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Abstract

Effectively modeling and quantifying behavior is essential for our understanding of the brain. Modeling
behavior in naturalistic settings in social and multi-subject tasks in a unified manner remains a significant
challenge. Modeling the behavior of different subjects performing the same task requires partitioning
the behavioral data into features that are common across subjects, and others that are distinct to each
subject. Modeling social interactions between multiple individuals in a freely-moving setting requires
disentangling effects due to the individual as compared to social investigations. To achieve flexible
disentanglement of behavior into interpretable latent variables with individual and across-subject or
social components, we build on a semi-supervised approach to partition the behavioral subspace, and
propose a novel regularization based on the Cauchy-Schwarz divergence to the model. Our model, known
as the constrained subspace variational autoencoder (CS-VAE), successfully models distinct features
of the behavioral videos across subjects, as well as continuously varying differences in social behavior.
Our approach vastly facilitates the analysis of the resulting latent variables in downstream tasks such as
uncovering disentangled behavioral motifs and the efficient decoding of a novel subject’s behavior.

1 Introduction1

Effective study of the relationship between neural signals and ensuing behavior relies on our ability to2

measure and adequately quantify behavior. Historically, behavior has been quantified by a very small3

number of markers as the subject performs the task, for example, force sensors on levers. However,4

an advancement in hardware and storage capabilities, as well as computational methods applied to5

video data, has allowed us to increase the quality and capability of behavioral recordings to videos6

of the entire subject that can be processed and analyzed quickly. It is now widely recognized that7

understanding the relationship between complex neural activity and high-dimensional behavior is a major8

step in understanding the brain that has been undervalued in the past [1, 2]. However, the analysis of9

high-dimensional behavioral video data across subjects is still a nascent field, due to the lack of adequate10

tools to efficiently disentangle behavioral features related to different subjects. Moreover, as recording11

modalities become light-weight and portable, neural and behavioral recordings can be performed in more12

naturalistic settings, which are difficult for behavioral analysis tools to disentangle due to changing scenes.13

Although pose estimation tools that track various body parts in a behavioral video are very popular,14

they fail to capture smaller movements and rely on the labeler to judge which parts of the scene are15

important to track [3, 4, 5, 6, 7]. Unsupervised techniques have gained traction to circumvent these16

problems. These include directly applying dimensionality reduction methods such as Principal Component17

Analysis (PCA) and Variational Autoencoders (VAEs) to video data [2, 8, 9]. However, understanding18

or segmentation of the latent variables is difficult for any downstream tasks such as motif generation. To19
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combine the best of both worlds, semi-supervised VAEs have been used for the joint estimation of tracked20

body parts and unsupervised latents that can effectively describe the entire image [2]. These have not21

been applied to across-subject data, with the exception of [10], where the authors directly use a frame22

of each subject’s video as a context frame to define individual differences; however, this method only23

works with a discrete set of labeled sessions or subjects. These methods fail when applied without labeled24

subject data, or more importantly, when analyzing freely-behaving social behavior, due to continuously25

shifting image distributions that confound the latent space.26

With increasing capabilities to effectively record more naturalistic data in neuroscience, there is a27

growing demand for behavioral analysis methods that are tailored to these settings. In this work, we28

model a continuously varying distribution of images, such as in freely moving and multi-subject behavior,29

by using a novel loss term called the Cauchy-Schwarz Divergence (CSD) [11, 12]. By applying the CSD30

loss term, a subset of the latents can be automatically projected on a pre-defined and flexible distribution,31

thus leading to an unbiased approach towards latent separation. Here, the CSD is an effective variational32

regularizer that separates the latents corresponding to images with different appearances, thus successfully33

capturing ‘background’ information of an individual. This background information can be the difference34

in lighting during the experiment, the difference in appearance across mice in a multi-subject dataset,35

or the presence of another subject in the same field of view as in a social interaction dataset.36

To further demonstrate the utility of our approach, we show that we can recover behavioral motifs37

from the resulting latents in a seamless manner. We recover (a) the same motifs across different animals38

performing the same task, and (b) motifs pertaining to social interactions in a freely moving task with39

two animals. Furthermore, we show the neural decoding of multiple animals in a unified model, with40

benefits towards the efficient decoding of the behavior of a novel subject.41

Related Works Pose estimation tools such as DeepLabCut (DLC) and LEAP have been broadly42

applied to neuroscience experiments to track the body parts of animals performing different tasks, includ-43

ing in the social setting [3, 4, 5, 6, 7]. These are typically supervised techniques that require extensive44

manual labeling. Although these methods can be sample-efficient due to the use of transfer learning45

methods, they still depend inherently on the quality of the manual labels, which can differ across labelers.46

Moreover, these methods may be missing key information in these behavioral videos that are not captured47

by tracking the body parts, for example, movements of the face, the whiskers, and smaller muscles that48

comprise a subject’s movements.49

Emerging unsupervised methods have demonstrated significant potential in directly modeling behav-50

ioral videos. A pioneer in this endeavor was MoSeq, a behavioral video analysis tool that encodes high51

dimensional behavior by directly applying PCA to the data [13, 9]. Behavenet is similar to MoSeq, but52

uses autoencoders to more effectively reduce the dimensionality of the representation [8]. However, the53

corresponding latent variables in these models are typically not interpretable. To add interpretability,54

the Partitioned Subspace VAE (PS-VAE) [2] formulates a semi-supervised approach that uses the labels55

generated using pose estimation methods such as DLC in order to partition the latent representation56

into both supervised and unsupervised subspaces. The ‘supervised’ latent subspace captures the parts57

that are labeled by pose estimation software, while the ‘unsupervised’ latent subspace encodes the parts58

of the image that have not been accounted for by the supervised space. While PS-VAE is very effective59

for a single subject, it does not address latent disentaglement in the ‘unsupervised’ latent space, and is60

not able to model multi-subject or social behavioral data.61

Modeling multiple sessions has recently been examined in two approaches: MSPS-VAE and DBE62

[2, 10]. Both of these are confined to modeling head-fixed animals with a pre-specified number of sessions63

or subjects. In MSPS-VAE, an extension to PS-VAE, a latent subspace is introduced in the model that64

encodes the static differences across sessions. In DBE, a context frame from each session or subject is used65

as a static input to generate the behavioral embeddings. Two notable requirements of applying both these66

methods is the presence of a discrete number of labeled sessions or subjects in the dataset. Therefore, these67

are not well suited for naturalistic settings where the session / subject identity might not be known a priori,68

or the scene might be continuously varying, for example, in the case of subjects roaming in an open-field.69

2 Results70

2.1 CS-VAE Model Structure71

Although existing pose estimation methods are capable enough to capture the body position of the animals72

in both open and contained space, tracking specific actions such as shaking and wriggling still remains73

a problem. However, a purely unsupervised or semi-supervised model such as a VAE or PS-VAE lacks the74
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Figure 1: Overview of the Constrained Subspace Variational Autoencoder (CS-VAE). The latent space is
divided in three parts: (1) the supervised latents decode the labeled body positions, (2) the unsupervised
latents model the individual’s behavior that is not explained by the supervised latents, and (3) the constrained
subspace latents model the continuously varying features of the image, e.g., relating to multi-subject or social
behavior. After training the network, the generated latents can be applied to several downstream tasks.
Here we show two example tasks: (1) Motif generation: we apply state space models such as hidden Markov
models (HMM) and switched linear dynamical systems (SLDS), with the behavioral latent variables as the
observations; (2) Neural decoding: with neural recordings such as widefield calcium imaging, corresponding
behaviors can be efficiently predicted for novel subjects.

ability to extract meaningful and interoperable behaviors from multi-subject or social behavioral videos.75

One possible solution is to add another set of latent which could capture the variance across individuals76

and during social interactions. Instead of constraining the data points from different sessions or subjects to77

distinct parts of the subspace as in [2, 10], we directly constrain the latent subspace to a flexible prior dis-78

tribution using a Cauchy-Schwarz regularizer as detailed in the Methods section. Ideally, this constrained79

subspace (CS) captures the difference between different animals in the case of a multi-subject task and the80

social interactions in a freely-behaving setting, while the supervised and unsupervised latents are free to81

capture the variables corresponding to the individual. The model structure described above is shown in Fig.82

1. After the input frames go through a series of convolutional layers, the resulting latent splits into three83

sets. The first set contains the supervised latents, which encodes the specific body position as tracked by84

supervised tracking methods such as DLC. The unsupervised latents capture the rest of the individual’s be-85

havior that are not captured by supervised latents. The CS latents capture the continuous difference across86

frames. The prior distribution can be changed to fit different experimental settings (and can be modeled87

as a discretized state space if so desired, making it close to the MSPS-VAE discussed in the Introduction).88
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Figure 2: (A) Simulated dataset: behavioral videos from one mouse with artificially simulated differences in
contrast. (B) Distribution occupied by the 3 CS latents.The constrained latents are distributed according to
the pre-defined prior: a Swiss roll distribution. Different contrast ratios separate well in space. (C) Left:
R2 values for label reconstruction; Right: visualization of label reconstruction for an example trial. Latent
traversals for (D) CS latents, each of which captures lower, medium, and higher contrast rate. (E) An example
supervised latent captures lever movement, and (F) an example unsupervised latent which captures jaw
movement.

2.2 Modeling Smooth Variations in a Simulated Dataset89

We performed a simulation study on the behavioral videos of one of the mice in the ‘Multi-Subject90

Behavior’ dataset detailed in Appendix A. We applied a continuously varying contrast ratio throughout91

the trials (Fig. 2A) to model smoothly varying lighting differences across the dataset. We then randomly92

shuffled all the trials and trained a CS-VAE model with a swiss roll as a prior distribution. Here, the R2
93

for the supervised labels was 0.881± 0.05 (Fig. 2C), and the mean squared error (MSE) for reconstructing94

the entire frame was 0.0067± 0.0003, showing that both the images and the labels were fit well. This95

was comparable to the PS-VAE model, where the R2 for the supervised labels was 0.881± 0.09, and the96

MSE for the entire frame reconstruction was 3.24± 3.51 · 10−5.97

We show the CS latents recovered by the model in Fig. 2B, which follow the contrast ration distri-98

bution. We also show latent traversals in Fig. 2D-F, which demonstrate that the CS latent successfully99

captured the contrast changes in the frames (Fig. 2D), the supervised latent successfully captured the100

corresponding labeled body part (Fig. 2E), and the unsupervised latent captured parts of the individual’s101

body movement with a strong emphasis on the jaw (Fig. 2F). Thus, we show that smoothly varying102

changes in the videos are well captured by our model.103

2.3 Modeling Multi-Subject Behavior104

In a multi-subject behavioral task, we would like to disentangle the commonalities in behavior from the105

differences across subjects. Here, we test the CS-VAE on an experimental dataset with four different106

mice performing a two-alternative forced choice task (2AFC): head-fixed mice performed a self-initiated107

visual discrimination task, while the behavior was recorded from two different views (face and body).108

The behavioral video includes the head-fixed mice as well as experimental equipment such as the levers109

and the spouts. We labeled the right paw, the spouts, and the levers using DLC [3]. Neural activity in110

the form of widefield calcium imaging across the entire mouse dorsal cortex was simultaneously recorded111

with the behavior. The recording and preprocessing details are in [14, 15], and the preprocessing steps112

for the neural data are detailed in [15].113

Reconstruction Accuracy The CS-VAE model results in a mean label reconstruction accuracy114

R2 = 0.926±0.02 (Fig. 3B,C), with the MSE for frame reconstruction as 0.00232±7.7·10−5 (Fig. 3A). This115

was comparable to the results obtained using a PS-VAE model (R2 = 0.99±0.004, MSE = 0.13±4.5·10−7).116

Disentangled Latent Space Representation We show latent traversals for each mouse in Fig. 4,117

with the base image chosen separately for each mouse (videos in Supplementary Material 3). We see that,118

even for different mice, the supervised latent can successfully capture the corresponding labeled body part119
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Figure 3: Modeling the behavior of four different mice. A. Image reconstruction result for an example frame
from each mouse. B. Label reconstruction result for an example trial. C. R2 value for label reconstruction for
all mice. D. (Left) CS latent and (Right) unsupervised latent distributions for all mice generated using our
CS-VAE model. On the left, we see that the CS latent distribution follows the pre-defined prior distribution
and is well separated; on the right, we see that the unsupervised latent distribution is well overlapped across
mice. E. Unsupervised latent distribution for all mice generated using the comparison PS-VAE model, where
the latents from different mice are separate from each other. F. SVM classification accuracy for classifying
different mice using the CS-VAE and PS-VAE latents. The unsupervised latents generated by the CS-VAE has
low classification accuracy, indicating across-subject representations, and the CS latents have a classification
accuracy close to one, indicating good separation.

(Fig. 4A). The example unsupervised latent is shown to capture parts of the jaw of each mouse (Fig. 4B),120

and is well-localized, comparable with the example supervised latent. The CS latent dimension encodes121

many different parts of the image, and has a large effect on the appearance of the mouse, effectively122

changing the appearance from one mouse to another, signifying that it is useful in the case of modeling123

mouse-specific differences (Fig. 4C). We demonstrate the abilities of the CS latent in capturing the124

appearance of the mouse by directly changing the CS latent from one part of subspace to another (Figure125

4D). The changes in appearance along with the invariance in actions shows the intraoperability between126

mice by only changing the CS latents in this model (Fig. 4D).127

Ideally, we would like to uncover common across-subject variables using the supervised and unsuper-128

vised latents subspaces, and have the individual differences across subjects be encoded in the CS latents.129

Thus, we expect the unsupervised latents to not be able to classify the individual well. In fact, Fig. 3D,F130

show that the unsupervised latents overlap well across the four mice and perform close to chance level131

(0.25) in a subject-classification task using SVM (details in Appendix H). This signifies that unsupervised132

latents occupy the same values across all four mice and thus effectively capture across-subject behavior. In133

fact, we tested our latent space by choosing the same base image across the four mice, and found that the134

supervised and unsupervised latents from different mice can be used interchangeably to change the actions135

in the videos, also showing interoperability between different mice in these latent subspaces (Appendix I).136

This is in stark contrast to the CS latents, which are well separated across mice and are able to be137

classified well (Fig. 3D,F); thus, they effectively encode for individual differences across subjects. Note138

that our method did not a prior know the identity of the subjects, and thus this shows that the CS139

latents achieve separation in an unsupervised manner. We also note that the CS latents are distributed140

in the shape of the chosen prior distribution (a circle). The separation in the unsupervised latent space141

obtained by the baseline PS-VAE shown in Fig. 3E and the latents’ ability to classify different subjects142

(Fig. 3F) further validates the utility of CS-VAE.143

Lastly, we trained the model while using prior distributions of different types, to understand the effect144
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Figure 4: Latent traversals for behavioral modeling of four different mice for A. an example supervised latent
that captures the left spout across all the subjects, B. an example unsupervised latent that captures the chest
of the mice, and C. an example CS latent that successfully captures the mouse appearance. D. Changing the
value of the CS latent in an example frame leads to a change in subject, while keeping the same action as in
the example frame.

on the separability of the resulting latents. The separability was comparable across a number of different145

prior distributions, such as a swiss roll and a plane, signifying that the exact type of prior distribution146

does not play a large role.147

Across-Subject Motif Generation To further show that the supervised and unsupervised latents148

produced by CS-VAE are interoperable between the different mice, we apply a standard SLDS model to149

uncover the motifs using this across-subject subspace. As seen in the ethograms (left) and the histograms150

(right) in Fig. 5, the SLDS using the CS-VAE latents captures common states across different subjects,151

indicating that the latents are well overlapped across mice. The supervised latents related to equipment152

in the experiment, here the spout and lever, split the videos into four states (different colors in the153

ethograms in Fig. 5A), that we could independently match with ground truth obtained from sensors in154

these equipment. The histograms show that, as expected, these states occur with a very similar frequency155

across mice. We also explored the behavioral states related to the right paw. The resulting three states156

captured the idle vs. slightly moving vs. dramatically moving paw (Fig. 5B). The histograms show that157

these states also occur with a very similar frequency across mice. Videos for all these states are available158

in Supplementary Material 2. Lastly, we extracted the behavioral states related to the unsupervised159

latents, which yielded 3 states related to raising of the paws (including grooming) and jaw movements160

(including licking) that are present in all four mice, as shown in Fig. 5C. We see that different mice have161

different tendencies to lick and groom, e.g., mouse 1 and 4 seem to groom more often.162
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Figure 5: Motif generation for across-subject (supervised and unsupervised) behavioral latents using CS-VAE.
SLDS results for CS-VAE latents: A. Supervised latents relating to equipment in the field of view. The
equipment actions are similar for each trial. B. Supervised latents relating to tracked body parts. The
ethograms for each trial across subjects and between subjects are very similar. The histogram indicates
the number of frames occupied by each action per mouse. This further confirms the similarities between
the supervised latents across subjects. C. Unsupervised latents also look similar across mice. Here, some
example consecutive frames from the ’raise pow’ motif are shown, which show the mouse grooming. D. As a
comparison, SLDS results for the latents generated by a VAE, which failed to produce across-subject motifs.

As a baseline, we repeat this exercise on the latents of a single VAE trained to reconstruct the videos163

of all four mice (Fig. 5D). We see that the latents obtained by the VAE do not capture actions across164

subjects, and fail to cluster the same actions from different subjects into the same group.165

Efficient Neural Decoding via Transfer Learning To understand the relationship between neural166

activity and behavior, we decoded each behavioral latent with neural data across the dorsal cortex167

recorded using widefield calcium imaging. The decoding results for the supervised latents were similar168

across the CS-VAE and the PS-VAE, but we show that the neural data was also able to capture the169

CS-VAE unsupervised latents well (Appendix J).170

Next, as a final test of interoperability of the individual latents across mice, we used a transfer learning171

approach. We first trained an LSTM decoding model on 3 of the 4 mice, and then tested that model172

on the 4th mouse while holding the LSTM weights constant but training a new dense layer leading to173

the LSTM (Fig. 6A, details in Appendix J). As a baseline, we compared the performance of an individual174

LSTM model trained only on the 4th mouse’s data. We see in Fig. 6B that, as the training set of the175

4th mouse becomes smaller, the transfer learning model outperforms the baseline with regards to both176

time and accuracy (more results and baseline comparisons in Appendix J).177

2.4 Modeling Freely-Moving Social Behavior178

The dataset consists of a 16 minute video of two adult novel C57BL/6J mice, a female and a male,179

interacting in a clean cage. Prior to the recording session the mice were briefly socially isolated for 15180

minutes to increase interaction time. As preprocessing, we aligned the frame to one mouse and cropped the181

video (schematic in Fig. 7A; details in the Appendix B). We tracked the nose position (x and y coordinates)182

of the mouse using DLC. Here, we did not include an unsupervised latent space, since the alignment and183

supervised labels resulted in the entire individual being explained well using the supervised latents.184
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Figure 6: A. Transfer learning model framework. Each of the four mice has a specific dense layer for aligning
the neural activities. After the model is trained using three mice, the across-subject Recurrent Neural Network
(RNN) layer is fixed and transferred to the fourth mouse. As a comparison, we trained a novel RNN model
for the fourth mouse and compared the accuracy with the transfer learning model B. R2 and training time
trade-off for individual vs. transfer learning model as the size of the training set decreases. As the training
set decreases, the transfer learning has a better performance than the individually trained model with regards
to both time and R2 accuracy.

Reconstruction Accuracy The CS-VAE model results in a mean label reconstruction accuracy185

0.961± 0.0017 (Fig. 7B), with the MSE for frame reconstruction as 1.21 · 10−5 (Fig. 7B). We compared186

the performance of our model with the VAE and PS-VAE (Table 1), and the CS-VAE model performed187

better than the baseline models for both image and label reconstruction. For the VAE, we obtained the188

R2 for nose position prediction by training a multi-layer perceptron (MLP) with a single hidden layer189

from the VAE latents to the nose position.190

Disentangled Latent Space Representation We calculated the latent traversals for each latent191

as in Section 4. As shown in the videos in Supplementary Material 4, CS latent 1 captures the second192

mouse to the front of the tracked mouse, CS latent 2 captures the front and above position of the second193

mouse, and CS latent 3 captures the position where the second mouse is below the tracked mouse.194

To visualize the latent space and understand the relationship to social interactions, we plot the CS la-195

tents overlaid with the nose-to-tail distance between the two mice (nose of one mouse to the tail of the other)196

in Fig. 7C. We see that the CS latents represent the degree of social interaction very well, with a large separa-197

tion between different social distances. Furthermore, we trained an MLP with a single hidden layer from dif-198

ferent models’ latents to the nose-to-tail distance, and the CS-VAE produces the highest accuracy (Table 1).199

Motif Generation We applied a hidden Markov model (HMM) to the CS latents to uncover be-200

havioral motifs. The three clusters cleanly divide the behaviors into social investigation vs. non-social201

behavior vs. non-social behavior with the aligned mice exploring the environment. To effectively visualize202

the changes in states, we show the ethogram in Fig. 8A. Videos related to these behavioral motifs are203

Table 1: Comparison of different models on the freely-moving social behavior dataset

VAE PS-VAE CS-VAE

MSE for image reconstruction 1.74 · 10−5 5.44 · 10−5 1.21 · 10−5

R2 for nose position 0.135± 0.013 0.894± 0.002 0.958± 0.002
R2 for inter-individual nose-to-tail distance 0.353± 0.0099 0.283± 0.013 0.363± 0.0098
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Figure 7: A. Image alignment for the social behavior data. B. Model performance on the social behavior
dataset. C. Visualization of the CS latents overlaid with the nose-to-tail distance between the two interacting
mice. The CS latents separates the frames that contain social interactions from those that do not.

provided in Supplementary Material 5.204

Lastly, we calculated different metrics to quantitatively evaluate the difference between each behavioral205

motif. The results are shown in Fig 8B, where we plot the average values for distances and angles between206

different key points. The lower distance between the two mice in State a demonstrates that the mice207

are close to each other in that state, pointing to social interactions. The smaller nose-to-tail distance208

for the aligned mouse in State c points to this state encoding for the ‘rearing’ of the mouse. The angle209

between the two mice further reveals the relative position between the two mice; in State b, the second210

mouse is located above the aligned mouse, while the opposite is true for State c. These metrics uncover211

the explicit differences between the different motifs that are discovered by CS-VAE.212

3 Discussion213

In the field of behavior modeling, there exist three major groups of methods, supervised, unsupervised,214

and semi-supervised. The supervised methods consist of methods such as DeepLabCut (DLC) [7], LEAP215

[6], AlphaTracker [5], amongst others. Although these methods capture the positions of the subjects, they216

lack the ability to model smaller movements and unlabeled behavior, and necessitate tedious labeling. On217

the other hand, unsupervised methods such as MoSeq [9] and Behavenet [8] lack the ability to produce218

intertpretable behavioral latents. While some semi-supervised methods, for instances, MSPS-VAE [2]219

and DBE [10], succeed in producing interpretable latents and modeling behavior across subjects, they220

need significant human input, and lack the ability to model freely-moving animals’ behavior. Here, we221

introduce a constrained generative network called CS-VAE that effectively addresses major challenges222

in behavioral modeling- disentangling multiple subjects and representing social behaviors.223

For multi-subject behavioral modeling, the behavioral latents successfully separates the common224

activities across animals from the differences across animals. This behavioral generality is highlighted225

by the across-subject behavioral motifs generated by standard methods, and a higher accuracy while226

applying transfer learning for the neural decoding task. Furthermore, the SVM classification accuracy227

approaches 100%, which also indicates that the constrained-subspace latents well separate the differences228

between the subjects. In the social behavioral task, the constrained latents well capture the presence229

of social investigations, the environmental exploration, and the relative locations of the two individuals230

in the behavioral motifs. While our methods succeed in effectively modeling social behavior, it remains231

a challenge to separate out different kinds of social investigations in an unsupervised manner.232

The constrained latents encode smoothly and discretely varying differences in behavioral videos. As233

seen in this work, in the across-subject scenario, the constrained latents encode the appearance of the234

different subjects, while in freely-moving scenario, the constrained latents capture social investigation235

between the subjects. The flexibility of this regularization thus gives it the ability to be fit in different236

conditions. Future directions include building an end-to-end structure that can captures behavioral motifs237

in a unsupervised way.238
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Figure 8: A. Ethogram for the animals’ behavior recovered using hidden Markov models (HMM) applied
to the CS latents. B. Different metrics for analysing the behavioral motifs. Here, the three motifs are a.
social interaction; b. non-social interaction with the companion on the upper side of the aligned mouse; c.
non-social interaction (the aligned mouse exploring the environment with its companion far away). These
metrics show the quantitative differences between the different motifs.

4 Methods239

Regularization of Constrained Subspace We use the Cauchy-Schwarz divergence to regularize our240

constrained subspace using a chosen prior distribution. The Cauchy-Schwarz divergence DCS(p1, p2)241

between distributions p1(x) and p2(x) is given by:242

DCS(p1, p2) = − log

∫
p1(x)p2(x)dx√∫

p21(x)dx
∫
p22(x)dx

(1)

DCS(p1, p2) equals zero if and only if the two distributions p1(x) and p2(x) are the same. By applying243

the Parzen window estimation technique to p1(x) and p2(x), we get the entropy form of the Equation [11]:244

Ĥ(p1) = − log(V (p1)) = − log

(
N∑
i

N∑
j

G√
2σ(p1i − p1j)/N

2

)
(2)

Ĥ(p1, p2) = − log(V (p1, p2)) = − log(

N1∑
i

N2∑
j

G√
2σ(p1i − p2j)/(N1N2)) (3)

Here, p1i represents the ith sample from the distribution p1, i.e., p1(xi). − log(V (p1)) and − log(V (p2)) are245

the estimated quadratic entropy of p1(x) and p2(x), respectively, while − log(V (p1, p2)) is the estimated246

cross-entropy of p1(x) and p2(x). G is the kernel applied to the input distribution; here it is chosen to be247

Gaussian. N , N1, and N2 are the number of samples being input into the model while σ is the kernel size.248

The choice of the kernel size depends on the dataset itself; generally, the kernel size should be greater249

than the number of the groups in the data. Equation (1) can be expressed as:250

LCS := DCS(p1, p2) = log
V (p1)V (p2)

V 2(p1, p2)
(4)
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Here, p1(x) represents the distribution of our CS latent space, and p2(x) the chosen prior distribution.251

In Equation (4), minimizing V (p1) would result in the spreading out of p1(x), while maximizing V (p1, p2)252

would make the samples in both distributions closer together [11]. Thus, we minimize this term in the253

objective function while training the model. However, it may be necessary to stop at an appropriate254

value, since overly spreading out p1(x) may lead to the separation of the samples from the same groups,255

while making p1 and p2 excessively close may cause mixtures of data points across groups.256

In short, the Cauchy-Schwarz divergence measures the distance between p1 and p2. In our work,257

we adopt a variety of distributions as a prior distribution p2(x), and we aim to project the constrained258

subspace latents onto the prior distribution (see Fig. 1).259

Optimization The loss for the CS-VAE derives from that for the PS-VAE, and is given by:260

LCS−V AE = Lframes + αLlabel − LKL−s − LICMI − βLTC − LDWKL + γLCS (5)

Here, the terms Lframes and Llabel represent the reconstruction loss of the frames and the labels, respec-261

tively. The LKL−s represents for the KL-divergence loss for the supervised latents while LICMI , LTC ,262

and LDWKL form the decomposed version of the KL loss for the unsupervised latents. Lastly, the LCS263

represents the CS-divergence loss on our constrained latents. α is introduced to control the reconstruction264

quality of the labels, β is adopted to assist the model in producing independent unsupervised latents,265

and γ is implemented to control the variability in the constrained latent space for better separation.266

The detailed explanations and derivations for each term in the objective function are in Appendix C.267

Furthermore, the loss terms in Equation (5) can be modified to fit various conditions. For a freely-behaving268

social task, the background for one individual in the container could be the edge of the container as well269

as the rest of the individuals in the container. The choice of hyperparameters and the loss curves through270

the training process is shown in Appendix E and G, respectively.271

Visualization of the latent space To test how the image varies with a change in the latent, one272

frame from the trials is randomly chosen as the ‘base image’, and the effect of varying a specific latent273

at a time is visualized and quantified. This is known as the ‘latent traversal’ [2]. First, for each latent274

variable, we find out the maximum value that it occupies across a set of randomly selected trials. We275

then change that specific latent to achieve its maximum value, and this new set of latents forms the input276

to the decoder. We obtain the corresponding output from the decoder as the ‘latent traversal’ image.277

Finally, we visualize the difference between the ‘latent traversal’ image and the base image. The above278

steps are performed for each latent individually. In videos containing latent traversals (Supplementary279

Material), we change the latent’s value from its minimum to its maximum across all trials, and input280

all the corresponding set of latents into the decoder to produce a video.281

Behavioral Motif Generation Clustering methods such as Hidden Markov Models (HMM) and282

switching linear dynamical systems (SLDS) have been applied in the past to split complex behavioral data283

into simpler discrete segments [16] (see Appendix F for details). We use these approaches to analyze motifs284

from our latent space, and directly input the latent variables into these models. In the case of multi-subject285

datasets, our goal is to capture the variance in behavior in a common way in the across-subject latents,286

i.e., recover the same behavioral motifs in subjects performing the same task. In the case of freely-moving287

behavior, our goal is to capture motifs related to social behavior.288

Efficient Neural Decoding Decoding neural activity to predict behavior is very useful in the un-289

derstanding of brain-behavior relationships, as well as in brain-machine interface tasks. However, models290

to predict high-dimensional behavior using large-scale neural activity can be computationally expensive,291

and require a large amount of data to fit. In a task with multiple subjects, we can utilize the similarities292

in brain-behavior relationships to efficiently train models on novel subjects using concepts in transfer293

learning. Here, we represent across-subject behavior in a unified manner and train an across-subject neural294

decoder. Armed with this across-subject decoder, we show the decoding power on a novel subject with295

varying amounts of available data, such that it can be used in a low-data regime. The implementational296

details for this transfer learning approach can be found in Appendix J.297

References298

[1] Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. Poeppel, D. Neuroscience299

needs behavior: Correcting a reductionist bias. Neuron 93, 480–490 (2017).300

[2] Whiteway, M. R. et al. Partitioning variability in animal behavioral videos using semi-supervised301

variational autoencoders. bioRxiv (2021).302

[3] Mathis, A. et al. Deeplabcut: markerless pose estimation of user-defined body parts with deep303

learning. Nature Neuroscience 21, 1281–1289 (2018).304

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.09.01.506091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.01.506091
http://creativecommons.org/licenses/by-nc-nd/4.0/


[4] Pereira, T. et al. Fast animal pose estimation using deep neural networks. bioRxiv (2018).305

[5] Chen, Z. et al. Alphatracker: A multi-animal tracking and behavioral analysis tool. bioRxiv (2020).306

[6] Pereira, T. D. et al. Publisher correction: Sleap: A deep learning system for multi-animal pose307

tracking. Nat Methods (2022).308

[7] Lauer, J. et al. Multi-animal pose estimation and tracking with deeplabcut. bioRxiv (2021).309

[8] Batty, E. et al. Behavenet: nonlinear embedding and bayesian neural decoding of behavioral videos.310

In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems, vol. 32 (Curran311

Associates, Inc., 2019).312

[9] Wiltschko, A. B. et al. Revealing the structure of pharmacobehavioral space through motion313

sequencing. Nature neuroscience 23, 1433 –1443 (2020).314

[10] Shi, C. et al. Learning disentangled behavior embeddings. In NeurIPS (2021).315

[11] Santana, E., Emigh, M. Principe, J. Information theoretic-learning auto-encoder (2016).316

[12] Tran, L., Pantic, M. Deisenroth, M. P. Cauchy-schwarz regularized autoencoder (2021). 2101.02149.317

[13] Wiltschko, A. et al. Mapping sub-second structure in mouse behavior.Neuron 88, 1121–1135 (2015).318

[14] Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. Churchland, A. K. Single-trial neural319

dynamics are dominated by richly varied movements. Nature neuroscience 22, 1677 – 1686 (2019).320

[15] Saxena, S. et al. Localized semi-nonnegative matrix factorization (locanmf) of widefield calcium321

imaging data. PLOS Computational Biology 16, 1–28 (2020).322

[16] Linderman, S. et al. Bayesian Learning and Inference in Re- current Switching Linear Dynamical323

Systems. In Singh, A. Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial In-324

telligence and Statistics, vol. 54 of Proceedings of Machine Learning Research, 914–922 (PMLR, 2017).325

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.09.01.506091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.01.506091
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	CS-VAE Model Structure
	Modeling Smooth Variations in a Simulated Dataset
	Modeling Multi-Subject Behavior
	Modeling Freely-Moving Social Behavior

	Discussion
	Methods

