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Abstract 1 

Machine learning classification using the gut microbiome relies on assigning 16S rRNA gene 2 

sequences into operational taxonomic units (OTUs) to quantify microbial composition. OTU 3 

abundances are then used to train a classification model that can be applied to classify new 4 

samples. The standard approaches to clustering sequences include reference-based and de 5 

novo clustering. Reference-based clustering requires a well-curated reference database that 6 

may not exist for all systems. De novo clustering tends to produce higher quality OTU 7 

assignments than reference-based, but clusters depend on the sequences in the dataset and 8 

therefore OTU assignments will change when new samples are sequenced. This lack of stability 9 

complicates machine learning classification since new sequences must be reclustered with the 10 

old data and the model retrained with the new OTU assignments. The OptiFit algorithm 11 

addresses these issues by fitting new sequences into existing OTUs. While OptiFit produces 12 

high quality OTU clusters, it is unclear whether this method for fitting new sequence data into 13 

existing OTUs will impact the performance of classification models trained with the older data. 14 

We used OptiFit to cluster sequences into existing OTUs and evaluated model performance in 15 

classifying a dataset containing samples from patients with and without colonic screen relevant 16 

neoplasia (SRN). We compared the performance of this model to standard methods including 17 

de novo and database-reference-based clustering. We found that using OptiFit performed as 18 

well or better in classifying SRNs. OptiFit can streamline the process of classifying new samples 19 

by avoiding the need to retrain models using reclustered sequences.  20 
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Importance 21 

There is great potential for using microbiome data to aid in diagnosis. A challenge with OTU-22 

based classification models is that 16S rRNA gene sequences are often assigned to OTUs 23 

based on similarity to other sequences in the dataset. If data are generated from new patients, 24 

the old and new sequences must all be reassigned to OTUs and the classification model 25 

retrained. Yet there is a desire to have a single, validated model that can be widely deployed. 26 

To overcome this obstacle, we applied the OptiFit clustering algorithm to fit new sequence data 27 

to existing OTUs allowing for reuse of the model. A random forest model implemented using 28 

OptiFit performed as well as the traditional reassign and retrain approach. This result shows that 29 

it is possible to train and apply machine learning models based on OTU relative abundance data 30 

that do not require retraining or the use of a reference database.  31 
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There is increasing evidence for an association between the composition of the gut microbiome 32 

and a variety of diseases, such as crohn’s disease and colorectal cancer (1, 2). There is great 33 

potential to diagnose disease with gut microbiome sequence data and machine learning. 34 

Taxonomic composition of microbial communities can be assessed using amplicon sequencing 35 

of the 16S rRNA gene, which is the input to classification models. Analysis of 16S rRNA gene 36 

sequence data generally relies on assigning sequences into operational taxonomic units 37 

(OTUs). The process of OTU clustering can either be reference-based or de novo. The quality 38 

of OTUs generated with reference-based clustering is generally poor compared to those 39 

generated with de novo clustering (3). While de novo clustering produces high-quality OTU 40 

clusters where sequences are accurately grouped based on similarity thresholds, the resulting 41 

OTU clusters depend on the sequences within the dataset and the addition of new data has the 42 

potential to redefine OTU cluster composition. The unstable nature of de novo OTU clustering 43 

complicates deployment of machine learning models since integration of additional data 44 

requires reclustering all the data and retraining the model. The ability to integrate new data into 45 

a validated model without reclustering and retraining could allow for the application of a single 46 

model that can continually classify new data. Recently, Sovacool et al. introduced OptiFit, a 47 

method for fitting new sequence data into existing OTUs (4). While OptiFit can effectively fit new 48 

sequence data to existing OTU clusters, it is unknown if the use of OptiFit will have an impact 49 

on classification performance. Here, we tested the ability of OptiFit to cluster new sequence 50 

data into existing OTU clusters for the purpose of classifying disease based on gut microbiome 51 

composition. 52 

We compared the ability of several approaches for assigning 16S rRNA gene sequences to 53 

OTUs including, de novo and reference-based clustering. For reference-based clustering, we 54 

used closed-reference clustering to a public database (database-reference-based) and to OTUs 55 

generated from a subset of the samples (self-reference-based). To test how the model 56 
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performance compared between these approaches, we used a publicly available dataset of 16S 57 

rRNA gene sequences from stool samples of healthy subjects (n = 226) as well as subjects with 58 

screen-relevant neoplasia (SRN) consisting of advanced adenoma and carcinoma (n = 229) (5). 59 

For the de novo workflows, all the 16S rRNA sequence data was clustered into OTUs. The OTU 60 

clustering was conducted using two common algorithms: 1) the OptiClust algorithm in mothur 61 

(6) and 2) the VSEARCH algorithm used in QIIME2 (7, 8). For both algorithms, the resulting 62 

abundance data was then split into training and testing sets, where the training set was used to 63 

tune hyperparameters and ultimately train and select the model. The model was applied to the 64 

testing set and performance evaluated (Figure 1A). We also conducted reference-based OTU 65 

clustering using OptiFit to fit the sequence data into OTUs based on the greengenes reference 66 

database. To compare with another commonly used method, we also used the VSEARCH 67 

algorithm to fit the sequence data to the greengenes reference (Figure 1B). In the OptiFit self-68 

reference workflow, the data was split into a training and a testing set. The training set was 69 

clustered into OTUs and used to train a classification model. The OptiFit algorithm was used to 70 

fit sequence data of samples not part of the original dataset into the existing OTUs, and used 71 

the same model to classify the samples (Figure 1C). For each of the workflows the process was 72 

repeated for 100 random splits of the data to account for variation caused by the choice of the 73 

random number generator seed. 74 

We first examined the quality of the resulting OTU clusters from each method using the 75 

Matthews correlation coefficient (MCC). MCC is a metric used to measure OTU cluster quality 76 

based on the similarity of all pairs of sequences and whether they are appropriately clustered or 77 

not (3). MCC scores range between negative one and one, and measure how well clustering 78 

assignment correlates with the distance between sequences. To ensure that OptiFit 79 

appropriately integrated new sequence data into the existing OTUs, we expected the MCC 80 

scores produced by the OptiFit workflow to be similar to that of de novo clustering using the 81 
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OptiClust algorithm. In the OptiFit workflow the test data was fit to the clustered training data for 82 

each of the 100 data splits resulting in an MCC score for each split of the data. In the remaining 83 

workflows, the data was only clustered once and then split into the training and testing sets 84 

resulting in a single MCC score for each method. Indeed, the MCC scores were similar between 85 

the OptiClust de novo (MCC = 0.884) and OptiFit self-reference workflows (average MCC = 86 

0.879, standard deviation = 0.002). Consistent with prior findings, the reference-based methods 87 

produced lower MCC scores (OptiFit Greengenes MCC = 0.786; VSEARCH Greengenes MCC 88 

= 0.531) than the de novo methods (OptiClust de novo MCC = 0.884; VSEARCH de novo MCC 89 

= 0.641) (4). Another metric we examined for the OptiFit workflow was the fraction of sequences 90 

from the test set that mapped to the reference OTUs. Since sequences that did not map to 91 

reference OTUs were eliminated, if a high percentage of reads did not map to an OTU we 92 

expected this loss of data to negatively impact classification performance. We found that loss of 93 

data was not an issue since on average 99.8% (standard deviation = 0.68%) of sequences in 94 

the subsampled test set mapped to the reference OTUs. This number is higher than the 95 

average fraction of reads mapped in the OptiFit Greengenes workflow ( 96.8% +/- 3.5). These 96 

results indicate that the OptiFit self-reference method performed as well as the OptiClust de 97 

novo method and better than using an external database. 98 

We next assessed model performance using OTU relative abundances from the training data 99 

from the workflows to train a model to predict SRNs and used the model on the held out data. 100 

Using the predicted and actual diagnosis classification, we calculated the area under the 101 

receiver operating characteristic curve (AUROC) for each data split. During cross-validation 102 

(CV) training, the performance of the OptiFit self-reference and OptiClust de novo models were 103 

not significantly different (p-value = 0.066; Figure 2A), while performance for both VSEARCH 104 

methods was significantly lower than the OptiClust de novo, OptiFit self, and OptiFit 105 

Greengenes methods (p-values < 0.05). The trained model was then applied to the test data 106 
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classifying samples as either control or SRN. The VSEARCH Greengenes method performed 107 

slightly worse than the OptiClust de novo method (p-value = 0.030). However the performance 108 

on the test data for the OptiClust de novo, OptiFit Greengenes, OptiFit self-reference, and 109 

VSEARCH de novo approaches were not significantly different (p-values > 0.05; Figures 2B and 110 

2C). These results indicate that new data could be fit to existing OTU clusters using OptiFit 111 

without impacting model performance. 112 

We tested the ability of OptiFit to integrate new data into existing OTUs for the purpose of 113 

machine learning classification using OTU relative abundance. A potential problem with using 114 

OptiFit is that any sequences from the new samples that do not map to the existing OTU 115 

clusters will be discarded, resulting in a possible loss of information. However, we demonstrated 116 

that OptiFit can be used to fit new sequence data into existing OTU clusters and it could perform 117 

as well in predicting SRN compared to de novo clustering all the sequence data together. In this 118 

instance, the performance of OptiFit was equivalent to using a database-reference-based 119 

method despite the lower quality of the OTU clusters in the database-reference-based 120 

approach. This likely indicates that the sequences that are important to the model are well 121 

characterized by the reference database. However, a less well studied system may not be as 122 

well characterized by a reference-database which would make the ability to utilize one’s own 123 

data a reference an exciting possiblility. The ability to integrate data from new samples into 124 

existing OTUs enables the implementation of a single machine learning model. This is important 125 

for model implementation because not all of the data needs to be available or known at the time 126 

of model generation. A robust machine learning model can be implemented as part of a non-127 

invasive and low-cost diagnostic for SRN and other diseases. 128 

Materials and Methods 129 

Dataset. Raw 16S rRNA gene sequence data from the V4 region were previously generated 130 

from human stool samples. Sequences were downloaded from the NCBI Sequence Read 131 
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Archive (accession no. SRP062005) (5, 9). This dataset contains stool samples from 490 132 

subjects. For this analysis, samples from subjects identified in the metadata as normal, high risk 133 

normal, or adenoma were categorized as “normal”, while samples from subjects identified as 134 

advanced adenoma or carcinoma were categorized as “screen relevant neoplasia” (SRN). The 135 

resulting dataset consisted of 261 normal samples and 229 SRN samples. 136 

Data processing. The full dataset was preprocessed with mothur (v1.47) (10) to join forward 137 

and reverse reads, merge duplicate reads, align to the SILVA reference database (v132) (11), 138 

precluster, remove chimeras with UCHIME (9), assign taxonomy, and remove non-bacterial 139 

reads following the Schloss Lab MiSeq standard operating procedure described on the mothur 140 

website (https://mothur.org/wiki/miseq_sop/). 100 splits of the 490 samples were generated 141 

where 80% of the samples (392 samples) were randomly assigned to the training set and the 142 

remaining 20% (98 samples) were assigned to the test set. Using 100 splits of the data 143 

accounts for the variation that may be observed depending on the samples that are in the 144 

training or test sets. Each sample was in the training set an average of 80 times (standard 145 

deviation = 4.1) and the test set an average of 20 times (standard deviation = 4.1). 146 

Reference-based workflows. 147 

1. OptiFit Self: The preprocess data was split into the training and testing sets. The training 148 

set was clustered into OTUs using OptiClust, then the test set was fit to the OTUs of the 149 

training set using the OptiFit algorithm (4). The OptiFit algorithm was run with method 150 

open so that any sequences that did not map to the existing OTU clusters would form 151 

new OTUs. The data was then subsampled to 10,000 reads and any novel OTUs from 152 

the test set were removed. This process was repeated for each of the 100 splits resulting 153 

in 100 training and testing datasets. 154 
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2. OptiFit Greengenes: Reference sequences from the Greengenes database v13_8_99 155 

(12) were downloaded and processed with mothur by trimming to the V4 region and 156 

clustered de novo with OptiClust (6). The preprocessed data was fit to the clustered 157 

reference data using OptiFit with the method open to allow any sequences that did not 158 

map to the existing reference clusters would form new OTUs. The data was then 159 

subsampled to 10,000 reads and any novel OTUs from the test set were removed. The 160 

dataset was then split into two sets where 80% of the samples were assigned to the 161 

training set and 20% to the testing set. This process was repeated for each of the 100 162 

splits resulting in 100 training and testing datasets. 163 

3. VSEARCH Greengenes: Preprocessed data was clustered using VSEARCH v2.15.2 (7) 164 

directly to unprocessed Greengenes 97% OTU reference alignment consistent with how 165 

VSEARCH is typically used by the QIIME2 software for reference-based clustering (8). 166 

The data was then subsampled to 10,000 reads and any novel OTUs from the test set 167 

were removed. The dataset was then split into two sets where 80% of the samples were 168 

assigned to the training set and 20% to the testing set. This process was repeated for 169 

each of the 100 splits resulting in 100 training and testing datasets. 170 

De novo workflows. 171 

1. OptiClust de novo: All the preprocessed data was clustered together with OptiClust (6) to 172 

generate OTUs. The data was subsampled to 10,000 reads per sample and the resulting 173 

abundance tables were split into the training and testing sets. The process was repeated 174 

for each of the 100 splits resulting in 100 training and testing datasets. 175 

2. VSEARCH de novo: All the preprocessed data was clustered using VSEARCH v2.15.2 176 

(7) with 97% identity and then subsampled to 10,000 reads per sample. The process 177 
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was repeated for each of the 100 splits resulting in 100 training and testing datasets for 178 

both workflows. 179 

Machine Learning. A random forest model was trained with the R package mikrompl (v 1.2.0) 180 

(13) to predict the diagnosis (SRN or normal) for the samples in the test set for each data split. 181 

The training set was preprocessed to normalize OTU counts (scale and center), collapse 182 

correlated OTUs, and remove OTUs with zero variance. The preprocessing from the training set 183 

was then applied to the test set. Any OTUs in the test set that were not in the training set were 184 

removed. P-values comparing model performance were calculated as previously described (14). 185 

The averaged ROC curves were plotted by taking the average and standard deviation of the 186 

sensitivity at each specificity value. 187 

Code Availability. 188 

The analysis workflow was implemented in Snakemake (15). Scripts for analysis were written in 189 

R (16) and GNU bash (17). The software used includes mothur v1.47.0 (10), VSEARCH v2.15.2 190 

(7), RStudio (18), the Tidyverse metapackage (19), R Markdown (20), the SRA toolkit (21), and 191 

conda (22). The complete workflow and supporting files required to reproduce this study are 192 

available at: https://github.com/SchlossLab/Armour_OptiFitGLNE_mBio_2023 193 
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Figure Legends 272 

Figure1: Overview of clustering workflows. The de novo and database-reference-based 273 

workflows were conducted using two approaches: OptiClust with mothur and VSEARCH as is 274 

used in the QIIME pipeline. 275 

Figure 2: Model performance of OptiFit self-reference workflow is as good or better than 276 

other methods. A) Area under the receiver operating characteristic (AUROC) curve during 277 

cross-validation (train) for the various workflows. B) AUROC on the test data for the various 278 

workflows. The mean and standard deviation of the AUROC is represented by the black dot and 279 

whiskers in panels A and B. The mean AUROC is printed below the points. C) Averaged 280 

receiver operating characteristic (ROC) curves. Lines represent the average true positive rate 281 

for the range of false positive rates. 282 
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