stimulus-based representational similarity analysis 93. The rationale is 

that if the recorded neural data contain information to allow fine discrimination of the cue item, 

the neural data should track the feature distance between any pair of cued items across trials to 

allow fine discrimination of these items 63. Hence, we first calculated the stimulus similarity 

pattern across trials using 180 minus the absolute angular distance between the orientation 
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labels of every two trials (Figure 2B, top panel). Next, we calculated the cosine similarity of the 

delay-period neural signals B across n voxels from the middle 3 TRs in every pair of trials 

(Figure 2B, bottom panel). This yields a trial-by-trial matrix in which the similarity between voxel 

response vectors !! and !" from the lower diagonal. Their similarity is calculated as, 

"(!! , !") =
!! 	 ∗ 	!"

||!!||	||!"||
 

Finally, we correlated (rank-order) the neural similarity pattern and stimulus similarity 

pattern across trials to gauge how the recorded neural signals track the stimulus features across 

trials. 

Inverted Encoding Modeling (IEM) 

To decode item-level information from the raw BOLD signals 5, we first constructed a 

linear encoding model to represent orientation-selective responses in multi-voxels of activity 

from a given brain region. We did not impose any additional feature selection procedures other 

than using the anatomically defined ROIs to identify relevant multi-voxel features in this analysis 

(see Table S3 for the number of voxel/features included for each subject in each ROI). We 

assumed that the response of each voxel is a linear summation of 9 idealized information 

channels (Figure 2B), estimated by a set of half-wave rectified sinusoids centered at different 

orientations based on the tuning profile of orientation-sensitive neural populations. Hence, we 

formalized the observed raw BOLD signals B (m voxels ´ n trials) as a weighted summation of 

channel responses C (k channels ´ n trials), based on the weight matrix, W (m voxels ´ k 

channels), plus residual noise (N),  

! = 	*+ + - 

Given B1 and C1 from a set of training data, the weight matrix can be calculated as, 

* =	!#+#$(+#+#$)%# 

The training weight matrix W is used to calculate a set of optimal orientation filters V, to 

capture the underlying channel responses while accounting for correlated variability between 

voxels (i.e., the noise covariance), as follows,  

.! =	
∑ *!
%#
!

*!
$ ∑ *!%#

!
 

where 0!%# is the regularized noise covariance matrix for channel i (1 to 9), estimated as, 
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0!%# =	
1

2# − 1
4!4!$ 

	4! =	!# −*!+#,! 

Here, n1 is the number of training trials, and 4! is a matrix residual based on the training 

set B1 and is obtained by regularization-based shrinkage using an analytically determined 

shrinkage parameter. Next, for the independent hold-out test dataset B2, trial-by-trial channel 

responses C2 are calculated as follows, 

+' =	.$!' 

We used a leave-one-out cross-validation routine to obtain reliable estimate channel 

responses for all trials. For each participant, in every iteration, we treated all but one block as B1 

and the remaining block as B2 for the estimation of C2. This analysis yielded estimated channel 

responses C2 for each trial, which were interpolated to 180° and circularly shifted to a common 

center (0°, by convention). We reconstructed these normalized channel responses separately 

using orientation labels of the cued item, the uncued item, and shuffled orientations. We then 

quantified the amount of item-related information (R) by converting the average channel 

response (z) to polar form given 5 as the vector of angles at which the channels peak (6 =
+7'!(). We then projected them onto a vector with an angle of 0°,  

8 = |6̅| cos(6̅) 

With whole-brain coverage, we performed an additional searchlight procedure in 

combination with the IEM analysis to replicate the previous findings 5. First, we normalized 

participants’ brain data to an MNI template using the Advanced Normalization Tools. Second, 

we defined a spherical “neighborhood” (radius 8.0 mm) centered on voxels in a cortical mask 

containing only gray matter voxels. We discarded neighborhoods with fewer than 100 voxels. 

Last, we estimated item-related information (R) about the to-be-remember item based on the 

IEM analysis outlined above to assess WM information within each searchlight sphere. We 

obtained consistent findings as compared with the previous findings (Figure S3), suggesting the 

reliability of the current data.  

Linking IEM Reconstruction with Behavioral Recall Performance 

To examine how the IEM reconstruction of the cued item in the aLEC-DG/CA3 pathway 

is associated with recall fidelity, we performed the IEM analysis based on data combined from 

the aLEC and DG/CA3 ROIs. Similar to the analytical framework outlined above, we split each 
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participant’s data into random blocks of 18 trials and then perform a leave-one-block-out 

analysis to obtain IEM reconstructions for all trials in each block based on the weights trained 

from other blocks. As this analysis is agnostic to participants’ recall performance at this stage, if 

IEM reconstruction is not associated with participants’ recall fidelity, the reconstructed 

information channels should be comparable regardless of recall errors. To test against this 

prediction, we split participants’ data into small- and larger-error trials. First, as the angular 

resolution is at least 20° for any two items in the current design, we defined small-recall error 

trials as those in which participants have reported within one similar item away (absolute recall 

error < 20°; 149 ± 3 trials). Next, to separate larger-recall errors based on less precise WM 

representation from those attributable to attention lapses 68, we adopted a widely-used 

thresholding heuristic to find potentially different categories of data points based on the 

empirical SD of a distribution. Specifically, in our current data, we first calculated the empirical 

SD (17.33°) of the aggregated raw recall error distribution from all subjects across 2880 trials 

(ranging from -90° to +90°), which captures the overall variability in participants’ recall 

performance without a priori model assumption. We then retained the larger-recall error trials 

within 20° to 3 SD of the recall error distribution (27 ± 3 trials; Figure 4A). These larger-error 

trials presumably contain mostly imprecise recall responses, instead of infrequent extra-large 

errors that could be attributed to other factors like attentional lapses 68. Considering that most of 

the trials have a recall error of ± 45° out of the ± 90° range in every subject by visual inspection 

(97% of the trials, Figure 1B), we have also used 45° of absolute recall error as a cut-off for 

extra-large error trials and obtained similar findings in subsequent analyses (see 

Supplementary Information). To ground our analysis in empirical data, we therefore have 

focused on the results based on the SD thresholding heuristic in the current report.  

To balance the trial counts between these two categories of trials, we resampled the 

same number of trials based on the number of larger-error trials from the small-error trials for 

5,000 times. This resampling procedure ensures that the average IEM reconstruction from the 

small-error trials is estimated based on the same number of trials as compared with the larger-

error trials – an approach often used to obtain less biased estimates of neural measures across 

different behavioral trial types 24,69,70. We contrasted the difference in IEM reconstructions for the 

cued item in the aLEC-DG/CA3 between these two categories of trials across participants.  

Statistical Procedures 

We evaluated statistical significance based on conventional within-subject statistical 

procedures, such as paired-sample t-tests, with two-tailed p values. We estimated the size of 
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these effects based on Cohen’s d. Except for pre-defined contrast analysis (e.g., cued vs. 

uncued), we corrected for multiple comparisons by using Bonferroni correction with an alpha 

level set as 0.05 94. For visualization of variability in mean estimates, we have used the standard 

error of the mean across participants (s.e.m.), namely the standard deviation of a measure 

divided by the square root of sample size, as error bars (or areas) in Figures 2, 3, and 4.  
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Data and Code Availability: Non-identified data used in this study regarding MTL activities 

across ROIs and trial-by-trial behavior responses are available via the Open Science 

Framework repository (https://osf.io/zvdnr/). Custom code that supports the findings of this study 

is available from W.X. upon request.  
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Figure 1. Visual WM task and participants’ task performance. (A) During fMRI scanning, 

participants were directed to retain the orientation of a cued grating stimulus from two 

sequentially presented grating stimuli (item 1 vs. 2). After a short retention interval, they tried to 

reproduce the cued orientation grating as precisely as possible. (B) Participants’ task 

performance was high and mostly driven by the fidelity of the retained visual WM content. Each 

trace represents a participant’s recall probability in the feature space (-90 to 90 degrees) 

separated by 45 bins. TR = MR repetition time; ITI = inter-trial interval. The shaded area in (A) 

highlights the middle 3 TRs of the delay period.  
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Figure 2. The MTL retains item-specific WM information revealed by stimulus-based 

representational similarity analysis. (A) MTL ROIs are parcellated based on previous 

research 53,60. The amygdala is chosen as an adjacent control region. (B) For each ROI, we 

examined the extent to which the evoked multi-voxel pattern during the mid-delay period could 

keep track of the feature values among different WM items. Specifically, we correlated the 

feature similarity of every two cued items with the similarity in their evoked neural patterns 

during the WM delay period. If a brain region contains item-specific information to allow fine 

discrimination of different items, the evoked neural patterns should keep track of the feature 

similarity of these items 63. (C). Across ROIs, we find that this prediction is supported by data 

from the aLEC and DG/CA3, which show a larger effect size in the association between neural 

similarity and stimulus similarity based on the cued item as compared with the uncued item. 

Error bars represent the standard error of the mean (s.e.m.) across participants. *p < 0.05 and 

**p < 0.01 for the comparison of the results based on cued versus uncued items; aLEC = 

anterior-lateral entorhinal cortex; pMEC = posterior-medial entorhinal cortex; parahipp. = 

parahippocampus. Results from detailed statistical tests are summarized in Table S1.   
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Figure 3. The MTL retains item-specific WM information revealed by Inverted Encoding 

Modeling (IEM). (A) The IEM method assumes that each voxel response in the multi-voxel 

pattern reflects a weighted summation of different ideal stimulus information channels (C). The 

weights (W) of these information channels are learned from training data and then applied to 

independent hold-out test data to reconstruct information channels (C’). After shifting these 

reconstructed information channels to a common center, the resultant vector length of this 

normalized channel response reflects the amount of retained information on average (also see 

Figure S2). (B) We find that the BOLD signals from both the aLEC and DG/CA3 contain a 

significant amount of item-specific information for the cued item, relative to the uncued item. 

Shaded areas represent the standard error of the mean (s.e.m.) across participants. To retain 

consistency, we sorted the x-axis (ROIs) based on Figure 2C. *p < 0.05 and **p < 0.01 for the 

comparison of the results based on cued versus uncued items; a.u. = arbitrary unit; aLEC = 

anterior-lateral entorhinal cortex; pMEC = posterior-medial entorhinal cortex; parahipp. = 

parahippocampus. Results from detailed statistical tests are summarized in Table S2.  
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Figure 4. The quality of WM information retained in the aLEC-DG/CA3 pathway is 

associated with later recall fidelity. (A) Participants’ performance in the visual WM task was 

high with about 98% of absolute recall errors falling within the 3 SD of the aggregated recall 

error distribution. As the angular resolution of the presented orientation grating is at least 20° 

between any two items, for most of the trials, participants’ recall responses were as precise as 

within one similar item away from the cued item (absolute recall error < 20°). (B) By inspecting 

the IEM reconstructions for trials with small errors (absolute error < 20°) and trials with larger 

errors (absolute recall error: 20° to 3 SD of recall errors), we find that the quality of IEM 

reconstructions in the combined aLEC-DG/CA3 ROI varies as a function of participants’ recall 

fidelity. Precise recall trials have yielded better IEM reconstruction quality, even after resampling 

the same number of trials from the data to control for imbalanced trial counts between small- 

and larger-error trials. Shaded areas represent the standard error of the mean (s.e.m.) across 

participants.  
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Supplementary Information 
 

Association between recall fidelity and IEM reconstruction 

In addition to using an empirical criterion to separate in-memory trials from those extra-

large error trials susceptible to occasional attentional lapses 68, we have also tried another 

thresholding heuristic. As shown in Figure 1A, most trials from each participant fall within this 

45° of absolute recall error (i.e., half of the 90° range), and the trials larger than this number are 

rare (~5 out of 180 trials). We, therefore, used 45° of absolute recall error as a cut-off to identify 

the imprecise recall trials that are greater than 20° but smaller than 45° of absolute recall error.  

We performed the same analysis to obtain trial-by-trial IEM reconstructions based on 

delay-period BOLD signals aggregated from the aLEC and DG/CA3, and then resampled the 

same number of trials to estimate the IEM reconstructions for the small-error and larger-error 

trials (<20° vs. 20° - 45° of absolute recall error). Consistent with the 3-SD heuristic, we found 

that the small-error trials yielded significant IEM reconstructions for the cued item (t(15) = 4.34, 

p = 5.74e-04, Cohen’s d = 1.12), whereas the larger-error trials did not (t(15) = -0.69, p = 0.50, 

Cohen’s d = -0.18). We then contrasted the difference in IEM reconstructions between these 

small- and large-error trials across participants. We found that IEM reconstruction for the cued 

item from the combined aLEC-DG/CA3 has better quality in the small-error trials, as compared 

with that in the larger-error trials (t(15) = 3.41, p = 0.004, Cohen’s d = 0.88). These results 

suggest that higher-quality visual WM content in the entorhinal-DG/CA3 pathway during the 

delay period is associated with better subsequent recall fidelity and that this association is 

robust to the selection of the cut-off for extra-large recall errors.  
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Figure S1. Voxel responses in an example ROI (aLEC) for different remembered stimuli 

from one example subject. We sorted these voxels based on the magnitude of BOLD 

response to different orientation stimuli. This analysis only serves illustrative purposes. The 

reliability of these multi-voxel patterns can be examined based on stimulus-based 

representational similarity analysis as detailed in the main text. 
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Figure S2. Example channel responses before and after shifting to the cued orientation 

for aLEC (A) and the amygdala (B). Based on a level-one-block-out cross-validation approach, 

we reconstructed the assumed neural channel response model reported in Figure 3B. Before 

shifting individual channel responses to the cued orientation, it is expected that these tuning 

responses should show separate peaks across the feature space (right panels). After shifting 

individual channel responses to the cued orientation, if there is information about the cued 

orientation assumed by the model, it is expected that the average channel response should 

peak and center around a 0-degree error (left panels). In cases where information is unrelated 

to the encoded orientation (e.g., amygdala), the IEM approach is expected to fail to capture and 

reconstruct meaningful orientation information because the unrelated noise can distort the 

training weights of the encoding model. Note that the results after shifting the channel 

responses to the cued orientation are the same as that shown in Figure 3.  
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Figure S3. Distributed brain regions retain information about the cued item during WM. A 

roving searchlight procedure was combined with the inverted encoding modeling (IEM) to 

identify brain regions containing item-specific WM content for the cued item 5. This analysis 

shows that distributed brain regions retain decodable item-specific information for the cued 

orientation, replicating the previous findings 3–5,29. Cluster-based correction for statistical 

significance: p < .05 (one-tail) with > 400 voxels estimated based on 3dClustSim from AFNI. In 

this analysis, we have also observed significant clusters of voxels in the MTL. However, this 

observation is limited to small cortical surface areas. One possibility is that the 8-mm searchlight 

sphere may have failed to take into account the complex folding structures in the MTL, such that 

heterogeneous information is included for the decoding analysis. Consequently, the contribution 

of item-specific WM information in certain MTL voxels can be attenuated. We tested this 

prediction by aggregating the data from the whole hippocampus across subfields and 

summarized the findings in Figure S5, which supports our prediction.  
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Figure S4. Stimulus-based representational similarity analysis (RSA) and inverted 

encoding model (IEM) reveal shared item-related variance in the observed neural data. In 

both the aLEC and DG/CA3 ROIs, the association between the patterns of the task stimuli and 

neural responses (RSA) was highly correlated with IEM decoding performance across 

participants (aLEC: r = 0.87, p < .001; DG/CA3: r = 0.78, p < .001), even though these two 

methods have different assumptions and analytical procedures. This observation suggests that 

item-specific WM content in MTL regions can be reliably captured by different analytical 

procedures. The x-axis shows the values of the RSA correlation between trial-by-trial stimulus 

similarity patterns and observed neural similarity patterns of fMRI BOLD activity. Data on the y-

axis reflect the resultant vector length of the normalized reconstructed orientation information 

channels based on IEM analysis from the same region. Individual points represent the results 

from individual participants. The solid lines are linear fits of the data, and the dashed lines are 

95% confidence intervals of the linear fits.  
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Figure S5. Analyses based on the whole hippocampus, as compared with a benchmark 

sphere ROI in the posterior parietal cortex (e.g., superior parietal lobule, SPL) and the 

hippocampal DG/CA3 subfield. (A) As the posterior parietal cortex  has consistently 

implicated to support visual WM representations  4,5, we identified the local peaks of the bilateral 

posterior parietal clusters based on the searchlight analysis in Figure S3 (MNI coordinate: left, x 

= -16, y = -64, z = 58; Right, x = 30, y = -56, z = 58) to extract two 8-mm sphere ROIs from the 

regions. These ROIs fall within the SPL, with their central coordinates with those from a 

previous study 5 based on similar methods (e.g., left, x = -19, y = -63, z = 55; right, x = 20, y = -

58, z = 57). For visualization, we plotted one of the spheres in the figure, in combination with the 

hippocampus (right brain). (B) Raw BOLD signals in each voxel were z-scored over time 

separated in each block before extracting the trial structures and then averaged for each ROI. 

Mid-delay 3 TRs are represented by the shaded area in orange. Consistent with the previous 

observations 4,5,7, the SPL in the posterior parietal cortex shows robust BOLD modulation during 

the visual WM task. In contrast, the hippocampus as a whole and its relevant subfield – 

DG/CA3, do not show the same magnitude of BOLD modulation as the SPL. (C) While both the 
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SPL and DG/CA3 retain precise item-specific information about the cued item relative to the 

uncued item, the whole hippocampus however does not show this pattern, suggesting that the 

inclusion of heterogeneous voxels from CA1 and subiculum may affect IEM performance. This 

is unsurprising because the current IEM analysis did not include additional feature selection 

procedures, and hence the inclusion of uninformative voxels would make the weights trained 

from these data less information, compromising the subsequent IEM reconstruction. Error bars 

or shaded areas represent the standard error of the mean (s.e.m.) across participants. **p. 

< .01; a.u. = arbitrary unit.   
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Figure S6. Time-varying IEM analysis shows that mid-delay period activity in aLEC-

DG/CA3 contains item-specific information that could not be attributed to perceptual 

processing alone. (A) We performed a time-varying IEM analysis for the combined aLEC-

DG/CA3 ROI based on raw BOLD signals weighted by adjacent TRs, with a moving window in 

steps of 1 TR. This analysis was done separately using trial labels of the cued and uncued 

items. TR 0 contains the presentation of study items and the retro-cue. (B) We find that earlier 

TR in the delay period (e.g., TR 2) contains information for both the cued and uncued items. (C) 
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Yet, mid-delay period activity (e.g., TR 3, ~5.25s after stimulus offset) contains the most 

information related to the cued item, but not to the uncued items, suggesting that perceptual 

processing could not account for these results. (D) Timing-varying analysis shows that 

information related to the cued item increases and peaks at the mid-delay period, with 

attenuated information throughout the rest of the delay period. In contrast, information related to 

the uncued item increases after stimulus offset but dissipates afterwards. (E) We observed a 

significant interaction effect in the reconstructed IEM information between time period (earlier, 

TR 2 vs. mid-delay, TR 3) and cue condition (cued vs. uncued; F(1, 15) = 4.85, p < .05). These 

results suggest that there is additional information in the mid-delay activity related to the 

retrospectively selected item, which could not be accounted for perceptual processing of the 

presented stimuli. Error bars represent the standard error of the mean (s.e.m.) across 

participants. *p < .05; **p < .01; n.s. = not significant.  
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Figure S7. Across-region neural similarity analysis using the combined aLEC-DG/CA3 as 

an MTL seed region, the SPL ROI as a benchmark region, and the amygdala as a control 

region. (A) Trial-by-trial neural similarity pattern at each TR can be calculated to reflect the 

representational pattern within a given ROI. The similarity of these neural representational 

patterns, therefore, can inform us whether there is shared variance in the information content 

represented in different ROIs 77. (B) Because the MTL and SPL both retain information about 

the cued item, it is expected that their activity patterns evoked by the cued item should be 

similar to each other, as compared with the similarity between MTL and the amygdala control 

ROI. (C) We performed the proposed analysis at each TR. By normalizing the observed neural 

similarity values using the mean and standard deviation of neural similarity measures at -1 TR 

across participants. Following this normalization procedure, changes in the neural similarity 

between ROIs could not be accounted for by intrinsic neural similarity at baseline. This 

comparison allows us to gauge the extent to which a set of brain regions retains similar 

information content that is different from the similarity in overall neural signals triggered by the 

presentation of the same task stimuli 77. We find that the similarity between MTL and SPL 

activity patterns increases from baseline to WM retention. (D) Critically, this increase is absent 

in the similarity between MTL and amygdala control ROIs, which was supported by a significant 

time period (average value in middle 3TRs vs. baseline TR) and ROI (MTL-SPL vs. MTL-
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Amygdala) interaction effect in neural similarity measures (F(1,15) = 6.38, p < .05). These 

results, therefore, suggest that the DG/CA3-aLEC circuitry in the MTL shares similar information 

content as that in SPL during WM, which is not simply driven by the similarity of neural signals 

across regions induced by task stimuli. Error bars represent the standard error of the mean 

(s.e.m.) across participants. Grey dots in (D) represent data from individual subjects. *p. < .05.  
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Figure S8. Modeling results of the hippocampal subfields based on FreeSurfer labels. In 

addition to the in-house subfield parcellation, we verified our findings based on the hippocampal 

subfield labels extracted from each participant’s MRI scan using FreeSurfer 6.0 

(https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfieldsAndNucleiOfAmygdala). In this 

program, the DG subfield is aborted by the CA4 label. Despite different quantification methods, 

our findings of greater item-specific information related to the cued item in the mid-delay TRs 

remain statistically significant in the DG/CA3 subfield (p < .001), which is significantly greater 

than that for the uncued item (p < .05). In contrast, no significant difference was found for the 

hippocampal CA1 or subiculum subfield (p’s >.010). Shaded areas represent the standard error 

of the mean (s.e.m.) across participants. These results suggest that our observation in the 

hippocampal DG/CA3 subfield is not limited to a particular subfield parcellation method. *p. 

< .05.  
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Table S1. Tests of Statistical Significance in the Neural Similarity across Trials Captured by the 

Similarity of the Cued item 

 
 t df Cohen's d p-uncorrected p-bonferroni 

aLEC 4.29 15 1.11 0.0006 0.0052 

pMEC 2.16 15 0.56 0.047 n.s. 

Perirhinal 3.00 15 0.78 0.0089 n.s. 

Para-hippocampus 2.70 15 0.70 0.017 n.s. 

DG/CA3 3.65 15 0.94 0.0024 0.019 

CA1 1.56 15 0.40 0.14 n.s. 

Subiculum 2.53 15 0.65 0.023 n.s. 

Amygdala 0.06 15 0.02 0.95 n.s. 

 

Note: n.s. = non-significant. It is well-acknowledged that multiple comparisons would inflate 

TYPE-I error, and hence we adopted a relatively conservative correction procedure (Bonferroni 

correction94). This procedure reveals the significance test outcomes that could not be attributed 

to chance alone. Yet, it does not imply that the non-significant results indicate no effect. Rather, 

as shown in the table, non-significant effects are often associated with an attenuated effect size 

in the same direction, indicating unstable estimate across participants. We therefore focus on 

the regions where robust effects have been identified across participants after the correction of 

multiple comparisons (i.e., aLEC and DG/CA3).  
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Table S2. Tests of Statistical Significance in the IEM results for the Cued item 

 
 t df Cohen's d p-uncorrected p-bonferroni 

aLEC 4.41 15 1.14 0.00050 0.0041 

pMEC 2.30 15 0.59 0.036 n.s. 

Perirhinal 1.97 15 0.51 0.067 n.s. 

Para-hippocampus 1.46 15 0.38 0.17 n.s. 

DG/CA3 4.73 15 1.22 0.00030 0.0021 

CA1 1.09 15 0.28 0.29 n.s. 

Subiculum 1.78 15 0.46 0.10 n.s. 

Amygdala -0.13 15 -0.03 0.90 n.s. 

 

Note: n.s. = non-significant. It is well-acknowledged that multiple comparisons would inflate 

TYPE-I error, and hence we adopted a relatively conservative correction procedure (Bonferroni 

correction94). This procedure reveals the significance of test outcomes that could not be 

attributed to chance alone. Yet, it does not imply that the non-significant results indicate no 

effect. Rather, as shown in the table, non-significant effects are often associated with an 

attenuated effect size in the same direction, indicating an unstable estimate across participants. 

We therefore focus on the regions where robust effects have been identified across participants 

after the correction of multiple comparisons (i.e., aLEC and DG/CA3). 
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Table S3. The number of voxels included for each ROI in each subject 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: s.e.m. = standard error, which is the standard deviation divided by the square root of sample size.  

Subject 

ID 

Entorhinal 
Perirhinal Para-hippocampus 

Hippocampus 
Amygdala 

aLEC pMEC DG/CA3 CA1 Subiculum 

1 269 167 504 1350 379 1006 416 858 

2 253 120 688 1094 302 625 300 800 

3 220 175 564 1250 359 875 339 754 

4 308 126 774 1104 355 859 410 865 

5 308 162 805 1293 347 884 331 852 

6 248 124 907 1343 340 881 385 914 

7 218 111 634 1071 295 729 288 801 

8 205 142 388 940 304 732 301 874 

9 254 134 846 1372 297 734 314 712 

10 230 136 412 1118 294 770 422 882 

11 273 147 884 1296 362 880 342 851 

12 245 127 714 1119 314 818 296 782 

13 257 169 833 1326 288 879 430 1044 

14 219 120 920 1261 328 771 257 753 

15 225 152 649 1418 326 845 413 879 

16 211 105 431 1199 262 679 255 640 

Mean 246.44 138.56 684.56 1222.13 322.00 810.44 343.69 828.81 

s.e.m. 7.90 5.39 45.35 33.55 8.16 24.10 15.18 23.15 
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