


Figure 6: A. Transfer learning model framework. Each of the four mice has a specific dense layer for aligning
the neural activities. After the model is trained using three mice, the across-subject Recurrent Neural Network
(RNN) layer is fixed and transferred to the fourth mouse. As a comparison, we trained a novel RNN model
for the fourth mouse and compared the accuracy with the transfer learning model B. R2 and training time
trade-off for individual vs. transfer learning model as the size of the training set decreases. As the training
set decreases, the transfer learning has a better performance than the individually trained model with regards
to both time and R2 accuracy.

Reconstruction Accuracy The CS-VAE model results in a mean label reconstruction accuracy185

0.961± 0.0017 (Fig. 7B), with the MSE for frame reconstruction as 1.21 · 10−5 (Fig. 7B). We compared186

the performance of our model with the VAE and PS-VAE (Table 1), and the CS-VAE model performed187

better than the baseline models for both image and label reconstruction. For the VAE, we obtained the188

R2 for nose position prediction by training a multi-layer perceptron (MLP) with a single hidden layer189

from the VAE latents to the nose position.190

Disentangled Latent Space Representation We calculated the latent traversals for each latent191

as in Section 4. As shown in the videos in Supplementary Material 4, CS latent 1 captures the second192

mouse to the front of the tracked mouse, CS latent 2 captures the front and above position of the second193

mouse, and CS latent 3 captures the position where the second mouse is below the tracked mouse.194

To visualize the latent space and understand the relationship to social interactions, we plot the CS la-195

tents overlaid with the nose-to-tail distance between the two mice (nose of one mouse to the tail of the other)196

in Fig. 7C. We see that the CS latents represent the degree of social interaction very well, with a large separa-197

tion between different social distances. Furthermore, we trained an MLP with a single hidden layer from dif-198

ferent models’ latents to the nose-to-tail distance, and the CS-VAE produces the highest accuracy (Table 1).199

Motif Generation We applied a hidden Markov model (HMM) to the CS latents to uncover be-200

havioral motifs. The three clusters cleanly divide the behaviors into social investigation vs. non-social201

behavior vs. non-social behavior with the aligned mice exploring the environment. To effectively visualize202

the changes in states, we show the ethogram in Fig. 8A. Videos related to these behavioral motifs are203

Table 1: Comparison of different models on the freely-moving social behavior dataset

VAE PS-VAE CS-VAE

MSE for image reconstruction 1:74� 10�5 5:44� 10�5 1:21� 10�5

R2 for nose position 0:135� 0:013 0:894� 0:002 0:958� 0:002
R2 for inter-individual nose-to-tail distance 0:353� 0:0099 0:283� 0:013 0:363� 0:0098
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Figure 7: A. Image alignment for the social behavior data. B. Model performance on the social behavior
dataset. C. Visualization of the CS latents overlaid with the nose-to-tail distance between the two interacting
mice. The CS latents separates the frames that contain social interactions from those that do not.

provided in Supplementary Material 5.204

Lastly, we calculated different metrics to quantitatively evaluate the difference between each behavioral205

motif. The results are shown in Fig 8B, where we plot the average values for distances and angles between206

different key points. The lower distance between the two mice in State a demonstrates that the mice207

are close to each other in that state, pointing to social interactions. The smaller nose-to-tail distance208

for the aligned mouse in State c points to this state encoding for the ‘rearing’ of the mouse. The angle209

between the two mice further reveals the relative position between the two mice; in State b, the second210

mouse is located above the aligned mouse, while the opposite is true for State c. These metrics uncover211

the explicit differences between the different motifs that are discovered by CS-VAE.212

3 Discussion213

In the field of behavior modeling, there exist three major groups of methods, supervised, unsupervised,214

and semi-supervised. The supervised methods consist of methods such as DeepLabCut (DLC) [7], LEAP215

[6], AlphaTracker [5], amongst others. Although these methods capture the positions of the subjects, they216

lack the ability to model smaller movements and unlabeled behavior, and necessitate tedious labeling. On217

the other hand, unsupervised methods such as MoSeq [9] and Behavenet [8] lack the ability to produce218

intertpretable behavioral latents. While some semi-supervised methods, for instances, MSPS-VAE [2]219

and DBE [10], succeed in producing interpretable latents and modeling behavior across subjects, they220

need significant human input, and lack the ability to model freely-moving animals’ behavior. Here, we221

introduce a constrained generative network called CS-VAE that effectively addresses major challenges222

in behavioral modeling- disentangling multiple subjects and representing social behaviors.223

For multi-subject behavioral modeling, the behavioral latents successfully separates the common224

activities across animals from the differences across animals. This behavioral generality is highlighted225

by the across-subject behavioral motifs generated by standard methods, and a higher accuracy while226

applying transfer learning for the neural decoding task. Furthermore, the SVM classification accuracy227

approaches 100%, which also indicates that the constrained-subspace latents well separate the differences228

between the subjects. In the social behavioral task, the constrained latents well capture the presence229

of social investigations, the environmental exploration, and the relative locations of the two individuals230

in the behavioral motifs. While our methods succeed in effectively modeling social behavior, it remains231

a challenge to separate out different kinds of social investigations in an unsupervised manner.232

The constrained latents encode smoothly and discretely varying differences in behavioral videos. As233

seen in this work, in the across-subject scenario, the constrained latents encode the appearance of the234

different subjects, while in freely-moving scenario, the constrained latents capture social investigation235

between the subjects. The flexibility of this regularization thus gives it the ability to be fit in different236

conditions. Future directions include building an end-to-end structure that can captures behavioral motifs237

in a unsupervised way.238
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Figure 8: A. Ethogram for the animals’ behavior recovered using hidden Markov models (HMM) applied
to the CS latents. B. Different metrics for analysing the behavioral motifs. Here, the three motifs are a.
social interaction; b. non-social interaction with the companion on the upper side of the aligned mouse; c.
non-social interaction (the aligned mouse exploring the environment with its companion far away). These
metrics show the quantitative differences between the different motifs.

4 Methods239

Regularization of Constrained Subspace We use the Cauchy-Schwarz divergence to regularize our240

constrained subspace using a chosen prior distribution. The Cauchy-Schwarz divergence DCS(p1, p2)241

between distributions p1(x) and p2(x) is given by:242

DCS(p1, p2) = − log

∫
p1(x)p2(x)dx√∫

p21(x)dx
∫
p22(x)dx

(1)

DCS(p1, p2) equals zero if and only if the two distributions p1(x) and p2(x) are the same. By applying243

the Parzen window estimation technique to p1(x) and p2(x), we get the entropy form of the Equation [11]:244

Ĥ(p1) = − log(V (p1)) = − log

(
N∑
i

N∑
j

G√
2σ(p1i − p1j)/N

2

)
(2)

Ĥ(p1, p2) = − log(V (p1, p2)) = − log(

N1∑
i

N2∑
j

G√
2σ(p1i − p2j)/(N1N2)) (3)

Here, p1i represents the ith sample from the distribution p1, i.e., p1(xi). − log(V (p1)) and − log(V (p2)) are245

the estimated quadratic entropy of p1(x) and p2(x), respectively, while − log(V (p1, p2)) is the estimated246

cross-entropy of p1(x) and p2(x). G is the kernel applied to the input distribution; here it is chosen to be247

Gaussian. N , N1, and N2 are the number of samples being input into the model while σ is the kernel size.248

The choice of the kernel size depends on the dataset itself; generally, the kernel size should be greater249

than the number of the groups in the data. Equation (1) can be expressed as:250

LCS := DCS(p1, p2) = log
V (p1)V (p2)

V 2(p1, p2)
(4)
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Here, p1(x) represents the distribution of our CS latent space, and p2(x) the chosen prior distribution.251

In Equation (4), minimizing V (p1) would result in the spreading out of p1(x), while maximizing V (p1, p2)252

would make the samples in both distributions closer together [11]. Thus, we minimize this term in the253

objective function while training the model. However, it may be necessary to stop at an appropriate254

value, since overly spreading out p1(x) may lead to the separation of the samples from the same groups,255

while making p1 and p2 excessively close may cause mixtures of data points across groups.256

In short, the Cauchy-Schwarz divergence measures the distance between p1 and p2. In our work,257

we adopt a variety of distributions as a prior distribution p2(x), and we aim to project the constrained258

subspace latents onto the prior distribution (see Fig. 1).259

Optimization The loss for the CS-VAE derives from that for the PS-VAE, and is given by:260

LCS−V AE = Lframes + αLlabel − LKL−s − LICMI − βLTC − LDWKL + γLCS (5)

Here, the terms Lframes and Llabel represent the reconstruction loss of the frames and the labels, respec-261

tively. The LKL−s represents for the KL-divergence loss for the supervised latents while LICMI , LTC ,262

and LDWKL form the decomposed version of the KL loss for the unsupervised latents. Lastly, the LCS263

represents the CS-divergence loss on our constrained latents. α is introduced to control the reconstruction264

quality of the labels, β is adopted to assist the model in producing independent unsupervised latents,265

and γ is implemented to control the variability in the constrained latent space for better separation.266

The detailed explanations and derivations for each term in the objective function are in Appendix C.267

Furthermore, the loss terms in Equation (5) can be modified to fit various conditions. For a freely-behaving268

social task, the background for one individual in the container could be the edge of the container as well269

as the rest of the individuals in the container. The choice of hyperparameters and the loss curves through270

the training process is shown in Appendix E and G, respectively.271

Visualization of the latent space To test how the image varies with a change in the latent, one272

frame from the trials is randomly chosen as the ‘base image’, and the effect of varying a specific latent273

at a time is visualized and quantified. This is known as the ‘latent traversal’ [2]. First, for each latent274

variable, we find out the maximum value that it occupies across a set of randomly selected trials. We275

then change that specific latent to achieve its maximum value, and this new set of latents forms the input276

to the decoder. We obtain the corresponding output from the decoder as the ‘latent traversal’ image.277

Finally, we visualize the difference between the ‘latent traversal’ image and the base image. The above278

steps are performed for each latent individually. In videos containing latent traversals (Supplementary279

Material), we change the latent’s value from its minimum to its maximum across all trials, and input280

all the corresponding set of latents into the decoder to produce a video.281

Behavioral Motif Generation Clustering methods such as Hidden Markov Models (HMM) and282

switching linear dynamical systems (SLDS) have been applied in the past to split complex behavioral data283

into simpler discrete segments [16] (see Appendix F for details). We use these approaches to analyze motifs284

from our latent space, and directly input the latent variables into these models. In the case of multi-subject285

datasets, our goal is to capture the variance in behavior in a common way in the across-subject latents,286

i.e., recover the same behavioral motifs in subjects performing the same task. In the case of freely-moving287

behavior, our goal is to capture motifs related to social behavior.288

Efficient Neural Decoding Decoding neural activity to predict behavior is very useful in the un-289

derstanding of brain-behavior relationships, as well as in brain-machine interface tasks. However, models290

to predict high-dimensional behavior using large-scale neural activity can be computationally expensive,291

and require a large amount of data to fit. In a task with multiple subjects, we can utilize the similarities292

in brain-behavior relationships to efficiently train models on novel subjects using concepts in transfer293

learning. Here, we represent across-subject behavior in a unified manner and train an across-subject neural294

decoder. Armed with this across-subject decoder, we show the decoding power on a novel subject with295

varying amounts of available data, such that it can be used in a low-data regime. The implementational296

details for this transfer learning approach can be found in Appendix J.297
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