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Summary 10 

1. Local adaptation to contrasting environmental conditions along environmental 11 

gradients is a widespread phenomenon in plant populations, yet we lack a mechanistic 12 

understanding of how individual agents of selection contribute to local adaptation.  13 

2. Here, we developed a novel evolutionary functional-structural plant (E-FSP) model that 14 

simulates local adaptation of virtual plants along an environmental gradient. First, we 15 

validate the model by testing if it can recreate two elevational ecotypes of Dianthus 16 

carthusianorum occurring in the Swiss Alps. Second, we use the E-FSP model to 17 

disentangle the relative contribution of abiotic (temperature) and biotic (competition 18 

and pollination) selection pressures to elevational adaptation in D. carthusianorum.  19 

3. The model reproduced the qualitative differences between the elevational ecotypes in 20 

two phenological (germination and flowering time) and one morphological trait (stalk 21 

height), as well as qualitative differences in four performance variables that emerge 22 

from GxE interactions (flowering time, number of stalks, rosette area and seed 23 

production). Our results suggest that elevational adaptation in D. carthusianorum is 24 

predominantly driven by the abiotic environment. 25 

4. Our approach shows how E-FSP models incorporating physiological, ecological and 26 

evolutionary mechanisms can be used in combination with experiments to examine 27 

hypotheses about patterns of adaptation observed in the field. 28 

  29 
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Introduction 30 

Local adaptation to contrasting environmental conditions is a widespread phenomenon in plant 31 

populations (Leimu & Fischer, 2008), resulting from divergent selection pressures imposed by 32 

variation in environmental conditions on populations occurring across a species’ range. The 33 

outcome of local adaptation can be documented in field experiments that assess the 34 

performance of alternative ecotypes in contrasting environments, where local ecotypes are 35 

expected to outperform foreign ecotypes (Kawecki & Ebert, 2004). A wealth of experimental 36 

work has shown the pervasiveness of local adaptation (Leimu & Fischer, 2008), yet we often 37 

lack a mechanistic understanding of how individual agents of selection contribute to local 38 

adaptation along environmental gradients (Wadgymar et al., 2017). This is caused by 39 

individual drivers of selection acting on multiple plant traits, either directly or indirectly, and 40 

by individual traits being affected by multiple drivers of selection. The interactions between 41 

drivers of selection, such as between abiotic and biotic factors (Briscoe Runquist et al., 2020; 42 

Hargreaves et al., 2020; Paquette & Hargreaves, 2021), further complicates disentangling the 43 

role of any individual driver in shaping local adaptation.  44 

To address this, experimental studies may be complemented by mechanistic modelling 45 

approaches (Connolly et al., 2017) that incorporate the eco-physiological and eco-evolutionary 46 

processes driving local adaptation. Such mechanistic modelling approaches are more 47 

commonly used in crop breeding and have proven to be powerful tools to explore the 48 

mechanistic basis of plant-environment interactions (Hammer et al., 2006). However, the 49 

potential for these models to simulate the ecological complexity that drives local adaptation in 50 

natural plant communities currently remains unexplored.  51 

Function-structural plant (FSP) modelling is such a mechanistic modelling approach 52 

that integrates an explicit representation of plant structure in a 3D environment, combined with 53 

functional plant responses to that environment (Evers et al., 2018). The approach is particularly 54 
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suited to the simulation of plant-plant interactions as it explicitly simulates the spatial 55 

heterogeneity that is inherent to species mixtures and drives competitive interactions between 56 

plants (Evers et al., 2019; Bongers, 2020). This explicit representation of plant form and 57 

function makes FPS modelling an excellent tool to test hypotheses about the adaptive value of 58 

functional traits in a dynamic ecological context (Bongers et al., 2019; de Vries et al., 2019; 59 

Douma et al., 2019).  60 

A novel and largely unexplored application of FSP modelling is in combination with a 61 

mechanistic model of natural selection (de Vries, 2021). Such evolutionary-FSP (E-FSP) 62 

models can simulate the combined selection pressure imposed by multiple selective agents on 63 

a population of individually distinct plants that interact with each other and with the 64 

environment (de Vries, 2021). This individual-based perspective is of particular importance to 65 

mechanistically simulate natural selection, as key mechanisms that drive selection (e.g. 66 

competition for resources) are not only driven by absolute trait values, but also by trait values 67 

relative to those of neighbouring plants (Falster & Westoby, 2003; McNickle & Dybzinski, 68 

2013). This is exemplified by competition for light, which is a pre-emptive resource (i.e. light 69 

interception by one plant also prevents light interception by other plants) whose acquisition is 70 

dependent on the height of a plant relative to the height of the surrounding vegetation, leading 71 

to competitive asymmetry (Weiner, 1990). Despite the potential for E-FSP models to simulate 72 

the mechanisms that drive local adaptation, the complexity of these mechanisms makes 73 

validation of such a model particularly challenging. As such, all E-FSP models published to 74 

date have been theoretical exercises (Renton & Poot, 2014; Yoshinaka et al., 2018; de Vries et 75 

al., 2020).  76 

Here, we develop, parameterise, calibrate and validate an E-FSP model of local 77 

adaptation along an environmental gradient. As a case study, we use two elevational ecotypes 78 

of Dianthus carthusianorum that occur along an elevational gradient in the Swiss Alps, 79 
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growing at low (~1000 m.a.s.l.) and high (~2000 m.a.s.l.) elevation. These environments are 80 

characterised by commonly reported differences in (a)biotic conditions along elevational 81 

gradients (Halbritter et al., 2018), resulting in a tall grassland vegetation at lower elevations, 82 

and typical alpine (i.e. shorter) vegetation at higher elevations. Elevational ecotypes of D. 83 

carthusianorum are adapted to their elevational ranges and display genetically based 84 

phenotypic divergence in phenological and morphological traits (Walther, 2020; Pålsson et al., 85 

in prep.). The high elevation populations of D. carthusianorum typically exhibit lower 86 

biomass, flower earlier and produce smaller flowering stalks compared to their low elevation 87 

counterparts. Favoured by a higher energy input environment, the latter achieve larger plant 88 

size and taller flowering stalks to potentially compete for light and pollinators with the 89 

surrounding vegetation. Despite sound evidence of adaptation along an elevational gradient, 90 

the selection pressures underlying the evolution of these elevational ecotypes remains 91 

unknown. Commonly reported patterns of adaptation along elevational gradients suggest that 92 

the divergence in D. carthusianorum is driven by more stressful abiotic conditions at high 93 

elevations (e.g. temperature), and by biotic interactions (e.g. competition and pollination) at 94 

low elevations (Halbritter et al., 2018). First, we aim to validate the E-FSP model by asking 95 

whether the E-FSP model can recreate elevational ecotypes of D. carthusianorum. Second, we 96 

hypothesise that temperature, competition and pollination are key agents of selection and  use 97 

the E-FSP model to disentangle their relative contribution to elevational adaptation in D. 98 

carthusianorum. 99 

Methods 100 

Model species: D. carthusianorum 101 

D. carthusianorum is a primarily outcrossing gynodioecious, perennial herb that is native to 102 

Europe and is widespread on rocky slopes and dry grasslands throughout the Alps up to an 103 

elevation of 2500 meters (Bloch et al., 2006). For model parameterisation, calibration and 104 
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validation, we used data from two elevational ecotypes of D. carthusianorum. These were 105 

grown in a reciprocal transplant experiment established in fall 2015 that included two replicate 106 

transplant sites at low (~1000 m.a.s.l.) and high (~2000 m.a.s.l.) elevation, respectively. We 107 

used data collected in the first growing season on fitness components (survival, flowering 108 

probability and seed count), morphological (stalks height, number of stalks, stalk leaves and 109 

flowers) and phenological (flowering time) traits (for details see: Walther, 2020; Pålsson et al., 110 

in prep.). 111 

Model summary  112 

The model used in this study is based on the E-FSP model described in de Vries et al. (2020), 113 

which was developed in the modelling platform GroIMP (Hemmerling et al., 2008) and 114 

designed to simulate adaptation to abiotic (nitrogen) and biotic (competition and herbivory) 115 

agents. Here, we expand this E-FSP model by including temperature driven plant phenology 116 

and plant-pollinator interactions. The model simulates a population of competing plants over 117 

multiple generations, with the performance of individual plants within a generation being 118 

determined by three plant traits that are subject to selection: germination time (GM), time to 119 

flowering (TF), and stalk height (SH). We assumed that these traits are not genetically linked 120 

so that there are no pleiotropic effects between them, and therefore the model is theoretically 121 

able to select for any combination of trait values. We simulate three environmental factors that 122 

determine plant fitness and thereby impose selection pressure; i) the difference in abiotic 123 

conditions associated with an elevational gradient (i.e. temperature and subsequently also 124 

season length and nitrogen availability), ii) interspecific competition with the surrounding 125 

vegetation, and iii) pollinator density. The model structure is summarised below (also see Fig. 126 

1). For a detailed model description, see Methods S1, which includes a list of indices used in 127 

the model description (Table S1). 128 

Temperature and plant development  129 
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The model calculates daily average and minimum temperature as a function of elevation, based 130 

on climate data collected by weather stations at the field sites (Fig. S1, Table S2). Temperature 131 

is used to drive plant phenology (McMaster & Wilhelm, 1997), photosynthesis (Farquhar et 132 

al., 1980), soil nitrogen availability (Rodrigo et al., 1997; Kirschbaum, 2000; Guntiñas et al., 133 

2012), and to calculate frost damage (Ji et al., 2015).  134 

Plant development is split into two stages; a vegetative and a generative stage. The in silico 135 

plants germinate in spring, the timing of which is a function of temperature and their 136 

germination trait (GM). During its vegetative stage, the plant invests all accumulated 137 

assimilates and nitrogen towards the growth of rosette leaves and roots. The transition to the 138 

generative stage is dependent on both the time to flowering trait (TF), and cumulative 139 

temperature time (growing degree days, McMaster & Wilhelm, 1997). In the generative stage, 140 

the plant continues to intercept light and produce assimilates through photosynthesis, but no 141 

longer grows new rosette leaves or roots. Instead, newly acquired assimilates and nitrogen are 142 

allocated to flowering stalks, stalk leaves and seed filling.  143 

Plant architecture and resource capture  144 

The model uses an explicit description of plant architecture to mechanistically simulate 145 

competition for the three resources incorporated in the model; light, nitrogen and pollinators. 146 

The vegetative shoot is represented by a rosette of rectangular leaves (Fig. S5, Fig. S8) that 147 

photosynthesise based on leaf level light interception. The flowering stalks are described as a 148 

cylinder with a number of short stalk leaves that also add to assimilate production through 149 

photosynthesis and a disk at the top of the stalk that represents the flowerhead and attracts 150 

pollinators. The stalk height trait determines the position of the flower, the number of stalk 151 

leaves and the stalk diameter required to support the stalk (Fig. S7). The explicit representation 152 

of these aboveground plant parts allows for the calculation of light interception in the canopy 153 

using a Monte-Carlo ray tracer and, therefore, the outcome of competition for light between 154 
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individual plants (Hemmerling et al., 2008; Evers et al., 2010). This methodology has proven 155 

to capture the asymmetry in competition for light (de Vries et al., 2018; de Vries et al., 2019), 156 

making it a key model component to simulate the effect of competitive interactions on plant 157 

fitness and subsequent selection. The root architecture is described as a conical volume (Fig. 158 

S2, Table S3) from which the plant can take up nitrogen, such that a larger root system 159 

proportionally increases the potential nitrogen uptake of the plant, thus resulting in symmetric 160 

competition for nitrogen.  161 

Plant growth  162 

We assumed that the C:N ratio of plant tissue is conserved, so that plant growth is either limited 163 

by the plant’s ability to intercept light and assimilate carbon through photosynthesis, or its 164 

ability to take up nitrogen through the root system. Photosynthesis is calculated at the leaf level 165 

using a temperature driven Farquhar, von Caemmerer and Berry photosynthesis model 166 

(Farquhar et al., 1980; Yin & Struik, 2009; Yin et al., 2009). The assimilates produced by the 167 

leaves are first used to pay for maintenance respiration, which is based on plant nitrogen content 168 

(Ryan, 1991), after which the remaining assimilates are allocated to growth. The potential 169 

nitrogen uptake by the root system is modelled as a function of rooting volume and soil nitrogen 170 

availability, and can be supplemented by re-allocation of nitrogen from the leaves, which is 171 

used to simulate leaf senescence at the end of the growing season (Yin & van Laar, 2005). In 172 

the vegetative stage, assimilates and nitrogen are equally allocated towards the growth of 173 

rosette leaves and roots (i.e. assuming a root:leaf ratio of 1). In the generative stage, assimilates 174 

and nitrogen are allocated to flowering stalks and seed set using a hierarchical allocation model 175 

that prioritises filling pollinated seeds (see Pollination below) over growing new stalks 176 

(Minchin & Thorpe, 1996). 177 

Pollination  178 

The number of pollinator visits is simulated as a function of flower density following the 179 
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correlation found by Richman et al. (2020). Pollination in grasslands is known to scale with 180 

stalk height in relation to the height of the surrounding vegetation (Sletvold et al., 2013; 181 

Slaviero et al., 2016). To simulate this, we visualise the flower heads as upwards facing disks 182 

with a diameter of 2 cm, and use the light absorbed by the flowerhead as a proxy for flower 183 

attractiveness so that flowers reaching to the top of the vegetation are the most attractive to 184 

pollinators. The pollinator visits are then distributed over the flowers in the plot based on their 185 

relative attractiveness. The relationship between the number of pollen visitations and potential 186 

seed set is based on a previous study of the pollination of D. carthusianorum that was 187 

conducted in the same study area (Bloch et al., 2006, also see Table S4 and Fig. S4).  188 

Evolutionary algorithm  189 

D. carthusianorum is a perennial species that has a lifespan from one to several years. However, 190 

implementation of the perennial life-cycle in the model has proven challenging because we 191 

currently lack long-term data for calibration and validation. Although life history traits linked 192 

to the perennial life-cycle almost certainly contribute to adaptation in D. carthusianorum, 193 

phenotypic divergence and the resulting differences in performance are already apparent in the 194 

first year (Pålsson et al., in prep.). Therefore, we opted to simulate an annual life-cycle and 195 

assume that selection acting on the first year of plant reproduction is sufficient to explain the 196 

evolution of the traits under investigation. 197 

Plant fitness is composed of female and male reproductive success: female reproductive 198 

success is defined as the total number of filled seeds at the end of the growing season (i.e. 199 

fecundity), and male reproductive success is defined as the number of pollinator visits to the 200 

flowers over the course of the growing season. At the end of every generation, the model 201 

randomly selects 100 plants based on their realised female reproductive success, and 100 plants 202 

based on their male reproductive success, and recombines these to generate the 100 offspring 203 

genotypes that populate the subsequent generation of plants. In this process, the model allows 204 
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for a single plant to contribute multiple seeds and/or pollen to the next generation, and we 205 

assume that seeds can only germinate in the following year, so no seed bank is built up. The 206 

virtual plants were not able to self-pollinate, as selfing in D. carthusianorum is prevented by 207 

protandry and rarely leads to fruit formation (Bloch et al., 2006). The traits of an offspring 208 

plant (To, dimensionless, ranging from zero to one) are randomly inherited from either of the 209 

two parental plants, effectively simulating a haploid system with traits completely determined 210 

by their genetic basis. Offspring trait values are assumed to be normally distributed around the 211 

parental trait value (mean = Tp, dimensionless, ranging from zero to one, standard deviation = 212 

Tsd). 213 

Plant density and interspecific competition  214 

The model starts each generation with 100 individuals of the virtual D. carthusianorum plants 215 

that were randomly placed in a plot of 1 m2, meaning that individual plants can experience 216 

different levels of competition dependent on neighbour proximity. While initial plot level plant 217 

density is kept constant, the model does allow plant density to vary during the season as a result 218 

of mortality caused by frost damage or resource limitation.  219 

To simulate the effect of interspecific competition for light and nutrients, particularly 220 

with the tall grasses that D. carthusianorum typically competes with in their low elevation 221 

habitats, we introduce 100 individuals of a second plant species designed to represent these tall 222 

grasses. This increases the initial plant density of the population from 100 plants m-2 in the 223 

absence of the grass species to 200 plants m-2 in its presence. The growth and development of 224 

these grasses is not simulated mechanistically, but rather described by a sigmoid function that 225 

calculates biomass as a function of temperature and time (see Methods S1). The grasses can 226 

therefore be seen as a static environmental factor that imposes competition pressure on the 227 

virtual D. carthusianorum plants, but is not affected by the D. carthusianorum plants.  228 
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Model output  229 

A single simulation consists of 125 generations, by which time the simulated population had 230 

settled at an optimum through natural selection (Fig. S9). To account for random fluctuations 231 

between generations, model output was recorded at generation 105, 110, 115, 120 and 125. 232 

Model output was recorded at the end of the growing season on the level of individual plants 233 

and consisted of values for the three plant traits under selection, as well as flowering time, 234 

rosette area, the number of stalks, and fitness. We conducted no statistical analyses on the in 235 

silico data, because the sample size is so high that all treatment combinations show a high 236 

statistical significance, even if the differences between those treatment combinations are not 237 

biologically relevant. In the text, values are reported as mean ± standard error. 238 

Model parameterisation, calibration and validation  239 

To parameterise, calibrate and validate the model, we used data collected during the first 240 

growing season (2016) of the field experiment described in Pålsson et al. (in prep.) and 241 

conducted a climate chamber experiment to measure germination times. For model 242 

parameterisation, we obtained empirical estimates of parameter values that are not readily 243 

available in published literature and that we assume to be shared between the elevational 244 

ecotypes (for a full list of parameters, see Table S4). For model validation of traits that 245 

differentiate the two elevational ecotypes, we obtained empirical estimates growing from a 246 

controlled environment (a common garden at the low elevation site for TF, SH, and two climate 247 

chambers for GM). Additionally, we obtained empirical estimates of response variables 248 

(flowering time, number of stalks, rosette area, and fitness) from the two elevational ecotypes 249 

growing in the field. For the germination experiment, we collected seeds from seven 250 

individuals from a low and a high elevation population occurring in close proximity (<1km) to 251 

the transplant sites. We vernalized the seeds for a week at -18 ºC and sowed 20 seeds from each 252 

individual in compartmentalised trays with 21 cm3 soil per compartment, sowing one seed per 253 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 4, 2022. ; https://doi.org/10.1101/2022.09.02.506361doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.02.506361


compartment. These trays were placed in one of two climate chambers under a constant 254 

temperature of either 4 ºC or 20 ºC to measure the effect of temperature on germination rates, 255 

and a 16/8 day/night cycle. We followed a balanced randomised design for this experiment, so 256 

that each seed family was equally represented in each treatment. Thrice weekly, the seeds were 257 

watered and germination was recorded over a period of 30 days. 258 

Simulations   259 

The model incorporated three environmental factors; the difference in abiotic conditions 260 

associated with a change in elevation (i.e. temperature and subsequently also season length 261 

and nitrogen availability), interspecific competition with a tall grass species (hereafter named 262 

“competition”), and pollinator density (hereafter named “pollination”, see Table 1). The 263 

elevation treatments are 1000 or 2000 m, based on the elevation of the experimental sites. The 264 

competition treatments reflect the more intense competition that is generally found in low 265 

elevation habitats (Halbritter et al., 2018) by simulating both intra- and interspecific 266 

competition (i.e. 100 plants m-2 of D. carthusianorum and 100 plants m-2 of a tall grass), and 267 

the shorter vegetation that is generally found in high elevation habitats (Halbritter et al., 2018) 268 

by simulating only intraspecific competition (i.e. only 100 plants m-2 of D. carthusianorum). 269 

The pollination treatments represent pollinator densities along an elevational gradient in the 270 

Swiss Alps (Richman et al., 2020), with pollinators being more abundant in the low elevation 271 

habitat (0.3 pollinator visits flower-1 h-1) compared to the high elevation habitat (0.03 visits 272 

flower-1 h-1).  273 

To validate model performance, we simulated selection in two scenarios that represent 274 

the low and high elevation habitats (Low habitat: 1000m elevation, 100 interspecific 275 

competitors m-2, and 0.3 pollinator visit flower-1 h-1; High habitat: 2000m elevation, 0 276 

interspecific competitors m-2, and 0.03 pollinator visit flower-1 h-1), and compared the trait 277 

variation and performance of in silico populations after 125 generations of selection to the trait 278 
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variation and performance of in vivo ecotypes of D. carthusianorum from the low and high 279 

elevation sites. To test whether the in silico populations of D. carthusianorum could be 280 

considered locally adapted, we simulated a virtual transplant experiment: 50-50 mixtures 281 

consisting of plants originating from the low and high elevation populations were grown in the 282 

low and high elevation habitats, and their seed production after one generation was used as a 283 

fitness proxy. Under the basic principles of testing adaptation in reciprocal transplant 284 

experiments, genotype x environment (GxE) interactions should result in locally adapted 285 

populations outperforming foreign populations growing under the same conditions (Blanquart 286 

et al., 2013; Hargreaves & Eckert, 2019; Hargreaves et al., 2020). 287 

To elucidate how the different abiotic and biotic selection pressures contributed to the local 288 

adaptation of D. carthusianorum, we first simulated populations under control conditions (i.e. 289 

1000 m, 0 interspecific competitors m-2, 0.3 pollinator visit flower-1 h-1), and then changed each 290 

environmental factor individually to assess their effects on trait variation and performance.  291 
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 292 

Fig 1. Visual summary of the E-FSP model used in this study. The model represents a population of individual 293 

plants, each with their own trait values (1; Germination (GM); Time to Flowering (TF); Stalk Height (SH)), plant 294 

architecture (2) and local environment (3; Light, nutrients, pollinators and temperature). The local environment is 295 

dependent on the composition of the surrounding plant community (4; i.e. intra- and interspecific competition), 296 

and the macro environment (5). To simulate plant growth and development (6), the model takes input on the level 297 

of the individual plants (i.e. from 1,2 and 3). First, light interception and nutrient uptake (a) are used to calculate 298 

leaf level photosynthesis (b). The respiration required to maintain the standing biomass (c) is subtracted to get the 299 

net growth rate. These assimilates are allocated to either vegetative or generative growth (d), dependent on the 300 

temperature and the GM and TF traits. During vegetative growth, the plant allocates assimilates to roots and 301 

rosette leaves (e). During generative growth, the plant allocates assimilates to stalk leaves, flowering stalks and 302 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 4, 2022. ; https://doi.org/10.1101/2022.09.02.506361doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.02.506361


seed filling, with the SH trait determining the allocation between these three (f). Finally, through recombination, 303 

the pollen collected by pollinators (g; male fitness) and the filled seeds from pollinated flowers (h; female fitness) 304 

determine the traits of the plants in next generation, and thus drive evolution through natural selection (7). 305 

Results 306 

 Simulation of elevational ecotypes: growing in a common garden 307 

To validate whether the model was able to recreate the elevational ecotypes of D. 308 

carthusianorum, we compared the trait values of in silico populations to in vivo measurements 309 

of the low and high elevation ecotypes conducted on plants growing in a shared environment 310 

(i.e. the climate chamber for GM, and the low elevation habitat for SH and TF). The in vivo 311 

low and high elevation populations of D. carthusianorum expressed significant differences in 312 

each of the tree selected traits (Fig. 2a; Table S5; in vivo). Growing in the climate chamber, 313 

plants from the high elevation population germinated later compared to plants from the low 314 

elevation population (P<0.001; Fig. S6). Growing in the low elevation site, plants from the 315 

high elevation population had a shorter stalk height (P<0.001), and a shorter time to flowering 316 

(P<0.001) compared to plants from the low elevation population. The in silico populations 317 

showed patterns of selection that were equal to the qualitative differences in the in vivo 318 

populations (Fig. 2a; Table S5).  319 

Simulation of elevational ecotypes: growing in their home environment 320 

To validate the model’s ability to capture GxE interactions, we compared the performance of 321 

in vivo and in silico populations using four performance measures that are determined by both 322 

the plant’s trait values and its local environment. From here onwards, we will use the term 323 

‘home environment’ in relation to a plant population to refer to the environment in which 324 

selection took place. Growing in their respective home environments, the in vivo results show 325 

that plants from the high elevation populations flowered significantly later (Fig. 2e; Table S5; 326 

P<0.001), produced fewer flowering stalks (Fig. 2f; Table S5; P<0.001), a smaller rosette area 327 
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(Fig. 2g; Table S5; P<0.001), and lower seed production (Fig. 2h; Table S5; P<0.001) 328 

compared to plants from the low elevation populations. Again, the in silico results matched the 329 

qualitative patterns of the in vivo results (Fig. 2b,c,d,e; Table S5).  330 

 331 

Fig. 2. Comparison of trait variation and performance of in vivo and in silico populations of D. carthusianorum 332 

in their low and high elevation habitats (Low: Green, High: Red). Trait variation (y-axis: normalized trait value 333 

(0-1)) of germination (GM), stalk height (SH) and time to flowering (TF) of in vivo (a,b) and in silico (c,d) 334 

populations subjected to selection in the low and high elevation habitats. The other panels show the variation in 335 

flowering time (e, DoY), number of stalks (f), rosette area (g, m2) and fitness (h, g) of in vivo and in silico 336 

populations growing in their home environments. Significance is shown only for the measured data (* P<0.05; ** 337 

P<0.01; *** P<0.001).  338 
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Simulation of elevational ecotypes: local adaptation 339 

To test GxE interactions indicative of adaptation in the in silico plants, we grew 50:50 mixtures 340 

of low and high elevation genotypes under alternative environments. Plants growing in their 341 

home environment were able to outcompete the plants originating from the foreign population 342 

(Fig. 3). In the low elevation habitat, the plants originating from the low elevation habitat 343 

produced more seeds (0.197±0.007 g) than the plants originating from the high elevation 344 

habitat (0.026±0.045 g). In the high elevation habitat, the performance of the plants originating 345 

from the low elevation habitat saw a major decrease, resulting in them producing fewer seeds 346 

(0.008±0.0015 g) than the plants originating from the high elevation habitat (0.039±00026 g). 347 

These results fulfil both the local vs foreign and home vs away criteria forming the hallmarks 348 

of local adaptation (Kawecki & Ebert, 2004; Savolainen et al., 2013). 349 

 350 

Fig. 3. Seed production of a virtual transplant experiment in the low and high elevation habitats. We simulated 351 

plant populations consisting of a 50:50 mixture of plants originating from the in silico low (green) and high (red) 352 

elevation habitats competing in either the low and high elevation habitats. Error bars show the standard error of 353 
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the mean. 354 

 355 

Fig. 4. Trait selection on in silico populations of D. carthusianorum. Panel a shows the trait values of three plant 356 

traits (a; normalized trait value (0-1); germination (GM), stalk height (SH) and time to flowering (TF)) resulting 357 

from selection imposed by treatments were we varied individual environmental factors (Control, grey; changes 358 

in abiotic conditions associated with an increased Elevation, blue; increased Competition, green; or decreased 359 

Pollination, yellow). Panels b-e show the performance of the adapted plant populations in the control environment 360 
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to show the direct effect of the trait changes on plant performance. Panels f-i show the performance of the adapted 361 

plant populations in their respective home environments (i.e. the environment in which selection took place), 362 

which shows the combined effect of changes in environment and plant traits on plant performance.  363 

Disentangling the role of individual selection pressures: Elevation 364 

Increasing elevation from 1000m to 2000m decreased daily average temperature by ~5°C, 365 

which decreased the season length by 108 days (assuming a base temperature of zero) and 366 

decreased nitrogen mineralisation over the year from 329 g N m-2 to 182 g N m-2. Additionally, 367 

this increase in elevation increased the variation in minimum temperature (eq. S30), increasing 368 

the frequency and strength of freezing events that potentially lead to frost damage. These 369 

changes in the environment led to selection for plants that germinated later compared to the 370 

control treatment (Fig. 4a, GM), which allowed the plants to escape the increased risk of frost 371 

damage early in the season. These environmental changes also selected for shorter flowering 372 

stalks (Fig. 4a, SH), and earlier flowering time compared to the control treatment (Fig. 4a, TF). 373 

These changes in plant traits led to plants that, following adaptation to high elevation and 374 

grown in a control environment, flowered earlier compared to plants from the control treatment 375 

(Fig. 4b), and also produced fewer stalks (Fig. 4c), a smaller rosette (Fig. 4d) and lower fitness 376 

(Fig. 4e). However, when growing in their home environment, these plants still flowered later 377 

than the control plants in the control treatment because of the late start of the season at high 378 

elevation (Fig. 4f). The decrease in temperature associated with the increase in elevation led to 379 

a decrease in productivity through a decrease in photosynthetic rates, a shorter growing season 380 

and lower nitrogen availability. This lower productivity in combination with the trait changes 381 

led to the plants having smaller rosettes (Fig. 4g), fewer flowering stalks (Fig. 4h), and lower 382 

seed production (Fig. 4i).  383 

Disentangling the role of individual selection pressures: Interspecific competition 384 

In the competition treatment, the in silico D. carthusianorum plants competed for light and 385 
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nitrogen with an equal density of a tall grass species. This interspecific competition selected 386 

for earlier germination (Fig. 4a, GM), and a small decrease in the time to flowering (Fig. 4a, 387 

TF), but not for a change in stalk height compared to the control treatment (Fig. 4a, SH). 388 

Growing in the control environment, these trait changes resulted in a slightly earlier flowering 389 

time (Fig. 4b) and small decreases in the number of stalks (Fig. 4c), the rosette area (Fig. 4d), 390 

and fitness (Fig. 4e). In their high competition home environment, the plants flowered slightly 391 

earlier (Fig. 4f), and increased competition led to a major reduction in productivity, resulting 392 

in major decreases in the number of stalks (Fig. 4g), rosette area (Fig. 4h), and fitness (Fig. 4i) 393 

compared to the plants growing in the control treatment.  394 

Disentangling the role of individual selection pressures: Pollination 395 

In the pollination treatment, the decrease in pollinator abundance led to a shift from seed 396 

production being mostly carbon limited, to seed production being more pollen limited and an 397 

increase in unfilled seeds (Fig. S10). This shift in limitation leads to a decrease in fitness (Fig. 398 

4i) without a decrease in productivity, as the number of stalks (Fig. 4g) and rosette area (Fig. 399 

4h) did not change relative to the control treatment. The decrease in pollinator density selected 400 

for slightly earlier germination (Fig. 4a, GM), but there were no changes in selection for stalk 401 

height and time to flowering (Fig. 4a, SH, TF). This resulted in plants that flowered slightly 402 

earlier compared to plants from the control treatment (Fig. 4b), but achieved an equal number 403 

of stalks (Fig. 4c), rosette area (Fig. 4d) and fitness (Fig. 4e) in the control environment.  404 

Discussion 405 

Simulation of elevational ecotypes 406 

Adaptation to local conditions is a key mechanism in the evolution and diversification of plant 407 

species (Hargreaves & Eckert, 2019; Hargreaves et al., 2020). Our E-FSP model was able to 408 

reproduce the patterns of local adaptation along an elevational gradient found in D. 409 
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carthusianorum. The model reproduced the qualitative differences between two elevational 410 

ecotypes in two phenological (germination and time to flowering) and one morphological trait 411 

(stalk height), as well as qualitative differences in four variables related to plant performance 412 

that emerge from GxE interactions (flowering time, number of stalks, rosette area and seed 413 

production). Moreover, the model satisfied the home vs away and local vs foreign criteria that 414 

indicate populations are locally adapted to their home environments, in line with empirical 415 

evidence (Pålsson et al., in prep.). It is remarkable that the model was able to recreate these 416 

patterns of local adaptation in a complex natural system where selection is driven by multiple 417 

abiotic and biotic agents.  418 

So far, FSP models have mostly focussed on agricultural (Lopez et al., 2010; Zhu et 419 

al., 2015; Evers & Bastiaans, 2016; Coussement et al., 2020), horticultural (Sarlikioti et al., 420 

2011; Chen et al., 2014; Dieleman et al., 2019; Zhang et al., 2020), and model systems 421 

(Bongers et al., 2018). FSP models that simulate natural systems with an increased ecological 422 

complexity are seeing recent development, yet these models are still being validated on data 423 

collected under controlled experimental conditions (de Vries et al., 2018; Faverjon et al., 2019) 424 

and still lack the ecological variability and complexity that shape plant communities (Bongers, 425 

2020; de Vries, 2021). Here, we validated our model on data from a transplant experiment 426 

where plants grew under natural conditions, which, to our knowledge, is the first time an E-427 

FSP model has been validated to empirical data collected under natural conditions. The model’s 428 

ability to recreate the patterns of selection exerted by such a complex environment highlights 429 

the potential of this approach for learning more about selection and to study the complex eco-430 

evolutionary dynamics that shape natural plant communities.  431 

Disentangling the role of individual selection pressures: the abiotic environment 432 

Our results suggest that in the case of D. carthusianorum, the abiotic environment is the most 433 

important driver of elevational adaptation, imposing strong selection pressure on both the 434 
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phenological (germination and flowering times) and morphological (stalk height) traits. These 435 

selection pressures resulted in high elevation plants that, growing in a shared environment 436 

following adaptation, flowered earlier, were shorter and accumulated less biomass than plants 437 

from the low elevation population. These results match commonly reported trends in studies 438 

of plant adaptation along elevational gradients (Halbritter et al., 2018). Evolution towards 439 

smaller size is generally assumed to be advantageous in alpine environments due to warmer 440 

microclimates close to the ground, increased protection from wind, or a result of selection for 441 

increased stress resistance (Körner, 2003). Interestingly, our model did not implement 442 

microclimate, wind or stress resistance, yet reproduced this pattern of adaptation through 443 

divergence in phenological traits. High elevation genotypes germinate late to avoid frost 444 

damage and flower fast to complete the reproductive cycle within the summer season, resulting 445 

in a plant phenotype that has a shorter vegetative stage. This shorter period of vegetative growth 446 

leads to lower potential for biomass accumulation, a decrease in the number of stalks and a 447 

decrease in reproductive fitness. Thus, the shift in phenology may be responsible for lower 448 

stalk height, because of the decrease in potential biomass accumulation. Overall, our results 449 

suggest that divergence in phenological traits potentially compound direct selection pressure 450 

for shorter and smaller phenotypes at high elevations.  451 

Disentangling the role of individual selection pressures: the biotic environment 452 

In our model, both interspecific competition and decreased pollination strongly decreased plant 453 

fitness, but contributed comparatively little to local adaptation. This is in concordance with the 454 

findings of a recent meta-analysis that showed biotic interactions generally do not make 455 

patterns of local adaption stronger or more common (Hargreaves et al., 2020), despite having 456 

a strong and well documented effect on plant performance (e.g.Weiner, 1990).  457 

In our model, interspecific competition selected for earlier germination and earlier 458 

flowering, increasing the resource capture early in the season when interspecific competition 459 
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was lower, but also increasing the risk of frost damage early in the season. This highlights how 460 

trade-offs between different components of plant performance (e.g. biomass accumulation and 461 

survival) can drive selection in opposite directions, potentially resulting in stabilising selection. 462 

Surprisingly, interspecific competition did not select for an increase in stalk height compared 463 

to the control treatment (i.e. Control vs Competition, see Fig. 4a). This contradicts expectations, 464 

as increased height is a well-known response of plants that grow in a competitive environment 465 

(Ballaré et al., 1990; Falster & Westoby, 2003). Traits such as leaf angle, leaf shape and 466 

especially stem elongation are known to be key determinants of the outcome of competition 467 

for light as they determine leaf light interception by mediating the position of leaves relative to 468 

the surrounding vegetation (Franklin, 2008; Ballaré & Pierik, 2017). However, plants growing 469 

in competition can be equally tall as plants growing in the absence of competition, yet with a 470 

much higher height to biomass ratio caused by decreased biomass accumulation under 471 

competition, making the same investment in height growth relatively more costly (de Vries et 472 

al., 2018). When considering the investment in height relative to plant biomass, both the in 473 

vivo and in silico populations of D. carthusianorum growing with interspecific competition 474 

show the increased investment in height growth that is expected in a competitive environment.  475 

In our model, reduced pollinator abundance decreases plant fitness, but does not affect 476 

selection. The in silico plants can increase their competitiveness for pollinators in one of three 477 

ways; produce more flowers, produce taller stalks, or have a longer generative stage of 478 

development and thus have a longer period in which to attract pollinators. While each of these 479 

traits will increase male fitness and potential female fitness, they also severely restrict the 480 

plant’s ability to accumulate biomass, compete for light and nutrients, and to fill seeds. The 481 

model did not include flower traits, which are known to be strong drivers of pollinators 482 

visitation (Fornoff et al., 2017; Walther, 2020), and are known to differ along elevational 483 

gradients (Fabbro & Körner, 2004). Flower traits may be the main mechanism for plants to 484 
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increase pollinator attraction as they potentially come at lower (opportunity) costs than the 485 

mechanisms included in our model. 486 

Future model development 487 

Here, we have shown the potential for E-FSP modelling to simulate the emergent behaviour of 488 

a complex natural system that includes abiotic and biotic agents, and integrates physiological, 489 

ecological and evolutionary mechanisms. E-FSP modelling is a promising and versatile tool 490 

that is capable of simulating more complex and dynamic systems than is common in FSP 491 

modelling, and integrates more physiological and spatial detail than commonly used eco-492 

evolutionary modelling approaches. We would like to highlight two avenues of future model 493 

development for E-FSP models: simulation of multi-species communities with different life-494 

history strategies, and simulation of complex genetic and demographic processes that shape 495 

local adaptation.  496 

FSP modelling has proven to be capable of simulating the growth and development of 497 

a wide range of plant species (Dunbabin et al., 2013; Pagès et al., 2014; Louarn & Song, 2020), 498 

and FSP modelling is being used to simulate multi-species systems in an agricultural setting 499 

(Evers et al., 2019). Conversely, FSP models that focus on natural systems are often used to 500 

simulate single plant species rather than diverse mixed-species communities, which have 501 

received only recent attention (Faverjon et al., 2019; Bongers, 2020; de Vries, 2021). Here, we 502 

have focussed on a single plant species, but have shown the model’s ability to simulate the 503 

diversifying forces of selection. A key point of focus for the future development of E-FSP 504 

models is the simulation of different life-history traits and species co-existence. By simulating 505 

a community consisting of multiple species, the model can theoretically select for different life-506 

history traits that fill different niches. The main challenge for the implementation of different 507 

life-history traits lies in the complexity of carbohydrate and nitrogen cycles in perennial plants, 508 

which leads to difficulties in linking theory to observations and formulating a comprehensive 509 
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mechanistic model (Monson et al., 2006). 510 

Future development of E-FSP modelling can see the incorporation of more detail in 511 

genetic and demographic processes that drive population and community dynamics (Lowe et 512 

al., 2017). In particular, gene flow between populations is known to play a complex eco-513 

evolutionary role as it can either promote or constrain adaptation, dependent on the migration-514 

selection balance (Garant et al., 2007). Gene flow is traditionally seen as a force that 515 

homogenises populations by working against the diversifying forces of selection, which drive 516 

local adaptation (Haldane, 1930; García‐Ramos & Kirkpatrick, 1997). However, recent studies 517 

show that local adaptations can be maintained despite high gene flow provided that selection 518 

coefficients can sustain ecotypic divergence (Gonzalo‐Turpin & Hazard, 2009; Fitzpatrick et 519 

al., 2015; Tigano & Friesen, 2016; Luqman et al., 2021). On the other hand, low amounts of 520 

gene flow between locally adapted populations can be beneficial as they allow adaptive alleles 521 

to spread across populations and lead to genetic rescue in the face of rapid environmental 522 

change (Slatkin, 1987; Rieseberg & Burke, 2001; Tallmon et al., 2004). E-FSP models can 523 

contribute to our understanding of the role gene flow plays in mediating the responses of plant 524 

communities to environmental change, particularly because the strength of selection, and thus 525 

the migration-selection balance, emerges naturally from interactions between mechanisms 526 

implemented in the FSP model. 527 

The model presented here represents a major advance in the development of mechanistic 528 

models that incorporate physiological, ecological and evolutionary mechanisms to simulate the 529 

complexity of plant phenotypic variation. We have shown the promise of this methodology to 530 

explore the ecological complexity that drives local adaptation in natural plant communities, 531 

thereby complementing experimental and statistical modelling approaches. The approach 532 

offers a tool to better understand what mechanisms and selective agents drive local adaptation, 533 

and how local adaptation mediates the response of plant communities to rapid environmental 534 
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change. 535 
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