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ABSTRACT Traction patterns of adherent cells provide important information on their interaction with the environment,
cell migration or tissue patterns and morphogenesis. Traction Force Microscopy is a method aimed at revealing these
traction patterns for adherent cells on engineered substrates with known constitutive elastic properties from deformation
information obtained from substrate images. Conventionally, the substrate deformation information is processed by
numerical algorithms of varying complexity to give the corresponding traction field via solution of an ill-posed inverse
elastic problem. We explore the capabilities of a deep convolutional neural network as a computationally more efficient and
robust approach to solve this inversion problem. We develop a general purpose training process based on collections of
circular force patches as synthetic training data, which can be subjected to different noise levels for additional robustness.
The performance and the robustness of our approach against noise is systematically characterized for synthetic data,
artificial cell models and real cell images, which are subjected to different noise levels. A comparison to state-of-the-art
Bayesian Fourier transform traction cytometry reveals the precision, robustness, and speed improvements achieved by
our approach, leading to an acceleration of Traction Force Microscopy methods in practical applications.

SIGNIFICANCE Traction force microscopy is an important biophysical technique to gain quantitative information
about forces exerted by adherent cells. It relies on solving an inverse problem to obtain cellular traction forces from
image-based displacement information. We present a deep convolutional neural network as a computationally more
efficient and robust approach to solve this ill-posed inversion problem. We characterize the performance and the
robustness of our approach against noise systematically for synthetic data, artificial cell models and real cell images,
which are subjected to different noise levels and compare performance and robustness to state-of-the-art Bayesian
Fourier transform traction cytometry. We demonstrate that machine learning can enhance robustness, precision and
speed in traction force microscopy.

INTRODUCTION
Many cellular processes are intrinsically connected to mechanical interactions of the cell with its surroundings. Mechanical
surface forces control the shape of single cells or groups of cells in tissue patterns and morphogenesis (1). Forces alter cell
behavior via mechanotransduction (2) and affect cell migration and adhesion. Gaining access to the forces (or tractions, i.e.,
forces per area) exerted by the cell during critical processes like migration or proliferation can give insight into their inner
workings and aid the development of novel medication and treatment, e.g. by identifying changes of cellular forces in diseased
states. Altered cell behavior is present for diseases (3) like atherosclerosis (4), deafness (5), or tumor metastasis (6).

Traction Force Microscopy (TFM) is a modern method to measure tractions exerted by an adherent cell by deducing them
from the cell-induced deformations of an engineered external substrate of known elastic properties (7–9). Beyond adherent cells
it has applications to a broader range of biological and physical systems where interfacial forces are of interest (10). TFM thus
constitutes a classic inverse problem in elasticity, where tractions or forces are calculated from displacement for given material
properties. This inverse problem turns out to be ill-posed, i.e., noise or slight changes in displacement input data induce large
deviations in traction output data because of singular components of the elastic Green’s tensor. This technical problem has
been addressed by different regularization schemes that have been developed over the last two decades (11–15). Recent studies
show that Machine Learning (ML) can be an elegant alternative to numerical schemes when the inverse problem to a bounded
problem is ill-posed in the context of elasticity or rheology. This has been explored for other rheological inverse problem
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classes such as in pendant drop tensiometry (16). ML-aided traction force determination can thus provide an elegant way to
improve TFM as a method, as recent studies have already begun to show (17, 18). A systematic investigation of ML-aided
TFM with respect to an optimal general purpose training set that allows the machine to predict tractions accurately across
many experimental situations as well as a systematic investigation of robustness with respect to noise, which is present in any
experimental realization, are still lacking.

The first implementation of TFM was achieved by Harris and coworkers in the early 1980s, where thin silicone films are
wrinkled by compressive surface stresses, inflicted by the traction field of the cell (19). Due to the inherent non-linearity of
wrinkling and the connected difficulties solving the inverse elastic problem, this method has been superseded by linear elastic
hydrogel marker based TFM introduced by Dembo et al. (20). Due to the simplicity of the hydrogel marker based approach, it is
the most commonly used and most evolved method. Alternative techniques and extensions include micro-needle deformations
(21), force microscopy with molecular tension probes (22), and 3D techniques (23). Wrinkling based TFM has recently been
re-explored with generative adversarial neural networks with promising results (18).

In this paper, we focus on the hydrogel marker based technique and train a deep Convolutional Neural Network (CNN),
which has the capabilities to solve the inverse elastic problem reliably, giving fast and robust access to the traction pattern
exerted by the cell onto a substrate. Specifically, we do this by numerically solving the elastic forward problem, where we
prescribe generic traction fields and solve the governing elastic equations to generate an associated displacement field. The
“artificial” displacement field generated this way is used as a training input for our NN, while we use the prescribed traction
field as the labels for our training set. This way the network learns the mapping between displacement and traction fields and is
able to generate traction fields for displacement fields never seen before, while still respecting the relevant governing elastic
equations. We use traction force distributions generated from collections of circular force patches as training data, which seems
a natural general choice to allow the NN to predict generic force distributions in cell adhesion but should also cover other
future applications. We show that the proper, “physics-informed” choice of training data and inclusion of artificial noise is a
similarly important step in the ML solution of the inverse problem as the proper choice of regularization in conventional TFM
techniques, in order to achieve the best compromise between accuracy and robustness.

MATERIALS AND METHODS
Hydrogel Marker Based TFM
The hydrogel marker approach to TFM can be described as follows. First, a cross-linked gel substrate, often Polydimethyl-
siloxane (PDSM) or Polyacrylamide substrates (PAA) (24), is cultivated. The cross-linked gel can be classified as an elastic
substrate with long linkage lifetimes compared to the imaging process (25).

Second, the substrate is coated with proteins prevalent in the extracellular matrix like collagen type I, gelatin, laminin,
or fibronectin, allowing the cell to adhere to the substrate. Fluorescent marker beads embedded in the gel substrate aid
the determination of cell-induced substrate deformations. The reference and stressed positions of the marker beads can be
determined via various microscopy techniques, ranging from confocal to optical microscopy (19).

Third, to infer the displacement field from the marker bead positions, a particle tracking velocimetry (PTV) algorithm, a
particle image velocimetry (PIV) algorithm or a CNN particle tracker (26) is used, which calculates the discrete displacement
field.

The information about the displacement field, combined with the predetermined constitutive properties of the hydrogel sub-
strate gives access to the traction field of the cell via the inverse solution of the elastic deformation problem. For homogeneous,
isotropic, and linear elastic solids the displacement field~u satisfies the equations of equilibrium in the bulk (27)

(1−2ν)∆~u+~∇(~∇ ·~u) = 0, (1)

while the force balance at the surface is modified to account for external tractions~t (forces per area applied to the surface)

σ~n =~t , (2)

where~n is the surface normal vector and σ the stress tensor.
The TFM gel substrate can be considered sufficiently thick to be modelled as an elastic half-space (z > 0), bounded by the

x-y-plane, at which traction forces~t =~t(x,y) are applied. The displacements are a solution of the boundary problem (1), (2),
which is given by the spatial convolution of the external traction field~t(x,y) with the Green’s tensor G over the boundary of the
surface S (27):

~u(x,y,z) =
∫∫

S
G(x− x′,y− y′,z)~t(x′,y′)dx′dy′ . (3)
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Up to this point both tractions and displacement are three-dimensional vectors. The full three-dimensional Green’s tensor
G(x− x′,y− y′,z) is given in the Appendix.

In traction force microscopy, it can be assumed that adherent cells exert in-plane surface tractions (tz = 0), and we are
interested in in-plane displacement~u = (ux,uy) only because out-of-plane z-displacements are hard to quantify by microscopy.
Moreover, out-of-plane displacements are small for incompressible materials (see Appendix). These assumptions make the
problem (3) quasi-two-dimensional in the plane z = 0, such that the Green’s tensor is given by the 2x2 matrix (20)

G(x,y) =
1+ν

πEr3

(
(1−ν)r2 +νx2 νxy

νxy (1−ν)r2 +νy2

)
. (4)

It solves the elastic boundary problem for in-plane tractions and displacements if the tractions vanish at infinity.
TFM is essentially a technique to provide a numerical solution for the inverse elastic problem posed by asking to recover

the traction field~t = (tx, ty) from (3) via a deconvolution of the right hand side surface integral. This can be done in real space
(11, 12, 20) or in Fourier space (28).

Employing the convolution theorem for the Fourier-transform FT of a convolutional integral, the deconvolution problem
encountered in (3) can equivalently be stated as performing two Fourier-transforms and one inverse Fourier-transform

FT (~u)(u,v) = FT (G)(u,v) FT
(
~t
)
(u,v) (5)

~t(x,y) = FT −1{(FT (G))−1FT (~u)
}
(x,y) , (6)

which is named Fourier-Transform-Traction- Force-Cytometry (FTTC) (28).
Common iterative techniques used for numerical deconvolution can become unstable when subjected to noisy data, which

is why conventional approaches to the ill-posed inverse elastic problem rely on regularization techniques (e.g. Tikhonov(L2)- or
Lasso(L1)-regularization) coupled with iterative minimization schemes (11–14, 29). This applies both to real space and Fourier
space methods. Regularization improves stability while accuracy might suffer. The optimal choice of regularization parameters
is important but subjective. In Bayesian Fourier Transform Traction Cytometry (BFTTC) the regularization parameters need
not be picked manually and heuristically, but they are inferred from probability theory, making an easy to use and objective
FTTC method (15, 30).

The shortcomings of most conventional approaches are systematic under-predictions and edge smoothing of the constructed
traction field, caused by the regularization (31), as well as elevated computational effort, inflicted by the computationally
demanding iterative deconvolution techniques and transformations at play.

A recent trend in many fields, including the natural sciences, has shown the capabilities of ML-based approaches in such
ill-posed and ill-conditioned scenarios (32, 33), often outperforming complex algorithms by orders of magnitude in computing
time and precision, and thus allowing for new and more accessible workflows with reduced computational overhead. ML
based approaches to traction force microscopy (17) and wrinkle force microscopy (18) have recently been discussed and find
that deep CNNs can perform the deconvolution of (3), by learning the mapping from strain-space to surface traction-space
in training. The existing NN approaches show a promising proof-of-concept, which we want to extend further in the present
article. While regularization is particularly important in conventional TFM approaches for accuracy and stability, accuracy and
robustness to noise of deep CNNs crucially depend on the choice of training data.

Machine Learning the Inverse Problem
If we want to teach a machine to solve an inverse problem for us, counter-intuitively, we do not need to know how to solve the
inverse problem itself. We only need to know how to solve the corresponding forward problem i.e., we only need to know
how to precisely formulate the learning task for the network and provide sample data that characterizes the problem well
enough. In training, the machine detects correlations in the data and uses it to solve for arbitrary non-linear mappings from
input space to output space. This is one of the groundbreaking traits deep learning offers and which, in combination with
hardware acceleration, allows to solve problems not feasible or traceable before (16, 32, 33).

Thus, we are interested in formulating the learning task in the most precise way. A first step to this is a solid understanding
of the forward problem and all the involved quantities including the proper, “physics-informed” choice of training data. Since
we generate our training data numerically, the second step is a robust numerical framework, which outputs physically correct
data. The third step is to find a sensible data representation, which contains all the relevant information. The final step is to find
a network architecture with enough capacity for the problem, to train it and to evaluate its performance and robustness. We will
address these points in the following and finally compare our network with state-of-the-art approaches.
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Figure 1: The network we employ is a Unet Convolutional Neural Network with a discretized displacement field as an input and
a discretized traction field as an output. The mapping from input to output is learned in training by adapting the parameters of
the convolutional and transposed convolutional layers of the network. The central bottleneck of the network can be interpreted
as a representation of the stress-strain kernel of the elasticity employed here. Eventually the network will be able to reconstruct
the traction field for displacement fields never seen before. We do not enforce a strict bottleneck, rather we allow for skip
connections from the encoding process to the decoding process. The skip connections thus offer a way for the network to
manipulate the decoding process with selected information gathered during encoding, increasing the capacity of the network.

Understanding the forward problem for traction patches

The forward problem we are trying to solve involves cell tractions on elastic substrates. Thus, essential to the performance of
our NN is the accurate interpretation of cell-characteristic deformations of the substrate. Cells generated forces exerted onto the
substrate via focal adhesion complexes with sizes in the µm-range and tractions in the range nNµm−2 = kPa (34). Forces are
generated by tensing acto-myosin stress-fibers that attach to the focal adhesions and, therefore, have a well-defined direction
over a focal adhesion complex. Therefore, typical cellular traction patterns consist of localized patches, which can comprise
single or several focal adhesion complexes and are anchored to the substrate at positions~ri = (xi,yi)

T. Within these patches
tractions have a well-defined in-plane angle γi with the x-axis resulting in a traction pattern

~ti(~r) = ti(|~r−~ri|)
(

cosγi
sinγi

)
. (7)

These tractions are applied to circular patches of variable radius Ri at the anchored nodes (see Fig. 5), such that

ti(|~r−~ri|) =
{

t0,i, for |~r−~ri|< Ri

0, else.
(8)

We model typical traction patterns as a linear superposition of traction patches (7) localized at different anchoring points.
Within linear elasticity, the resulting displacement pattern is also a linear superposition of all the displacement patterns ~ui
caused by all traction patches i.

For a single traction patch, we solve the forward elastic problem by exploiting the convolution theorem

FT {~ui}= FT {G}FT {~ti} (9)

where the Fourier transform of the Green’s kernel in polar coordinates ρ and φ is known (28)

G̃(ρ ,φ)≡FT {G}(ρ ,φ)

=
2(1+ν)

Eρ

(
(1−ν)+ν sin2(φ) −ν sin(φ)cos(φ)
−ν sin(φ)cos(φ) (1−ν)+ν cos2(φ)

)
, (10)
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and the Fourier transform of the traction spot is given by the Hankel transform

FT {ti}(ρ) = 2π

∫
∞

0
dr ti(r)rJ0(ρr)

=
2πt0,i

ρ2

∫
ρRi

0
dxxJ0(x)

=
2πt0,iRi

ρ
J1(ρRi) (11)

where Jn are the Bessel functions of the first kind.
The Fourier transformed displacement field FT {~u} is now accessible and can be converted back to the displacement field

by performing the inverse Fourier transform

~ui(x,y) = FT −1{FT {~ui}(ρ ,φ)}. (12)

The inverse Fourier transform can be performed analytically in polar coordinates centered around the corresponding anchored
node with a scaled radial component r̃i ≡ |~r−~ri|/Ri and an angle θ with the x-axis,

ui
x =

Rit0,i(1+ν)

πE
[((1−ν)N1(r̃i)+νN2(r̃i,θ))cos(γi)

−νN3(r̃i,θ)sin(γi)]

(13)

ui
y =

Rit0,i(1+ν)

πE
[((1−ν)N1(r̃i)+νN4(r̃i,θ))sin(γi)

−νN3(r̃i,θ)cos(γi)]

(14)

where N1,2,3,4(r̃i,θ) are specific functions, that describe the geometric dependence of the displacement field, and are obtained
by explicitly solving the occurring inverse Fourier transforms in the Appendix (see eqs. (22), (23), (24), (25)). Strictly speaking,
this analytical solution of the forward elastic problem for a single traction patch anchored at Ri is valid on an infinite substrate.
We will neglect finite size effects in the following, and use this analytical solution also on finite substrates. The solution for
many traction patches anchored at different points is obtained by linear superposition.

Numerically solving the forward problem

We consider a square substrate of size L×L, in which displacements are analyzed (the total substrate size can be larger).
Typical sizes are in the range L∼ 10−100µm. We use the size L to non-dimensionalize all length scales: ū≡ u/L, r̄≡ r/L and
R̄i ≡ Ri/L, such that the substrate in which displacements are observed has unit size always. Typical focal adhesion patch sizes
Ri are in the range of several µm (15, 34); in dimensionless units, we take R̄i ∼ 0.05 as typical value. The above dimensionless
coordinate r̃ remains unchanged by non-dimensionalization. Furthermore, we use the elastic constant E as a scale for the
tractions: t̄ ≡ t/E. Typical hydrogel substrate elastic moduli of E ∼ 10kPa (15) and tractions in the range up to 5kPa (34)
imply typical dimensionless tractions up to t̄ ∼ 0.5.

We create an N×N-grid, on which we discretize the solution of eqs. (13) and (14) for a supplied traction patch t̄0,i with
direction γi and use superposition of the individual patch solutions for all anchored nodes, such that we get the full displacement
field for a number of n circular traction patches of variable radius R1,...,n.

Architecture of the deep convolutional neural network

We choose to employ a Unet structure (35) consisting of an input encoder, which extracts and compresses the relevant
information from the high dimensional input displacement field into a lower dimensional representation. From the lower
dimensional and compressed displacement information we inflate the dimensionality again with an encoder, such that we
finally receive the representation of a traction field in the output of the network, as shown in Fig. 1. The motivation for this
choice is the conceptual similarity of image procession tasks such as segmentation, which involve local classification of an
image, to the assignment of local “traction labels” to each grid point of the “displacement image”.

Characteristic for Unet networks are the skip connections that transfer precise location information, which would otherwise
be lost throughout the encoding process, from stages of the encoding process to counterparts in the decoding process.

Our network is a fully convolutional NN, where the encoding part is a stack of convolutional blocks, and max-pooling
layers, while the symmetric decoding part consists of transposed convolutional layers, skip connections and convolutional
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Figure 2: The time evolution of training and validation MSE during training of the neural network. Already after the first epoch
a rough traction reconstruction is achieved. After 10 Epochs the reconstruction gains significantly in terms of visual sharpness,
which is further increased in the following epochs. We stop the training process after 5000 epochs, because longer training
yields diminishing returns.

blocks. Each convolutional block consist of two convolutional layers, with one Dropout layer and LeakyReLU activation
functions, which introduce non-linearity. Specially, the first layer possesses a sigmoid activation function and the last layer
uses a linear activation function, ensuring that the output maps to the domain of a traction field. The encoding part uses size
3 kernels and size 1 strides, while the decoding part uses size 4 kernels and size 2 strides to avoid checkerboard effects that
would otherwise negatively impact performance.

The entire network structure is implemented using the Keras Python API (36).

Training data sampling and the training process

To train our NN we choose a 104×104-grid (N = 104) which holds the discrete representation of the dimensionless displacement
and traction fields. The training data is generated by numerically solving the explicit forward problem in dimensionless form as
outlined in the section Numerically solving the forward problem.

The traction distribution~̄t(x,y) is generated by a random number (uniformly sampled in [10,50]) of traction spots t̄i(x,y),
where the radius R̄i is drawn uniformly in the range [0.02,0.08] with a random center point {xi,yi} ∈ [R̄i +0.05,1− R̄i−0.05]2.
The traction magnitude t̄0,i is uniformly distributed in the range [0,0.5] and the polar angle γi is uniformly distributed in [0,2π].

While traction values and patch sizes are typical for adherent cells, our training data is more general in the sense that other
important characteristics of cellular force patters, such as the occurrence of force dipoles at the end of stress fibers, are not
contained in our training data. This makes our approach more general compared to Ref. (17), where training was performed on
traction patters typical for migrating cells. In combination with non-dimensionalization, this will allow us to easily adapt the
training process to other applications of TFM in interfacial physics (10) in future applications. Below, we will demonstrate the
ability of the CNN to specialize from our general patch-based training set to artificial and real cell data. As convenient model to
generate realistic cell traction data artificially we use the contractile network model of Ref. (37).

We expect a NN trained with noisy data to also perform better when confronted with noisy data. To test this hypothesis, we
add different levels of background noise to the displacement field ū in our training data. In order to evaluate the effects on
robustness we train two types of NN:

• A network NNlow is trained with a low level of background noise: To each dimensionless training displacement field
value ~̄u a Gaussian noise with a variance σ̄ that is 0.5% of the average variance of the dimensionless displacement field
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over all training samples,
σ̄ = 0.005〈σū〉, (15)

where 〈...〉 is an average over all training samples.

• A network NNhigh is trained with a high level of background noise that is 5% of the average variance of the dimensionless
displacement field over all training samples,

σ̄ = 0.05〈σū〉. (16)

As a loss or performance metric we use the mean-square error (MSE) between the output guess for tractions and the
corresponding labels of the input traction data. We train the network with the MSE

MSE=
1
M

M

∑
m=1

∑
(x,y)∈grid

|~̄tin,m(x,y)−~̄tout,m(x,y)|2 (17)

averaged over M training batches as an objective function. We train in batches of M = 132 by backpropagation using the
Adagrad algorithm.

During training, we evaluate the loss MSE (17) for the training data and a validation MSE for unknown displacement
data of the same type. The validation and training errors in Fig. 2 show constant learning and generalization of the model
without over-fitting. In total, the training for 5000 epochs took ∼ 100h on an NVIDIA QUADRO RTX 6000 GPU, with the main
learning advancements occurring in the first 5h. Each epoch consists of 25000 randomly chosen traction patch distributions.

BFTTC algorithm

In order to evaluate the performance of our CNN on in comparison to conventional TFM methods, we employ the Bayesian
Fourier Transform Traction Cytometry (BFTTC) algorithm as a standard to compare with. The algorithm is described
in Refs. (15, 30) and has been made publicly available by the authors at https://github.com/CellMicroMechanics/
Easy-to-use_TFM_package.

RESULTS
We analyze the performance of our ML approach on a set of error metrics and in comparison with the BFTTC algorithm
(15, 30) as a state-of-the-art conventional TFM method. Importantly, we want to discriminate between background noise
and signal while also evaluating magnitude and angle reconstruction precision to infer whether our network generalizes to
data never seen before. This will be done first for artificial displacement data for random circular traction patches, which is
generated in the same way as the training data and contains an additional varying level of noise. Subsequently, we can evaluate
the performance of the CNN on artificial cell data using the same error metrics and, finally, we apply the CNN to real cell data.

Evaluation metrics and application to artificial patch-based data
We employ six evaluation metrics, four of which have already been introduced by Huang and coworkers (15) or earlier, to
better distinguish between noise and signal, as well as between bias and resolution. Precise definitions of all evaluation metrics
are given in the Appendix. In Fig. 3 we evaluate these metrics for varying noise levels σ̃ on our artificial data patch-based data.

The noise applied to the displacement field data is randomly chosen from a Gaussian distribution centered around zero,
with standard deviation σ . Let the dimensionless displacement field standard deviation be stdū, then we define our noise levels
σ̃ = σ/stdū, such that σ̃ is the relative noise applied to the displacement field. In the following considerations we vary σ̃

between 1% and 10%.
First, we discuss the Deviation of Traction Magnitude at Adhesions (DTMA) (13, 15) which evaluates the precision of

traction magnitude reconstruction at the focal adhesion points (see eq. (26) in the Appendix), thus the DTMA is zero for a
perfect reconstruction, negative for an underestimation and positive for an overestimation of traction magnitudes. In Fig. 3
we see similar DTMA scores for all approaches in the limit σ̃ → 0, with a systematic under-prediction of tractions. For
increasing noise floors both the BFTTC and the low noise network (NNlow) depart from this common score and start to
overestimate tractions. While DTMA score for the BFTTC method eventually saturates the low noise network DTMA score
linearly rises with the noise floor σ̃ . The high noise network (NNhigh) retains a comparatively constant DTMA score and
always under-predicts the traction magnitude.

Second, we evaluate the Deviation of Traction Magnitude in the Background (DTMB) (15), which quantifies how accurate
the traction magnitude reconstruction works in the background (see eq. (27) in the Appendix), thus, if there is no prediction of
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Figure 3: The comparison of our networks NNlow (trained with low noise background) and NNhigh (trained with high noise
background) with a state of the art conventional BFTTC approach shows the precision across the six evaluation metrics (see
text) for varying noise levels σ̃ on artificial patch-based data. This test is performed with an ensemble of traction spots randomly
chosen in count, size, magnitude and orientation, testing our networks performance on data similar to the training data. The
arrows next to the metric name indicate whether higher or lower is better; “0” indicates that the metric has a sign and a value of
zero is optimal. Both of our networks outperform the BFTTC method in low noise scenarios σ̃ < 5% for most metrics. With
the high noise network NNhigh we trade low noise fidelity for elevated noise handling capabilities.

an underground noise floor, not associated with any focal adhesion point, the DTMB score will be zero. Both of our NNs have
a much lower DTMB score in than the BFTTC method in the limit σ̃ → 0, which should manifest in a much less noisy traction
force reconstruction. While the low noise network again departs from that score linearly the high noise network again stays
comparatively constant.

Third, the Signal to Noise Ratio (SNR) (15) also gives an insight into the noise floor of predictions (see eq. (28) in the
Appendix), it is high for a precise distinction between background noise and actual focal adhesion induced deformation and
goes to zero for an increasingly noisy reconstruction. Both of our networks have a consistently higher SNR than the BFTTC
method, undermining the assumption that the networks will yield a less noisy reconstruction overall. The low noise network
SNR decays quickly with increasing noise levels, while the high noise network is more resilient against the increases in noise
floor.

Fourth, the Deviation of the Maximum traction at Adhesions (DMA) (15) gives a more detailed insight into the consistency
for high amplitude tractions within a focal adhesion point (see eq. (29) in the Appendix). A perfect reconstruction would yield
a DMA score of zero, while under-predictions give negative scores and over-predictions positive scores. We can again observe
that both of our networks give similar scores for low noise scenarios, which are both lower than the score of the BFTTC method.
The low noise network again departs linearly from this common value, while the high noise network DMA score stays at a
consistent level.

Fifth, we introduce the Absolute Deviation of Traction Magnitude at Adhesions (ADTMA) that is similar to the DTMA,
but evaluates the absolute deviations, capturing the actual reliability of reconstructions more precisely than DTMA, since
alternating under- and over-predictions do not cancel out in this score. We can again see the same qualitative behavior as in
most of the other metrics: Both networks are more precise in the low noise region and the low noise network gets linearly
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Figure 4: We compare our networks NNlow and NNhigh with the BFTTC method for data generated from an artificial cell
model using the same six evaluation metrics for varying noise levels σ̃ as in Fig. 3. Since the method of generating the data is
now different from the training process, we expect to see the generalization potential of our networks more clearly than in Fig. 3.
The low noise network still performs well on this data, however, especially in the DDA score we see a worse performance
compared to Fig. 3. Additionally, we see an amplified underestimation of the traction magnitudes for the high noise network
and the BFTTC method. With respect to noise, the high noise network seems to give the best compromise between precision
and regularization of the output traction fields.

worse, while the high noise network is robust against increases in background noise.
Finally, we introduce a measure to more precisely quantify the orientation resolution via the Deviation of Traction Direction

at Adhesions (DDA)
DDA= 〈p(γpre,γtru)2〉 (18)

between predicted and true traction angles γ (see eq. (31) in the Appendix for a more precise definition of the average); p(α ,β )
measures the periodic distance between two angles α and β . A small DDA indicates precise traction direction reconstruction.
For both of our networks the direction reconstruction is more precise than the BFTTC method across the range of tested noise
levels.

Across all six measures we observe the following trends for network NNlow trained with a low level of background noise as
compared to network NNhigh trained with a high level of background noise: NNlow perform superior to the BFTTC-standard
and NNhigh for low-noise data, because they are trained on low noise data. Their performance deteriorates, however, for
higher noise levels σ̃ , where their performance drops below NNhigh but also below the BFTTC-standard. NNhigh finds a better
compromise between robustness and accuracy such that it outperforms the BFTTC-standard across all noise levels.

Tractions of artificial cells
In order to test the ability of the CNN to specialize from our general patch-based training set to realistic cell data, we first
test the model on artificial cell data. The advantage of artificial cell data is that the “true” tractions are precisely known. A
convenient model to generate realistic cell traction data artificially is the contractile network model (37). In this model, the
stress fibers are active cable links with specific nodes anchored to the substrate at positions~ri = (xi,yi)

T. To construct a typical
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Figure 5: A model cell with circular focal adhesion points. The model cell perturbs the elastic substrate it is resting on by
generating tractions (red arrows) at the focal adhesion spots (red circles), resulting in the color coded displacement field;
tractions (red arrows) are generated based on a contractile network model (see text). Read arrows are the “true” average
tractions generated by the cell model over the red circles, while the black arrows indicate the local tractions that the NNlow

network predicts at the discrete grid spots.
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Figure 6: Comparison of traction reconstruction for a real Fibroblast between our networks NNlow and NNhigh and the BFTTC
method. Although we do not have the “correct” traction field at hand for a quantitative evaluation of precision across the
methods, we see compatible results across the board, while both networks have a significantly reduced noise floor.

cell shape with lamellipodium and tail focal adhesions the tractions~ti(~r) generated at each anchor point are generated by
minimizing the total energy of the cable network. These tractions are then applied to circular patches of radius R = 0.04 under
an angle γi given by the stress fiber orientation at the anchored nodes (see Fig. 5).

In addition to Fig. 3, we want to evaluate the aforementioned metrics (DDA, ADTMA, DTMB, DMA, DTMA, SNR) on a
displacement field generated by an artificial cell as shown in Fig. 5. Again, we add Gaussian noise to the displacement field
with varying noise levels σ̃ and evaluate the behavior of our networks NNlow, NNhigh, and the BFTTC method in Fig. 4.

We see qualitatively similar results to Fig. 3 in the SNR and DTMB metrics, while the absolute performance in those
metrics is better (higher SNR and lower DTMB scores) for the artificial cell data. This is likely due to the lower number of
traction patches in total and the equal radii of all traction patches. In the DDA score we can see that our low noise network is
not able to reconstruct the direction of tractions robustly. The high noise network as well as the BFTTC method are able to
reconstruct the directions more reliably.

The artificial cell data show a clear tendency towards a traction magnitude underestimation (DTMA, ADTMA) for both
our high noise network and the BFTTC method. Since we are generating tractions in strongly bounded range due to the cable
network, the artifacts of the strong regularization in the BFTTC method and the high noise network begin to show more clearly
than in Fig. 3.
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Figure 7: Adding noise to the Fibroblast displacement field shows strong noise robustness of our network NNhigh, which has
been trained for high noise scenarios. The low noise network NNlow and the BFTTC method again yield qualitatively similar
results but exhibit strong noise artifacts in the reconstructed displacement field.
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Tractions of real cells
Finally, we want to test our ML approach on real cell images. Of course, we do not have access to the “true” traction field for
those images, however, we can qualitatively compare the results obtained from our ML approach with those obtained by the
well tested BFTTC method. The example cell results shown in Fig. 6 are for a NIH/3T3 (National Institutes of Health 3T3
cultivated) Fibroblast on a substrate with length L = 200.2 µm and elastic modulus E = 10670Pa (the data was made available
in Ref. (17)). It is apparent that the network trained with low noise (NNlow) reconstructs a traction field, which is similar to
that of the BFTTC method, while the noise in the vicinity of the cell is significantly reduced. The network trained with a high
noise floor gives a more regular traction pattern and cuts off lower amplitude tractions.

The reason for these results is that the network trained with low noise exhibits a SNR superior both to BFTTC and the
network trained with high noise levels if noise in the experimental data is low (see Figs. 3 and 4); for artificial cell data also
the DTMA and ADTMA of the network trained with low noise is superior for low experimental noise levels (see Fig. 4). A
low noise in experimental data seems to be realized here. We can thus infer that the tractions reconstructed by the high noise
network systematically under-predict the real tractions for this particular data.

As expected from our prior analysis, the resistance to additional noise is much better for the network which saw high noise
levels during training and the low noise network is visually less noisy than the BFTTC method, while retaining the capability to
reconstruct small tractions. The robustness of the high noise network is highlighted in Fig. 7, where the cell data is superposed
with significant background noise of σ̃ = 10%. Both our low noise network and the BFTTC method produce a noisy traction
field in this case, while the high noise network still displays a similar traction pattern in both of these cases.

Overall, the result from the low noise network and the BFTTC method is more detailed and fragmented, while the high
noise network reconstruction is more regular and fits the circular focal adhesion point model more consistently and stays
invariant for a wide range of background noise levels. Apparently, the noise the network sees in training directly controls the
regularization of the reconstruction and it would be possible to create intermediate networks with higher sensitivity, but lower
noise invariance.

These two networks could thus be employed for different experimental scenarios: When the experimental error is small, and
the displacement field can be accurately reconstructed the low noise network produces superior results to the BFTTC method,
while performing an order of magnitude faster on regular hardware. If the experimental error is high, or the displacement field
reconstruction is imprecise the high noise network provides a robust way of extracting the traction field, while conventional
methods are plagued by high background noise in this case.

DISCUSSION
We present a ML approach to TFM via a deep convolutional NN trained on a general set of artificial displacement-traction data
derived from the analytic solution of the elastic forward problem for random ensembles of circular traction patches. We find
a significant enhancement of the robustness of the NN if the training data is subjected to an appropriate level of additional
noise. This provides a computationally efficient way to accelerate traction force microscopy as a method and improves both on
accuracy and noise resilience of conventional approaches, while reducing the computational complexity, and thus execution
time by an order of magnitude compared to state-of-the-art conventional approaches. It is apparent from our analysis that ML
approaches have the potential to shift the paradigm in solving inverse problems away from conventional iterative methods,
towards educated regressors which are trained on a well understood and numerically simple to solve forward problem.

In conventional TFM approaches the inverse elastic problem is ill-posed and the suitable choice of regularization in the
inversion procedure is crucial and has been a topic of active research over the last twenty years. ML approaches circumvent
the need for explicit regularization and provide an implicit regularization by a proper choice of the network architecture, i.e.,
convolutional NNs for TFM, and after proper training. Our work shows that the suitable choice of “physics-informed” training
data and, moreover, the suitable choice of noise on the training data governs the applicability of the NN and the compromise
between accuracy and robustness in ML approaches, somewhat analogous to the role of the regularization procedure in
conventional TFM approaches.

We employ a sufficiently general patch-based training set and show that this allows the CNN to successfully specialize to
artificial cell data and real cell data. Moreover, training with an additional background noise that is 5% of the average variance of
the dimensionless displacement field (the NNhigh network (16)), gives a robustness against noise in the NN performance that is
superior to state-of-the-art conventional TFM approaches without significantly compromising accuracy. We can systematically
back these claims by characterizing both the NN performance and the performance of state-of-the-art conventional TFM (the
BFTTC method) via six error metrics both for the patch-based training set (Fig. 3) and the artificial cell data set (Fig. 4), which
are two data sets where we can compare the prediction to the true traction labels.

For real cell data, we find that a NN trained with low noise (0.5%) gives the best performance if the experimental data is
of high quality with low noise levels (see Fig. 6). For noisy experimental data, on the other hand, the NN trained with high
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levels of noise (5%) clearly performs best (see Fig. 7). This suggests that it might be beneficial to employ both types of NNs
depending on the experimental scenario.

We make all NNs discussed in this work freely available for further use in TFM. We use a 104× 104-grid for the
displacement data. Experimental data will typically provide even higher resolution but can be easily adapted by interpolation
to the 104× 104-grid. By using non-dimensionalized units, the NNs made available with this work are widely applicable
across different problems and can also be easily further adapted, for example, to problems where typical tractions are not
limited to the range t < 0.5E that we have assumed here by repeating the training process. All necessary routines to re-train
a NN to new traction levels, new characteristic patch sizes, or other noise levels are made freely available with this work at
https://gitlab.tu-dortmund.de/cmt/kierfeld/mltfm.
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REDUCTION OF THE ELASTIC GREEN’S TENSOR TO TWO DIMENSIONS
The full three-dimensional Green’s tensor of the boundary problem (1), (2) on the half-space z > 0 is given by (11, 27):

G(x,y,z) =
1+ν

2πE


2(1−ν)r+z

r(r+z) + (2r(νr+z)+z2)x2

r3(r+z)2
(2r(νr+z)+z2)xy

r3(r+z)2
xz
r3 − (1−2ν)x

r(r+z)
(2r(νr+z)+z2)xy2

r3(r+z)2
2(1−ν)r+z

r(r+z) + (2r(νr+z)+z2)y2

r3(r+z)2
yz
r3 − (1−2ν)y

r(r+z)
xz
r3 +

(1−2ν)x
r(r+z)

yz
r3 +

(1−2ν)y
r(r+z)

2(1−ν)
r + z2

r3

 , (19)

The tensor is not symmetric, in general. On the surface z = 0, this becomes

G(x,y,0) =
1+ν

πEr3

(1−ν)r2 +νx2 νxy − 1
2 (1−2ν)xr

νxy (1−ν)r2 +νy2 − 1
2 (1−2ν)yr

1
2 (1−2ν)xr 1

2 (1−2ν)yr (1−ν)r2

 . (20)

For incompressible polymer materials with ν ≈ 1/2, the coupling between in-plane tractions and out-of-plane displacements is
small.

DETAILS OF THE SOLUTION OF THE FORWARD PROBLEM FOR TRACTION PATCHES
For the solution of the forward problem for a tractions patch of size Ri, we obtained the functions N j(r̃i,θ) in (13) and (14).
They are defined as

N j(r̃i,θ)≡
∫ 2π

0
dφ

∫
∞

0
dρ

J1(ρRi)

ρ
f j(φ)e−iρRi r̃i cos(φ−θ) (21)

with

f1(φ)≡ 1

f2(φ)≡ sin2
φ

f3(φ)≡ sinφ cosφ

f4(φ)≡ cos2
φ .
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By definition, N2 +N4 = N1.
The remaining integrals in the functions N j(r̃i,θ) can be performed analytically:

N1(r̃i) = 2π

∫
∞

0
dx

J1(x)J0(xr̃i)

x

=

{
4E
(
r̃2

i
)

r̃i < 1
4
[
r̃iE
(
r̃−2

i

)
− (r̃i− r̃−1

i )K
(
r̃−2

i

)]
r̃i > 1

(22)

with the complete elliptic integrals E(m) =
∫ π/2

0 (1−msin2
θ)1/2dθ and K(m) =

∫ π/2
0 (1−msin2

θ)−1/2dθ ;

N2(r̃i,θ) = 2π

∫
∞

0
dx
(

J1(x)J1(xr̃i)

x2r̃i
− sin2

θ
J1(x)J2(xr̃i)

x

)
=

{
4sin2

θE
(
r̃2

i
)
+ 4

3r̃2
i

cos(2θ)
[
(1+ r̃2

i )E
(
r̃2

i
)
+(1− r̃2

i )K
(
r̃2

i
)]

r̃i < 1
2

3r̃i

[(
3r̃2

i +(2− r̃2
i )cos(2θ)

)
E
(
r̃−2

i

)
+(1− r̃2

i )(3− cos(2θ))K
(
r̃−2

i

)]
r̃i > 1

; (23)

N3(r̃i,θ) =−2π sinθ cosθ

∫
∞

0
dx

J1(x)J2(xr̃i)

x

=

{
2

3r̃2
i

sin(2θ)
[(
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E
(
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(
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[(
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)
E
(
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)
+(1− r̃2

i )K
(
r̃−2

i

)]
r̃i > 1

; (24)

N4(r̃i,θ) = N1(r̃i)−N2(r̃i,θ). (25)

DEFINITIONS OF EVALUATION METRICS

We employ six evaluation metrics (see Figs. 3 and 4). Their definition is based on a comparison of traction predictions~̄tpre,s(x,y)
in sample s compared to “true” tractions~̄t tru,s(x,y), which are known for the artificial data for random circular traction patches.
We evaluate all six metrics by averaging over S = 100 samples; the sample average is denoted by 〈...〉. All traction vectors~̄ti,v
in patch i (i = 1, ...,n) are indexed by v. All tractions vectors~̄tb,w outside patches are considered as belonging to the background
b and indexed by w. For completeness we give the precise definitions of all six evaluation metrics:

1. Deviation of Traction Magnitude at Adhesions (DTMA) (15):

DTMA=

〈
meani

meanv

(
|~̄tpre,s

i,v |− |~̄t tru,s
i,v |

)
meanv

(
|~̄t tru,s

i,v |
) 〉

. (26)

Note that meanv

(
|~̄t tru,s

i,v |
)
= |~̄t tru,s

i,v | because artificial traction data is piecewise constant in traction patches.

2. Deviation of Traction Magnitude in the Background (DTMB) (15):

DTMB=

〈
meanw

(
|~̄tpre,s

b,w |− |~̄t
tru,s
b,w |

)
meanimeanv

(
|~̄t tru,s

i,v |
) 〉

. (27)

Note that |~̄t tru,s
b,w |= 0 because artificial traction data exactly vanishes outside patches.

3. Signal to Noise Ratio (SNR) (15):

SNR =

〈
meanimeanv

(
|~̄tpre,s

i,v |
)

stdw

(
~̄t tru,s

b,w

) 〉
, (28)

where std is the standard deviation.
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4. Deviation of the Maximum traction at Adhesions (DMA) (15):

DMA=

〈
meani

maxv

(
|~̄tpre,s

i,v |
)
−maxv

(
|~̄t tru,s

i,v |
)

meanv

(
|~̄t tru,s

i,v |
) 〉

. (29)

Note that maxv

(
|~̄t tru,s

i,v |
)
= |~̄t tru,s

i,v | because artificial traction data is piecewise constant in traction patches.

5. Absolute Deviation of Traction Magnitude at Adhesions (ADTMA):

ADTMA=

〈
meani

∣∣∣∣∣∣
meanv

(
|~̄tpre,s

i,v |− |~̄t tru,s
i,v |

)
meanv

(
|~̄t tru,s

i,v |
)

∣∣∣∣∣∣
〉

. (30)

6. Deviation of Traction Direction at Adhesions (DDA):

DDA= 〈meanimeanv p2(γ
pre,s
i,v ,γ tru,s

i,v )〉 , (31)

where p(α ,β ) measures the periodic distance between two angles α and β .
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28. Butler, J. P., I. M. Tolić-Nørrelykke, B. Fabry, and J. J. Fredberg, 2002. Traction fields, moments, and strain energy that
cells exert on their surroundings. Am. J. Physiol. Physiol. 282:C595–C605.

29. Han, S. J., Y. Oak, A. Groisman, and G. Danuser, 2015. Traction microscopy to identify force modulation in subresolution
adhesions. Nat. Methods 12:653–656.

30. Huang, Y., G. Gompper, and B. Sabass, 2020. A Bayesian traction force microscopy method with automated denoising in
a user-friendly software package. Comput. Phys. Commun. 256:107313.

31. Soiné, J. R. D., N. Hersch, G. Dreissen, N. Hampe, B. Hoffmann, R. Merkel, and U. S. Schwarz, 2016. Measuring cellular
traction forces on non-planar substrates. Interface Focus 6:20160024.

32. Adler, J., and O. Öktem, 2017. Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl.
33:124007.

33. Xu, L., J. Ren, C. Liu, and J. Jia, 2014. Deep convolutional neural network for image deconvolution. Advances in Neural
Information Processing Systems 2:1790–1798.

Manuscript submitted to Biophysical Journal 17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.09.02.506331doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.02.506331
http://creativecommons.org/licenses/by-nc/4.0/


F. S. Kratz, L. Möllerherm and J. Kierfeld

34. Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky,
L. Addadi, and B. Geiger, 2001. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned
substrates. Nat. Cell Biol. 3:466–472.

35. Ronneberger, O., P. Fischer, and T. Brox, 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation.
volume 9351, 234–241.

36. Chollet, F., et al., 2015. Keras. https://keras.io.

37. Guthardt Torres, P., I. B. Bischofs, and U. S. Schwarz, 2012. Contractile network models for adherent cells. Phys. Rev. E
85:011913.

18 Manuscript submitted to Biophysical Journal

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.09.02.506331doi: bioRxiv preprint 

https://keras.io
https://doi.org/10.1101/2022.09.02.506331
http://creativecommons.org/licenses/by-nc/4.0/

