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ABSTRACT6

T-cell receptors (TCRs) play an essential role in the adaptive immune system. Probabilistic models for

TCR repertoires can help decipher the underlying complex sequence patterns and provide novel insights

into understanding the adaptive immune system. In this work, we develop TCRpeg, a deep autoregressive

generative model to unravel the sequence patterns of TCR repertoires. TCRpeg outperforms state-of-

the-art methods in estimating the probability distribution of a TCR repertoire, boosting the accuracy

from 0.672 to 0.906 measured by the Pearson correlation coefficient. Furthermore, with promising

performance in probability inference, TCRpeg improves on a range of TCR-related tasks: revealing

TCR repertoire-level discrepancies, classifying antigen-specific TCRs, validating previously discovered

TCR motifs, generating novel TCRs, and augmenting TCR data. Our results and analysis highlight the

flexibility and capacity of TCRpeg to extract TCR sequence information, providing a novel approach to

decipher complex immunogenomic repertoires.
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7

Introduction8

The adaptive immune system consists of highly diverse B and T-cells whose unique receptors can recognize9

enormous pathogens in vertebrates. The generation of these highly diverse receptors arises mainly from10

the genetic recombination of DNA segments from V, D, and J genes through V(D)J recombinations1, 2.11

T-cells play an essential role in antiviral defense by selectively eliminating virus-infected cells3. Their12

ability to recognize specific short peptides; that is, peptide antigens bound to the major histocompatibility13
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complex (MHC) molecules are determined primarily by their unique receptor proteins4, 5. A receptor1

contains an a polypeptide chain and an b polypeptide chain, both of which consist of two extracellular2

domains: the variable (V) region and the constant (C) region6. The variable regions of the TCR a- and b -3

chains both have three complementarity-determining regions (CDRs) that contribute to the specificity of4

antigen recognition. Among these CDRs, the CDR3 region of the TCR b chain plays a pivotal role in the5

recognition of the peptides presented by MHC. In contrast, the CDR1 and CDR2 regions contribute minor6

effects to direct antigen recognition6, 7. Due to the importance of the highly diverse CDR3 region of the7

TCR b chain in antigen recognition and data availability, this work focuses on deciphering the underlying8

pattern of the CDR3 sequence.9

Advancement in high-throughput sequencing techniques of the T-cell receptor repertoire provides a10

census of T-cells found in blood or tissue samples8–11. Large-scale sequencing data promote the investiga-11

tion of the composition of immune repertoires, characterizing adaptive immune responses, and developing12

descriptive models. The sampled repertoire of TCR serves as an indicator of the complete repertoire, re-13

flecting the pathogenic history or the immune response to stimuli12–15, with clinical applications including14

cancer prediction and anticipation of immunotherapy. For example, Han et al. developed a statistical15

index named TIR index based on TCR to predict response and survival outcomes after immunotherapy16.16

Beshnova et al. defined a cancer score for a given patient based on the predictive model trained on specific17

TCR sequences that are assumed to be simply associated with cancers17.18

Despite the success in predictive tasks associated with T-cell repertoires, precise probabilistic dis-19

tribution modeling is demanding. Given that TCR repertoires possess extremely large diversity, the20

sampled repertoires from different samples, or even from the same donors will often differ significantly.21

Consequently, characterizing the sequence pattern of a given repertoire from a probabilistic manner is22

more reliable than modeling with raw TCR sequences and read counts, with many potential applications23

such as estimating the relative ratio of CD4+ to CD8+18, 19 and investigating the differences in sequence24

characteristics between functional T-cell subsets20, 21. Conventionally, modeling the sequence pattern25

behind a TCR repertoire is disentangled into two processes: generation (V(D)J recombination)22, 23 and26

selection19, 24, 25. The ultimate probability assigned to a TCR sequence is the product of the selection factor27

and the generation probability inferred from the selection process and the generation process, respectively.28
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However, the generation models learned from different individuals share a high mutual similarity22, 25,1

indicating that the selection process plays a central role in discriminating the TCR repertoires sampled2

from different individuals. Therefore, instead of two-step disentanglement, we can infer the probability of3

TCR sequences end-to-end.4

In this work, we introduce a new probabilistic model, TCRpeg, that utilizes deep learning techniques to5

learn the underlying sequence patterns of TCR repertoires. Specifically, TCRpeg employs the architecture6

of the deep autoregressive model with gated recurring units (GRU)26 layers to characterize the repertoire7

through the flexible and non-linear structure of deep neural networks. TCRpeg can infer the sequence8

probability distribution with higher accuracy than other probabilistic models, boosting the performance9

from 0.672 to 0.906 measured by the Pearson correlation coefficient. We then applied the model to profile10

TCR subrepertoires and found that a simple probabilistic classifier can achieve high predictive performance.11

TCRpeg also provides high-quality latent vector representations for TCR sequences. Based on these vector12

encodings of TCR sequences, we built a fully connected neural network to classify the cancer-associated13

TCRs and SARS-CoV-2 epitope-specific TCRs, achieving 0.844 and 0.872 AUC, respectively; higher than14

DeepCAT17’s AUC 0.768 but slightly lower than TCRGP27’s AUC 0.882. As a generative model, TCRpeg15

can generate new TCR sequences, among which more than 50% share the same antigen specificity as the16

sequences used in training according to the TCRMatch28 with a scoring threshold of 0.90, while the other17

two generative models, TCRvae29 and soNNia19, achieve a proportion of less than 40%. Further, TCRpeg18

helps data augmentation; it shows a 7.4% accuracy gain in predicting cancer-associated TCRs using the19

DeepCAT17 model.20

Results21

Autoregressive generative model for TCR sequences22

Previously, the probabilistic sequence pattern of a TCR repertoire was modeled by the two disentangled23

processes of generation22, 23 and selection19, 24, 25 (e.g., soNNia19) or the variational autoencoder with24

convolutional neural networks (CNNs) as encoder and decoder (TCRvae29). Although both models25

achieved satisfactory performance, they lack the elegance to handle variable-length TCR sequence data.26

The two types of models pad each sequence to a fixed length with an extra token representing the padding27
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Figure 1. Workflow of TCRpeg to infer probabilistic patterns of immune receptor repertoires. (A) We have implemented a deep autoregressive network with
GRU layers to process TCR sequences of different lengths to learn the hidden sequence pattern. The word2vec algorithm is first applied to the TCR repertoire
to learn the numerical representations of each amino acid, regarding amino acids and TCR sequences as “Words” and “Sentences”. Then the TCR sequence is

inputted into the deep autoregressive model sequentially. The model is updated by the gradient descent algorithm with the cross-entropy loss between the
output logits and true labels. The trained TCRpeg model can be readily extended to downstream usages, including probability inference, encoding TCRs (B),

and generating similar new TCRs (C). These functions and applications of TCRpeg are further elaborated in the Results section.

positions. However, the introduction of the extra token could introduce noise to the original data and1

partially conceal useful information about the diversity of sequence lengths, which is important for antigen2

specificity30, 31.3

In the past decade, deep learning models have achieved considerable success in handling sequential4

data 26, 32–35. An autoregressive model processes the sequential data using observations from previous5

stages to infer the entry at the next time point. In the context of the TCR sequence, we can apply an6

autoregressive model to infer a residue using the amino acid subsequence proceeding from it. Therefore,7

we built TCRpeg, an autoregressive model that formulates the probability of a TCR sequence xxx as p(xxx|||qqq),8
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where the parameters qqq capture the latent evolutionary patterns to generate xxx. The probability density1

p(xxx|||qqq) can be calculated by the product of probabilities conditioned on previous residues along a sequence2

with length L through an autoregressive likelihood3

p(xxx|||qqq) = p(x1|qqq)
L

’
i=2

p(xi|x1, ...,xi�1;qqq). (1)

Figure 1 shows the TCRpeg workflow. We utilized gated recurrent units (GRUs)26, commonly adopted in4

recurrent neural networks, to model the autoregressive likelihood (Methods). Recurrent neural network5

models might encounter a gradient explosion for long peptide sequences36, 37. However, TCR sequences6

contain mainly 12 to 17 residues (Supplementary S1). Thus, we can parameterize the generative process7

with feed-forward GRU models that aggregate dependencies in sequences through the transmitting hidden8

features controlled by the gate functions.9

Training a GRU model requires vector representations for each amino acid. Instead of using one-hot10

encodings or predefined characteristics of the analysis of principal components in biochemical features17,11

we adopted the word2vec algorithm38 to adaptively learn the embeddings for each amino acid from the TCR12

sequencing data by treating an amino acid as a “Word” and each TCR sequence as a “Sentence” (Method).13

Then, TCRpeg can be trained in a forward language modeling manner. To estimate the probability of a14

given TCR sequence, we applied Eq.1 to the pre-trained TCRpeg. Details of the architecture of TCRpeg,15

the training, and inferring processes are included in the Methods.16

TCRpeg infers functional TCR repertoire probability distribution17

First, we evaluated the probability distribution of the TCR sequences inferred by TCRpeg and compared18

its accuracy with the other two probabilistic models, soNNia19 and TCRvae29. To assess and compare19

their performance, we constructed a universal TCR repertoire from a large cohort of 743 individuals from20

Emerson et al.
39, following a similar data preprocessing strategy in Isacchini et al.

19. Specifically, we21

pooled the unique nucleotide sequences of TCRs from all individuals and constructed a universal TCR22

repertoire. The universal repertoire was randomly divided into training and testing subrepertoires by a23

50:50 split to ensure consistency with soNNia19 and TCRvae29. Then we trained TCRpeg, soNNia, and24

TCRvae on the training set (Methods).25
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Figure 2. Performance of TCRpeg compared to the other two baseline methods soNNia and TCRvae. (A-C) Scatterplots of observed frequency Pdata vs.
estimated probability Pin f er for (A) soNNia, (B) TCRvae and (C) TCRpeg models trained on the large TCR pool combining 743 individuals from Emerson et

al.
39, along with the corresponding Pearson correlation coefficient r. The color indicates the number of sequences. (D-F) Comparison of soNNia, TCRvae, and

TCRpeg model from practical aspects. Experiments are conducted under the same settings (learning rate and batch size) on a single Nvidia Tesla V100 GPU
card with maximum 32 gigabytes memory. (D) The training curves for these three models. The soNNia model uses the likelihood as the model objective

function (shown in the blue curve), while TCRvae and TCRpeg model minimize the cross-entropy loss (shown in the red curves). TCRpeg only needs less than
ten epochs to converge, while the other two take around 30 epochs to converge. (E) The bar plot shows the GPU memory required to train each model. TCRpeg
is more hardware-friendly. (F) The training speed of each model. TCRpeg takes less time to complete one training epoch compared to soNNia and TCRvae.

We evaluated the three models, each to estimate a probability distribution Pin f er(xxx) for the test set;1

TCRpeg shows high accuracy with substantial improvement over soNNia and TCRvae, but requires2

lower resources to train. Prediction accuracy can be quantified using the Pearson correlation coefficient r3

between the inferred and true probability distributions, i.e., Pin f er(xxx) and Pdata(xxx), on the test set (Methods).4

TCRpeg achieved r ' 0.906; however, soNNia and TCRvae obtained r ' 0.672 and r ' 0.653, respectively5

(Fig. 2A-2C). TCRpeg also performs stably and robustly when training on a small proportion of training6

data consisting of only 2⇥ 105 TCR sequences (Supplementary S2). In addition to the substantial7

accuracy improvement, TCRpeg converges faster and costs significantly less GPU memory (Fig. 2D-2F).8

It converges within five epochs, whereas the other two methods require around 30 epochs. Moreover,9

SoNNia and TCRvae consume six times and three times more memory than TRCpeg.10
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Figure 3. (A) Jesen-Shannon divergences between TCR subrepertoires at the cell type and tissue level. Jensen-Shannon divergences (DJS) were computed
from TCRpeg trained on different subrepertoires (Methods). (B) Density map of inferred logarithmic probabilities for the three repertoires according to the

TCRpeg model. For each repertoire, we inferred a TCRpeg model.

TCRpeg helps profile TCR repertoires1

The learned probability distribution can help profile the TCR subrepertoires in a probabilistic manner. Here,2

we were interested in learning the cell-type-level discrepancy and exploring the tissue-level differences3

since T-cells migrate and reside in different tissues and are influenced by different tissue environments.4

During maturation in the thymus, T-cells are selected and differentiate into two major cell types: cytotoxic5

(CD8+) and helper (CD4+) T-cells which function differently. Thus, our aim was to explore the TCR6

preferences of different TCR subrepertoires. To collect the data, we pooled TCRs with unique nucleotide7

sequences from nine healthy individuals from Seay et al.
21. These TCR sequences were classified into8

three cell types (CD4+ conventional T-cells [Tconvs], CD4+ regulatory T-cells [Tregs], and CD8+ T-9

cells) and collected from three tissues (pancreatic draining lymph nodes [pLNs], mesenteric or inguinal10

“irrelevant” lymph nodes [iLNs], and spleen); that is, we have nine classes of subrepertoires. We applied11

TCRpeg to infer the probability distribution of each subrepertoire and quantified the difference between12

these distributions using the Jensen-Shannon divergence DJS (Methods).13

We observed that the subrepertoires belonging to the same cell type are more conserved across different14

tissues. The same cell type in different tissues shows a lower TCR subrepertoire divergence, with an15

average Jensen-Shannon divergence as DJS ' 0.014 bits (Fig. 3A). However, the divergence is high16

between CD8+ and CD4+ TCR subrepertoires with the average DJS ' 0.041 bits. Tconv and Treg17

within the class of CD4+ cells demonstrate moderate similarities, with average DJS ' 0.024 bits. These18
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observations confirm the results from Isacchini et al.
19, where larger divergence between the CD8+ and1

CD4+ TCR subrepertoires and lower difference between the Tconv and Treg TCR subrepertoires are2

shown. These results were as expected since the CD8+ and CD4+ T-cells function significantly different:3

CD4+ T-cells are MHC-II restricted and pre-programmed for helper functions, whereas CD8+ T-cells4

are MHC I-restricted and pre-programmed for cytotoxic functions40. Additionally, subrepertoires of5

different tissues showed minor divergence, indicating that subsets of T cells perform similar functions6

across tissues.7

Next, we profiled two infection-specific TCR repertoires to further validate TCRpeg. We collected8

TCRs associated with cytomegalovirus (CMV) and Epstein-Barr virus (EBV) from VDJdb41 with 18,5609

and 4,350 sequences, respectively. Furthermore, we randomly sampled 106 TCRs from the aforementioned10

universal TCR pool as control. Figure 3B illustrates the density map of inferred probabilities for each11

repertoire. As expected, each repertoire had a distinct probability distribution. We then used a simple12

classifier to further show the characterization capacity of TCRpeg. We first trained a TCRpeg model13

for each repertoire. Then, we assigned a TCR x to the group r if Pr(xxx) > Pr0(xxx), and vice versa, where14

r and r
0 are two repertoires. Interestingly, we observed an average accuracy 0.791 for classifying15

CMV-associated TCRs from control and 0.801 for classifying EBV-associated TCRs with a 5-fold cross-16

validation procedure.17

Classification of cancer-associated TCRs and SARS-CoV-2 epitope-specific TCRs18

TCRpeg yields vector embeddings for TCRs sequences. Compared to the predefined or manually designed19

encoding method for TCR sequences, TCRpeg provides a learnable way to encode TCR sequences into20

vector representations. The update and reset gates of the GRU layers are learned during the training21

process to determine how much of the previous information stored in the hidden features needs to be22

passed along or abandoned26 (Fig. 1A). Therefore, the hidden features of the GRU layers at the last23

sequence position store summative information of the TCR sequences with different lengths; and these24

feature vectors provide an embedding for the TCR sequences.25

To illustrate the embedding of the TCR sequence, we first collected cancer-associated TCR (caTCR)26

from Beshnova et al.
17 (N⇠43,000) and SARS-CoV-2 epitope (YLQPRTFLL) specific TCRs from VDJdb27
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Figure 4. 2D illustration of TCRpeg-based encodings and predictive performance for downstream classification tasks. (A and B) 2D projection map of
encodings obtained from TCRpeg trained on (A) caTCRs and (B) specific TCRs of the SARS-CoV-2 epitope (YLQPRTFLL). More projecting results can be

found in Supplementary S3. (C and D) ROC curves for tasks of (C) predicting caTCR and (D) SARS-CoV-2 epitope YLQPRTFLL. (E and F) Sensitivity
analysis through amino acid substitutions used TCRpeg-c and TCRGP for two previously identified TCR motifs. For each position other than the two ends, we
changed the amino acid at that position to the four other most frequent AAs and used these two models to score the modified sequences. TCRpeg-c is more

sensitive than TCRGP to substitutions of amino acids inside the motifs.

database41 (N=683). We trained TCRpeg on these two datasets separately and obtained the respective1

numerical TCR embedding vectors. The UMAP dimensionality reduction42 was applied to project these2

vectors onto 2D space (Fig. 4A, Fig. 4B and Supplementary S3), showing that TCRs with a similar3

pattern (motif) tend to be clustered. It implies that the encodings could be helpful for antigen-specific TCR4

clustering. To further demonstrate the utility of TCRpeg-based encodings, we evaluated the classification5

performance on caTCRs and SARS-COV-2-epitope-specific TCRs using a fully connected neural network6

(FCN), taking these vector encodings as input. Since TCRpeg was designed mainly for TCRb chain7

and the paired TCRa and b chain are scarce, in this section we aimed mainly to investigate predictive8

performance with respect to TCRb sequences. We refer to this network as “TCRpeg-c” (Methods and9
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Supplementary S4). To collect negative (or control) samples for the epitope-specific TCR dataset, we1

randomly sampled ten times more negative data than positive data from the universal repertoire of TCR2

mentioned above. We selected the CNN-based model, DeepCAT, developed in Beshnova et al. to compare3

with the caTCR prediction task, adopting the five-fold cross-validation procedure. In this prediction task,4

we observed an improvement in accuracy and predictive stability for TCRpeg-c with an average AUC5

' 0.844 compared to DeepCAT with an average AUC ' 0.768 of caTCRs (Fig. 4C).6

In the more challenging epitope-specific TCR prediction task with scant data, TCRpeg-c still demon-7

strated competitive performance with AUC ' 0.872 compared to the baseline method TCRGP27 with8

AUC ' 0.882 (Fig. 4D). However, the TCRGP model is sophisticated, and it is designed specifically for9

the TCR-epitope mapping problem with low data size, combining multiple techniques including alignment10

of TCR sequences, Gaussian process (GP) and variational inference.11

TCRpeg-c finds TCR motifs through perturbation analysis. TCR motifs are important and instructive12

in determining their specificity to antigens43. Previously, motif discovery for TCR repertoires was13

mainly accomplished by exploring similarities between TCRs such as the TCRNET method44–46 or14

investigation of frequency enhancement of k-mers for TCRs43. Here, we used predictive models to15

test the sensitivity of previously identified TCR motifs for specific TCRs of the SARS-CoV-2 epitope16

YLQPRTFLL (Methods). We observed the correspondence between previously identified TCR motifs and17

sensitive residues according to the TCRpeg-c predicted scores, indicating the importance of TCR motifs18

for epitope binding (Fig. 4E and 4F). However, although TCRGP achieves high predictive performance, it19

lacks the ability to detect sensitive residues (Fig. 4E and 4F). We attribute its insensitivity to the need to20

pad TCR sequences to a fixed length, which could lower the degree of variation caused by amino acid21

substitution.22

Generating more TCR sequences with potentially the same specificity23

A good generative model could be beneficial for the adoptive transfer of TCR engineered T-cells (TCR-T)24

that has been applied to treat viral infections such as hepatitis B and C47, 48, cancer immunotherapy49, 50,25

and autoimmune disease therapy51 through in silico generation of similar TCR sequences guiding the in26

vitro TCR design. We extended TCRpeg to be generative through a simple sampling strategy (Methods).27
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Figure 5. Characteristics of the TCR sequences generated by the three generative models. (A-C) Comparison of the statistical distributions of the generated
sequences with the real data with respect to (A) V gene usage, (B) J gene usage and (C) length distribution. In (A), only the top 20 frequent V genes are listed.
We include the figure of full V gene usage and the distributions of amino acids in Supplementary S7 and S6. (D) The proportion of the TCR sequences in the
test set that also appears in the generated TCRs (bottom panel) and the average probability rank of those shared TCRs among the generated TCRs (top panel).

With more TCRs being generated, more of them can be found in the test set. (E - H) Performance in the task of predicting caTCRs by applying the
TCR-specific data augmentation technique. (D and F) The AUC scores with a different number of augmented TCR sequences when using the (E) DeepCAT

model and (G) TCRpeg-c. (F and H) ROC curves for the DeepCAT model (E) and TCRpeg-c G with the best number of augmented TCRs.

We first aimed to systematically evaluate and compare the generation ability of TCRpeg with the1

baseline methods, soNNia and TCRvae, in terms of the statistical properties between the generated2

TCR sequences and real sequences. Specifically, we investigated the distributions of sequence lengths,3

positions of amino acids, V gene and J gene usages. We observed strong agreement between the probability4

distributions of in silico and real TCR repertoires for both the TCRpeg and soNNia models. For the position5

distributions of each amino acid, the TCRpeg- and soNNia- generated sequences successfully fitted the6

original statistics with an average Pearson correlation coefficient r ' 1.0 and r ' 0.999, respectively,7

compared to TCRvae with r ' 0.982 (Supplementary S6). For V and J gene usages, the TCRpeg8

and soNNia models still outperform TCRvae, achieving average r ' 0.999 and r ' 0.998 compared to9

r ' 0.949 of the TCRvae model for V gene usage distribution (Fig. 5A and Supplementary S7), and10
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r ' 1.0 and r ' 0.997 over r ' 0.993 for J gene usage distribution (Fig. 5B). For the length distribution,1

these three models all achieved highly accurate performance with r ' 1.0,0.998,1.0 for TCRpeg, soNNia,2

and TCRvae, respectively (Fig. 5C). The generation performance of TCRpeg is stable and accurate even3

when trained on a small subset of TCRs (Supplementary S8 and S9). These results together highlight that4

TCRpeg is reliable for summarizing a TCR repertoire, and consequently, generating new sequences in5

recovering the real statistical distributions.6

A reliable generative model should be able to produce new TCR sequences with “hidden similarity”7

to real TCR data, in addition to statistical similarity. Here, we were interested to determine whether the8

generated TCR sequences possess the same epitope specificity with the data used in training TCRpeg. To9

verify this, we retrained TCRpeg on the training set of the TCRs specific to the epitope YLQPRTFLL10

and utilized it to generate new sequences accordingly. We first noticed that some of the TCRs in the11

test set could also be found in the generated data set (Fig. 5D), which shows the generative power of12

TCRpeg given the wide potential diversity of TCR sequences. To take a closer look at these generated13

TCR sequences, we observed that those TCRs that were also found in test set possessed high generation14

probabilities (averagely ranked < 10% among generated sequences, Fig. 5D). Finally, we utilized the15

TCRMatch28 software to further validate the hidden similarity of the generated TCR sequences and16

observed that 50�60% of them possess the same epitope specificity as the TCR sequences used in training17

according to a scoring threshold of 0.9 (Supplementary S10). On the contrary, although the soNNia and18

TCRvae models achieve comparable performance with respect to statistical similarities, only less than 40%19

of the generated sequences possess the same epitope specificity determined by the same scoring threshold20

(Supplementary S10). Overall, our results indicate that TCRpeg can generate new TCR sequences with21

statistical and possible hidden similarities to the TCRs used for training.22

Augmenting TCR sequencing data23

Data augmentation techniques are ubiquitously used in machine learning tasks to increase the generality24

of data by adding similar samples generated by either slightly modifying the original data or synthesizing25

similar data. They act as regularizers to alleviate the issue of overfitting and improve the generalization ca-26

pacity of machine learning models, especially when applied to computer vision tasks52 or natural language27
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processing tasks53. Adopting the data augmentation techniques here should improve the classification1

of TCR sequences. TCR sequences might abolish their epitope specificity by amino acid substitutions,2

especially when they happen inside contact motifs43, 54; therefore, directly performing amino acid substitu-3

tions, insertions, or deletions on TCR sequences cannot work as data augmentation. However, with strong4

generative ability, TCRpeg may generate similar TCR sequences and serve as a computational tool for5

TCR-specific data augmentation.6

To analyze the feasibility of TCR-specific data augmentation, we evaluated and compared the predictive7

performance of classifying caTCRs with and without data augmentation while keeping all other training8

settings unchanged. For the DeepCAT model, we observe a large performance gain with up to 0.0579

higher AUC when applying data augmentation technique (Fig. 5E and 5F). For the TCRpeg-c model,10

we still find accuracy enhancement in the AUC value from 0.844 to 0.851 with data augmentation (Fig.11

5G and 5H). Besides, the AUPRC (area under the precision-recall curve) also increases and the test loss12

decreases, which is a positive sign of mitigation of overfitting (Supplementary S11). To further validate13

the utility of our TCRpeg-based augmentation technique, we performed classification for the influenza14

epitope GILGFVFTL and EBV epitope GLCTLVAML specific TCRs with 3,406 and 962 positive samples,15

respectively, using the TCRex model55. Without changing any training settings, we observed up to 2.1%16

and 21.4% accuracy enhancement for these two TCR datasets (Supplementary S12).17

Discussion18

An accurate probabilistic model for large-scale TCR sequencing data is a cornerstone for a better un-19

derstanding of functional TCR repertoire. Previous works have developed selection models soNia25,20

soNNia19, and the VAE-based model TCRvae29 to characterize the distribution of productive TCR se-21

quences. However, they are all intrinsically unable to capture the information behind the length variation.22

In this work, we introduced TCRpeg, an autoregressive deep learning model that utilizes a recurrent neural23

network with GRU layers to characterize the TCR repertoires. Unlike soNia, soNNia, and TCRvae which24

need to pad every TCR sequence to the same length, TCRpeg can process TCR sequences with any lengths.25

Such capability can eliminate the noise introduced by adding an extra “amino acid” for padding and take26

advantage of the information behind the variance in lengths.27
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We first demonstrated that TCRpeg can improve the statistical characterization of TCR repertoires in1

a large cohort of individuals39 compared to soNNia and TCRvae by a large margin, which implies that2

TCRpeg can better learn the TCR sequence pattern. We attribute the superior performance of TCRpeg3

to its ability to process TCRs with different lengths and its transmission of hidden features that properly4

store the previous information. In particular, TCRpeg takes less iterations to converge and requires lower5

computation resources. These results indicate the advantages of using an autoregressive model that is6

capable of processing TCR sequences with different lengths to describe large-scale TCR sequencing data7

from a probabilistic perspective.8

Using the statistical inference power of TCRpeg, we explored the differences and similarities between9

functional TCR subrepertoires collected from different T-cell types or tissues at the repertoire level. We10

discovered that TCR subrepertoires belonging to families with more closely related developmental paths11

(i.e., Tconvs and Tregs) possess higher statistical similarities. Meanwhile, they both show large differences12

with CD8+ T-cells that diverged earlier in T-cell maturation. Next, we explored the statistical profile of the13

infection-specific TCR repertoires and observed their distinct patterns through the density map (Fig. 3B).14

To illustrate the characterization capacity of TCRpeg in a more straightforward way, we used a simple15

classifier that directly applied the probability inference ability of TCRpeg to classify the infection-specific16

TCRs. This simple classifier achieved relatively high prediction performance, with an average accuracy17

of 0.791 for classifying CMV and 0.801 for classifying EBV associated TCRs. Our results showed that18

TCRpeg is a superior tool for characterizing TCR repertoires from a statistical perspective.19

On the basis of the architecture of TCRpeg, we can obtain helpful vector representations of TCR20

sequences from the trained TCRpeg model, which is not provided by soNNia or TCRvae. Compared to21

other predefined or hand-designed encoding methods for TCR sequences, TCRpeg provides a learnable22

way to encode TCR sequences by updating functional gates inside GRU layers26. We observed that23

TCRpeg-based TCR encodings could reflect the degrees of similarities between TCR sequences that24

sequences with a similar pattern (motifs) tend to cluster together (Fig. 4A and 4B). This suggests a25

potential application of antigen-specific TCR clustering, since shared TCR motifs indicate the same26

antigen specificity.27

To examine the performance of TCRpeg-based encodings in a predictive manner, we assessed the28
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classification performance of caTCRs and YLQPRTFLL epitope-specific TCRs using a fully connected1

neural network taking these vector encodings as input (TCRpeg-c). For the caTCR prediction task, we2

chose the DeepCAT model developed by Beshnova et al. as the baseline method. We observed a significant3

improvement in accuracy and predictive stability for TCRpeg-c compared to DeepCAT in the prediction4

of caTCRs (Fig. 4C). With such high precision, TCRpeg-c could facilitate cancer detection through the5

process introduced in Beshnova et al.. In recent years, multiple machine learning methods have been6

developed to predict the epitope specificity of TCRs, such as TCRex55, DeepTCR54, and TCRGP27. All of7

these methods have explored the problem in slightly different settings and compared with each other. In the8

more challenging classification task of predicting SARS-SoV-2 epitope (YLQPRTFLL)-specific TCRs, we9

compared TCRpeg-c to a representative of the above group of machine learning models, TCRGP, which is10

a combination of multiple functional modules including TCR alignment, Gaussian process, and variational11

inference. TCRpeg-c demonstrated competitive performance in this task compared to TCRGP (Fig. 4D).12

In particular, TCRpeg-c is sensitive to substituting for an amino acid primarily when it occurs inside the13

TCR motifs, while TCRGP is insensitive to that (Fig. 4E and 5F). This finding indicates that TCRpeg-c14

can be used for motif validation and help with TCR engineering for immunotherapies56. In addition, this15

perturbation analysis might reveal de novo motifs that have not yet been discovered using nonpredictive16

methods (Supplementary S5). The comparable accuracy performances in the above two classification17

challenges validate the advantage of TCRpeg-based encodings, which can be further concatenated with18

epitope features to facilitate the unseen epitope-TCR interaction prediction task57.19

One direct application of TCRpeg is to generate new TCR sequences with characteristics similar to20

those of natural sequences. We first compared the generation capability of TCRpeg with soNNia and21

TCRvae with respect to the statistical distributions on the large universal TCR pool we have constructed.22

We showed that TCRpeg-generated TCR sequences had the closest amino acid distributions, length23

distribution, and V/J gene usages to the real sequences compared to the other baseline methods. Next,24

we found that some TCRs in the test set could also be found in the generated dataset, and those shared25

TCRs have high generation probabilities among the generated dataset (Fig. 5D). These results imply that26

newly generated TCR sequences with high probabilities might share the same epitope specificity with the27

data used in training, providing a potential way to meet the demand for more data. We further applied the28
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TCRMatch28 software to validate this implication and show that 50�60% of the generated TCRs share1

the same epitope specificity as the TCRs used for training. On the contrary, less than 40% of the TCRs2

generated using TCRvae or soNNia share the same specificity (Supplementary S10). The generative power3

of TCRpeg can also be used to design similar TCRs to facilitate immunotherapy for T-cell transfer49–51.4

Data augmentation is a ubiquitous technique used to increase the performance of machine learning5

models, especially in computer vision systems52. Given that more and more machine learning models6

have been developed for TCR-related tasks and the acquisition of more data is costly and time consuming,7

which restricts the development of highly accurate machine learning models, we developed and validated8

the TCR-specific data augmentation technique empowered by TCRpeg to relieve such restriction. For the9

caTCR classification task, we observed a notable improvement with data augmentation (Fig. 5E and 5F).10

In addition, we further validated the utility of data augmentation using another machine learning model -11

TCRex55 in the prediction tasks of GILGFVFTL and GLCTLVAML specific TCRs and again observed an12

improvement in accuracy (Supplementary S12). However, in the SARS-CoV-2 specific TCR recognition13

task, data augmentation failed to boost the model performance. When learning from such a small data size,14

TCRpeg tends to generate highly similar TCRs with those in the training set and thus provides limited15

additional information to the predictive model, which might result in more severe overfitting. Nevertheless,16

TCRpeg-based data augmentation is a free option for boosting model performance without any extra cost.17

In this work, we have introduced a new holistic software tool TCRpeg for estimating the probability18

distribution of a TCR repertoire with a great performance enhancement over previous works. Furthermore,19

with promising performance in probability inference, TCRpeg improves on a range of TCR-related tasks:20

(i) reveal TCR repertoire-level discrepancies from a probabilistic prospective; (ii) classify antigen-specific21

TCRs and validate previously discovered TCR binding motifs; (iii) generate novel TCRs and augment22

TCR data for accuracy enhancement of machine learning models. Our results and analysis highlight23

the flexibility and capacity of TCRpeg to extract TCR sequence information, providing new insights for24

understanding the complex genomic concepts hidden behind TCR repertoires.25

16/39

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.09.01.505405doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.01.505405
http://creativecommons.org/licenses/by-nc/4.0/


Methods1

Data Description2

The data sets used in this work are classified into three groups to evaluate the performance of TCRpeg. We3

filter out TCRs with lengths greater than 30 or not starting with a cysteine in all data sets. We also verified4

sequences that are written as V gene, CDR3 sequence, J gene and removed sequences with unknown5

genes. In addition, we only considered the 20 standard amino acids in this work and removed sequences6

with any unspecified amino acid. The detailed descriptions of each group of data are shown below:7

1. To quantify the precision of the inference of TCRpeg along with the other two baseline methods, we8

used the TCR repertoires sampled from a large cohort, including 743 individuals from Emerson9

et al.
39 We pooled the unique nucleotide sequences of receptors from all individuals and built a10

universal TCR pool that contains around 109 sequences in total. The multiplicity of an amino acid11

sequence in this universal TCR pool indicates the number of independent recombination events that12

led to that receptor. We randomly and equally split the TCR pool into a training set and a test set.13

2. To characterize the differences between the TCR subrepertoires of functional cell types collected14

from different tissues, we pooled unique TCRs from 9 control donors from Seay et al.
21 at the tissue15

level. These TCR sequences were sorted into three cell types and collected from three tissues. Thus,16

for each donor status (healthy or T1D), we have nine groups of TCRs. Again, the multiplicity of an17

amino acid sequence in this universal TCR pool indicates the number of independent recombination18

events that led to that receptor, which is used to calculate the real probability distribution.19

3. To evaluate the performance of TCRpeg-c in classification tasks, we first collected cancer-associated20

TCRs (caTCRs) from Beshnova et al.
17. Briefly, Beshnova and his colleagues collected TCR21

sequences from approximately 4,200 recorded samples downloaded from The Cancer Genome22

Atlas (TCGA) and excluded those sequences that are also found in healthy donors. The remaining23

around 43000 TCR sequences are assumed to be cancer-associated TCRs (caTCRs). We extracted24

the SARS-CoV-2 epitope (YLQPRTFLL), influenza epitope GILGFVFTL and EBV GLCTLVAML25

specific TCRs from VDJdb41 database (positive TCRs N = 683, 3406, 962, respectively, extracted26
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on 24 January 2022). We then randomly sampled ten times more negative data than positive data1

from the universal TCR pool constructed previously to serve as the control TCRs.2

TCRpeg and TCRpeg-c3

The illustrations of TCRpeg and TCRpeg-c are shown in Fig. 1A and Supplementary S4. To enable the4

training of TCRpeg, we first trained the word2vec38 model on 1⇥106 TCR sequences randomly sampled5

from the pooled universal repertoire aforementioned to obtain the numerical embeddings for each amino6

acid, regarding the amino acid as the “words” and the TCR sequences as the “sentences”. Specifically,7

we adopted the skip-gram architecture with the window size and embedding size set to 2 and 32 and8

trained it for 20 epochs. For the TCRpeg model, the GRU modules have three layers with the size of the9

hidden feature set to 64. We trained TCRpeg using the Adam58 optimizer for 20 epochs to minimize the10

cross-entropy loss between the soft-maxed logits and the one-hot encoded representation of the discrete11

categorical outputs of the network. The probability of a given TCR sequence Pin f er(xxx) is estimated using12

Equation 1. Specifically, we input the given TCR sequence to TCRpeg and obtain the corresponding13

output probability distribution of the amino acid at the next time step. Thus, Pin f er(xxx) is the multiplication14

of the probabilities of amino acids at each time step.15

For the TCRpeg-c model, the size of the hidden feature is increased to 512 to better capture the hidden16

sequence features for classification tasks. On top of the pre-trained TCRpeg, the fully connected neural17

network contains two hidden layers with 384 and 96 neurons, followed by the ReLU activation function.18

In the task of predicting caTCRs, we trained TCRpeg-c for 30 epochs to minimize the loss of cross-entropy19

between the output logits and true labels, with dropout operations (p=0.2) to reduce the issue of overfitting.20

In classifying epitope-specific SARS-CoV-2 TCRs, we trained TCRpeg-c for 20 epochs with a dropout21

rate set to 0.4. In both above-mentioned classification tasks, the TCRpeg was trained on the respective22

training set to provide the numerical embeddings for TCRs. The trained TCRpeg-c can be used to find23

TCR motifs through perturbation analysis. Specifically, we permuted each position of the TCR sequences24

except for the first and last positions, with four other amino acids that most likely appeared at that position25

according to the amino acid frequency at that position. We adopted this strategy to avoid skewed permuted26

sequences containing amino acids at some positions with nearly zero probabilities. We then applied the27
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trained TCRpeg-c to score each permuted sequence to determine residues that are sensitive to changes.1

Quantifying the accuracy of probability inference.2

To evaluate the precision of probability inference, we compared the estimated probabilities Pin f er(xxx) to3

the observed frequencies Pdata(xxx) of the test set. The accuracy can be quantified by Pearson’s correlation4

coefficient r between Pin f er(xxx) and Pdata(xxx). A higher value of r indicates a better model. The calculation5

of Pin f er(xxx) for TCRpeg is described in the previous section using the autoregressive likelihood formula.6

For the two baseline methods TCRvae and soNNia, we compute Pin f er(xxx) by:7

Pin f er(xxx) = Â
v, j

Pin f er(xxx,v, j), (2)

which sums the V and J genes along with the TCR sequence xxx. Finally, we normalize the inferred8

probabilities Pin f er(xxx) and consider them as the approximation of the real probability distribution.9

Quantifying of difference between TCR subrepertoires10

We used the Jensen-Shannon divergence DJS(ri,r j) to characterize the difference between two TCR11

subrepertoires r
i and r

j:12

DJS(r
i,r j) =

1
2

DKL(P
i

in f er
,M)+

1
2

DKL(P
j

in f er
,M), (3)

where P
i

in f er
and P

j

in f er
are computed by two different TCRpeg separately trained on subrepertoires r

i
13

and r
j, M = 1

2(P
i

in f er
+P

j

in f er
) and DKL represent the Kullback-Leibler divergence. To characterize the14

differences between the TCR subrepertoires of functional cell types collected from different tissues, we15

first trained TCRpeg on each tissue-level TCR subset for 20 epochs with hidden size and the number of16

layers set to 128 and 3, respectively. Then we applied Eq. 3 to calculate the JS divergences between each17

pair of those TCR subrepertoires.18

Using TCRpeg to generate TCR sequences19

We adopted a simple sampling method to generate new TCR sequences using TCRpeg. Specifically, we20

first input the start token (“<SOS>”) to the TCRpeg and then randomly sampled the amino acid for the21
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next position from the output probability distribution (computed using the Softmax operation). Following1

the same procedure, at each time step, we randomly sampled the amino acid for that time step according to2

the probability distribution defined by the predicted scores and input it to the next time step to obtain the3

following amino acids. This stochastic generation procedure can be described by the formula stated below:4

AAt = P(AA|AAt�1:0;qqq), (4)

where AA0 stands for the start token and qqq represents the TCRpeg parameters. The generation process5

stops when the special stop token (“<EOS>”) is generated. To allow the ability to infer the corresponding6

V and J gene along with the TCR sequence, we extended TCRpeg and formulated the probability of a7

given TCR sequence xxx with specific V and J genes as:8

p(xxx,V,J|qqq 111,qqq 222,,,qqq 333) = p(x1|qqq 111)
L

’
i=2

p(xi|x1, ...,xi�1;qqq 111)p(V |xxx;qqq 222)p(J|xxx;qqq 333), (5)

where p(V |xxx;qqq 222) and p(J|xxx;qqq 333) are the probabilities conditioning on the TCR sequence xxx; qqq 222 and qqq 333 are9

parameterized by two respective fully connected single-layer neural networks. The TCRpeg, soNNia and10

TCRvae models were inferred from the universal TCR repertoire aforementioned, and then we applied11

them to generate new TCR sequences along with V and J genes.12

Availability of data and materials13

All data analyzed in this work can be found in the original publications that collected the data17, 21, 39, 41, and14

we include the preprocessed data at https://github.com/jiangdada1221/TCRpeg#data.15

TCRpeg was written in Python using the deep learning library Pytorch59 and is available as a python16

package. Source code, use-case tutorials, and documentations can be found at https://github.com/17

jiangdada1221/TCRpeg. Users can install directly from Github or PyPI via pip.18
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