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ABSTRACT
Electrocardiographic imaging (ECGI) presents a clinical opportunity to noninva-
sively understand the sources of arrhythmias for individual patients. To help increase
the effectiveness of ECGI, we provide new ways to visualize associated measurement
and modeling errors. In this paper, we study source localization uncertainty in two
steps: First, we perform Monte Carlo simulations of a simple inverse ECGI source
localization model with error sampling to understand the variations in ECGI so-
lutions. Second, we present multiple visualization techniques, including confidence
maps, level-sets, and topology-based visualizations, to better understand uncertainty
in source localization. Our approach offers a new way to study uncertainty in the
ECGI pipeline.

KEYWORDS
Electrocardiographic imaging (ECGI); uncertainty visualization; Monte Carlo
simulation.

1. Introduction

To rapidly diagnose heart disease, clinicians rely on the electrocardiogram (ECG),
which records voltages on the torso surface. The voltages vary in response to changes
in the heart’s electrical activity. Although the ECG quickly provides clinicians with
information on abnormal rhythms or arrhythmias, it cannot reveal localized high-
resolution spatial information about the heart’s electrical impulses.

For example, in arrhythmias involving added abnormal beats, such as premature
ventricular contraction (PVC), a region of cardiac tissue initiates pathological heart-
beats, thereby increasing a patient’s risk of sudden death (Messineo 1989). The lack
of high-resolution spatial information from the ECG in locating this region is prob-
lematic, because one method of therapy involves a clinician locating and destroying
the region through an invasive interventional procedure called catheter ablation. A
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catheter ablation procedure may last several hours with a frequently high rate of
recurrence of the arrhythmia (Arya et al. 2010; O’Donnell et al. 2003).

Electrocardiographic imaging (ECGI) is one promising technique for increasing the
speed and accuracy of ablation therapy. ECGI combines a patient’s computed tomog-
raphy (CT) and magnetic resonance imaging (MRI) images along with the ECG to cre-
ate a functional imaging modality (Johnson 1997; MacLeod et al. 2009; van der Graaf
et al. 2014; Ghosh et al. 2008b). Challenges in ECGI may be categorized as technical
(e.g., regularization, filtering techniques, and postprocessing methods), pathological
(i.e., ability to extract features applicable to a specific pathology or arrhythmia), and
clinical (i.e., benefits with respect to daily clinical practice) (Cluitmans et al. 2018).
Our work addresses both the technical and clinical aspects of ECGI, with particular
emphasis placed on using visualization techniques to better understand ECGI simula-
tion uncertainty and aid in clinical decision-making.

Whereas the ECG may be thought of as a forward problem that relates the heart’s
electrical activity to the recorded torso surface voltages, potential-based ECGI is the
corresponding inverse problem that relates ECG measurements to heart surface volt-
ages (Johnson 1997; Wang et al. 2011a; Rudy 2013). The mapping between the heart
surface voltages and torso surface voltages may be written mathematically as

Ah + e = y, (1)

where A is a transfer matrix relating the heart surface voltages h to the torso surface
ECG recordings y. The noise term e is modeled as a Gaussian distributed random
variable to characterize uncertainties arising from multiple factors, e.g., model inaccu-
racies and sensor errors. The addition of such random error provides a more realistic
representation of ECG measurements y, and hence, a more realistic representation of
inverse solutions. In Equation (1), we added Gaussian noise e as a percent p of the
ground-truth ECG torso surface observations, y∗, as

p = 100
‖e‖2
‖y∗‖2

. (2)

The forward problem estimates the torso surface potential y given h, and the inverse
problem estimates h given y.

In recent years, researchers and clinicians have used ECGI to study a variety of
arrhythmias, including reentrant pathways (Ghosh et al. 2008a) and ectopic heart
beats (Wang et al. 2011c). ECGI may improve ablation therapy, but researchers do
not have a good understanding of how small errors arising from ECG measurements,
geometric approximations from imaging, and modeling assumptions for solving the
underlying equations affect source localization in ECGI. Recent work by Tate et al.
(2021) on quantifying geometric uncertainty resulting from variations in segmentation
has shown some correlation between pericardial potential reconstructions and segmen-
tation variability except in the posterior region of the heart.

Understanding uncertainties relevant to computational pipelines is a top research
challenge in medical visualization (Ristovski et al. 2014; Karayiannis et al. 2004;
Athawale et al. 2019; Fikal, Najib et al. 2019), as well as the visualization research field
in general (Johnson and Sanderson 2003; Brodlie et al. 2012). Recently, visualizations
were proposed by Burton et al. (2013) to study uncertainty associated with cardiac
forward and inverse problems for 3D volumetric data. In our work, we explore new
techniques to visually analyze and understand the uncertainty in epicardial surface
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data from ECGI simulations.
Building on preliminary work for source localization by France and Johnson (2016),

we apply iterative Krylov methods with Monte Carlo error propagation to study the
impact of ECG measurement errors on inverse solutions. We then propose a framework
for deriving source localization confidence interval (CI) regions, and present applica-
tions of level-set and topology-based visualizations to visually analyze uncertainty in
source localization. We propose that our CI visualizations could provide a sequen-
tial search strategy for clinicians in locating pathological heart beats during ablation
therapy. Our level-set and topology-based visualizations can be useful in performing
qualitative assessment of inverse solutions and extracting likely source positions.

We organize our paper as follows: In Section 2, we outline the mathematical frame-
work for formulating and solving the inverse problem of electrocardiography. Section 3
discusses our Monte Carlo propagation strategy for studying the uncertainty of ECGI
solutions. Section 4 describes our algorithms for developing probability maps and CI
regions, as well as applications of level-set and topology-based techniques, for studying
uncertainty in source localization. In Section 5, we show our results and discuss their
implications. Finally, in Section 6, we present a summary and propose future work.

2. Inverse Problem of Electrocardiography

Here we describe the mathematical model, challenges in solving the inverse problem,
our regularization algorithms, and the simulation setup.

2.1. Mathematical Model

The potential-based forward and inverse problems of electrocardiography are typically
modeled using Laplace’s equation (Johnson 1997, 2015; Wang et al. 2011a,b). In our
mathematical model, the potential u within a torso is modeled as a function of position
x as

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω (3)

u(x) = h, x ∈ ΓH (4)

~n · σ(x)∇u(x) = 0, x ∈ ΓT (5)

where Ω refers to the torso volume, ΓH denotes the epicardial surface, and ΓT indicates
the torso surface. In this formulation, σ(x) is the electrical conductivity tensor, and ~n
refers to the unit normal pointing outward from the torso surface, with Equation (5)
stating no electric flux leaves the body into the air (Johnson 1997; Wang et al. 2011a,
2011b). Since our main contribution is visualizing uncertainty, we have implemented
a simplified inverse model. We note that the visualization techniques we illustrate can
be applied to any ECGI pipeline.

Several numerical methods exist for solving Equations (3-5). In this study, we used
the finite element method to solve Equations (3-5) and rearranged the resulting stiff-
ness matrix to form the transfer matrix A as described previously in Wang et al.
(2011a,b) and Johnson (1997, 2015) to generate Equation (1).
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2.2. Ill-Posedness and Ill-Conditioning

In our study, Equation (1) suffers from the ill-posedness common to inverse problems.
Equation (1) is ill-posed because small changes in the observed ECG torso surface
recordings lead to correspondingly large changes in the reconstructed heart surface
potentials. In the discrete approximation, matrix A is highly ill-conditioned, and the
singular values of A decay rapidly toward machine precision. Consequently, performing
inversions using conventional routines greatly amplifies the impact of any numerical or
measurement errors (Wang et al. 2011a, 2011b). To overcome the challenges associated
with the ill-posedness and ill-conditioning, researchers employ regularization (Hansen
2010; Borràs and Chamorro-Servent 2021). In this paper, to increase the speed and
scalability for Monte Carlo sampling, we used iterative methods to regularize solutions
in Equation (1), as we describe next.

2.3. Regularization

In this study, we applied iterative regularization using the conjugate gradient least
squares (CGLS) and preconditioned CGLS (PCGLS) methods. Milanič et al. (2014)
have shown that the CGLS method performs as well as the standard Tikhonov methods
in solving the ECG inverse problem with single dipole sources, but with the advantage
of being computationally more efficient.

2.3.1. Conjugate-Gradient Least Squares (CGLS)

The conjugate gradient least squares (CGLS) algorithm seeks the regularized solution
after k iterations, hk, as demonstrated by Hestenes and Stiefel (1952) and Hansen
(2010):

hk = argminh = ‖Ah− y‖2 s.t. h ∈ Kk (6)

where Kk represents the kth Krylov subspace, which is formally defined as

Kk ≡ span{ATy,
(
ATA

)
ATy, . . . ,

(
ATA

)k−1
ATy}. (7)

Starting from the zero vector at iteration zero, h0, this algorithm applies one multi-
plication with A and AT per iteration. The solution is formed as a linear combination
of the Krylov vectors, and it becomes increasingly enriched in the direction of the
principal eigenvector of ATA (Hansen 2010).

2.3.2. Preconditioned Conjugate-Gradient Least Squares (PCGLS)

We also solved Equation (1) with the preconditioned CGLS (PCGLS) algorithm, using
the Laplacian operator L over the heart surface as the right preconditioner. The matrix
L was formed as described in Huiskamp and van Oosterom (1988). Because L has a
nontrivial null-space W , the PCGLS method requires formation of the A-weighted
pseudo-inverse of L (Hansen 2010),

L# = (I −W (AW )†A)L†, (8)

4

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.09.02.506414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.02.506414
http://creativecommons.org/licenses/by-nc/4.0/


where I is the identity matrix. The component of hk that exists in the null space of L
is given as

hN = W (AW )† . (9)

Then, defining ȳ as

ȳ = y −AhN , (10)

and with Ā = AL#, we solved Āz = ȳ for zk using the traditional CGLS routine. The
PCGLS solution can then be obtained as

hk = L#zk + hN . (11)

As in the CGLS routine, the PCGLS algorithm terminates at some iteration to prevent
under-regularization (Hansen 2010).

2.3.3. Choosing the Iteration Parameter k

In choosing the solution at which to stop iterations, we used both the norm of the
residual and the norm of the solution. In using the norm of the residual, we used the
Morosov discrepancy principle, in which we stopped the iterations as soon as the norm
of the residual was approximately equal to some constant γ times the norm of the noise
‖e‖2, or γ‖e‖2 (Hansen 2010; Kaipio and Somersalo 2004). Following the example of
the study by Calvetti et al. (2015), we used γ = 1.2.

However, as we discuss in our results in Section 5, the discrepancy principle may
severely under-regularize the solution when the modeling error is significant relative to
the measurement error. To address this under-regularization, we used physiologically
based mathematical constraints for the norm of the solution in limiting the termination
iteration k for the CGLS and PCGLS algorithms. Specifically, previous studies on
cardiac electrograms recorded and derived relationships on the scalar gain G, between
the `2 norm of the torso and heart voltages at a moment in time, or ‖h‖2 ≈ G‖y‖2.

These studies had an equal number of torso and heart nodes (i.e., m = n) (Daven-
port et al. 1995; Davenport 1995). To account for differences in the number of heart and
torso nodes in this study, we used a slightly modified formula of ‖h‖2 ≈ G‖y‖2

√
n
m and

a gain value G of 7.6, a value slightly less than the maximum experimentally derived
value from the `2 norm in the scalar gain studies (Davenport et al. 1995; Davenport
1995). Putting restrictions on the norm of the solution prevents under-regularization,
particularly when the modeling error exceeds external noise error. Furthermore, slight
over-regularization in inverse reconstructions seems to be preferred for clinical appli-
cations as opposed to any form of under-regularization (Milanič et al. 2014).

2.4. Simulation Setup

Figure 1 illustrates the heart in torso geometry (left) and the 250-uniform-ECG-
electrode-measurement configuration (right) used in this study. Other studies use a
similar electrode configuration and number of electrodes (Ghosh et al. 2008a; Rudy
2013).

For this study, we added noise from 0.01% to 3%, values similar to those found in
other studies (Wang et al. 2011a,b, 2013; Burnes et al. 2000). Additionally, we used
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Figure 1. Inversions utilized the heart torso geometry (left) with a 250-uniform-lead configuration (right).

Table 1. Forward and Inverse Model Resolution

Number of Attributes Forward Model Inverse Model

elements 128,898 75,605
heart nodes 3,573 2,206
torso nodes 7,328 4,754

a different transfer matrix A in forming the ground-truth observations y∗ compared
with the transfer matrix used in inversions to avoid so-called “inverse crime”, where
the solution is biased by using the same mesh for forward and inverse simulations
(Kaipio and Somersalo 2007). For the forward model simulation, we utilized a higher
resolution finite element model as illustrated in Table 1. We use a single stimulation
point for our analysis throughout the paper. Additionally, for our inverse simulations,
we added 2 mm Gaussian geometric error to the torso surface recording sites, as in
other studies (Burnes et al. 2000).

3. Monte Carlo Approach to Studying Solution Uncertainty

Having obtained an initial solution hk using the CGLS or PCGLS routine, we forward-
propagated the solution to form an assumed noise-free right-hand side ỹ with

ỹ = Ahk, (12)

as described in Aster et al. (2013). To perform Monte Carlo error analysis, we sampled a
noisy solution ys ∼ N (ỹ, σ2I), where σ represents the standard deviation of the noise,
a value that was fixed to produce errors at the same percentage p as in the original
Equation (1). We then used the CGLS and PCGLS routines to obtain individual
inversion samples, just as we obtained hk in originally solving Equation (1) (Aster
et al. 2013; France and Johnson 2016). We obtained an ensemble of 200 Monte Carlo
samples per simulation.
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4. Visualizing Source Localization Uncertainty

We analyzed the uncertainty in source localization across 200 Monte Carlo samples per
simulation via probability maps, confidence interval regions, level-set visualizations,
and topology-based visualizations.

4.1. Probability Maps

For probabilistic maps, similar to the early study by France and Johnson (2016), we
located the top 3% of the lowest voltage values (with the lowest voltage denoting the
source (Wang and Rudy 2006)), and averaged these locations over the 200 samples
to form a probabilistic representation for source localization. In France and Johnson
(2016), probabilistic maps were visualized with direct mapping of probability to opac-
ity. In our probabilistic map visualizations, we used color maps to segment the regions
of high probability (> 0.75), moderate probability (between 0.5 and 0.75/ between
0.25 and 0.5), and low probability (< 0.25). We propose that the segmented visual-
izations can potentially benefit clinicians in performing sequential searches for source
localization.

4.2. Confidence Intervals

Although probability maps represent the probability mass function for source localiza-
tion, the confidence interval regions may be considered as the corresponding cumulative
density function for source localization. To generate these visualizations for confidence
intervals, we performed integration of the probability maps from the position of the
estimated source location. First, we determined the estimated source location, along
with the probability maps. For each node, we assigned the confidence interval value at
a particular node i, which is the value of the sum of the probabilities that reside within
the radius from the estimated source location to that node i. After calculating the con-
fidence interval values at each node, we divided the 25%, 50%, and 75% confidence
interval regions using contour lines via the marching triangles algorithm (Hilton and
Illingworth 1997). Again, the bands visualized with confidence interval visualizations
can potentially help clinicians perform sequential searches for source localization.

4.3. Level-Set Visualizations

We perform level-set visualizations to identify the regions that could contain the source
of arrhythmia. Level-sets (Lorensen and Cline 1987) are a fundamental surface-based
visualization technique for gaining insight from complex scientific data. Mathemati-
cally, for a function f : Rd → R defined on a d-dimensional manifold, its level-set S
for isovalue c is defined as S = {x ∈ Rd | f(x) = c}. Figure 2b illustrates level-sets of
a synthetic Ackley function (Ackley 1987) shown in Figure 2a. The level-sets in Fig-
ure 2b for different isovalues c are displayed in different colors. In the ECGI context,
function f is a mapping from nodes of a mesh representing the heart surface to inverse
solutions denoting epicardial potentials. We investigate level-sets with relatively low
isovalues to understand potential positions of arrhythmia.

We guide our selection of an isovalue for level-set visualizations using parallel coor-
dinate (Inselberg 1985) and histogram plots. Parallel coordinate plots are a well-known
visualization technique to study correlation among dimensions of multivariate data.
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Figure 2. Illustration of level-sets in image (b) and Morse complexes in image (c) for the synthetic Ackley
function f depicted in image (a). Level-sets are visualized for different isovalues c. The Morse complex visual-

ization denotes nine cells (a single cell highlighted in green) corresponding to nine critical points (local maxima

indicated by red dots) of the Ackley function. Gradients within a single cell flow to its corresponding critical
point.

For our analysis, in the parallel coordinate plot, we treat each node of a mesh rep-
resenting the heart surface as a single dimension of a parallel coordinate plot. We
then plot the potentials across all nodes and 200 samples. Likewise, in the histogram
plot, cardiac potentials across all nodes and 200 samples are grouped into bins. We
then use these plots to gain insight into the relatively low potential values that are
observed across all samples. We pick one of the low potential values as the isovalue for
level-set rendering. Level-sets with relatively low isovalues help us extract regions that
correspond to a potential source (Wang and Rudy 2006). Finally, we visualize isocon-
tours for the selected isovalue using spaghetti plots (Potter et al. 2009) and isocontour
variation plots (Whitaker et al. 2013).

4.4. Topology-Based Visualizations

Topological data analysis is a powerful tool for understanding complex simulation
datasets (Miller et al. 2006; Bremer et al. 2010). We propose visualizations of topolog-
ical abstractions, specifically, critical points and Morse complexes (Edelsbrunner et al.
2001), of CGLS and PCGLS inverse solutions to gain insight into the likely source
positions and their variations. Let function f : Rd → R be defined on a d-dimensional
manifold, and let ∇f denote its gradient field. A point x on a manifold is considered
critical if ∇f = 0. Given a Morse function f defined on a d-dimensional manifold, i.e,
a function with no flat regions, the Morse complex of f decomposes the manifold into
regions (referred to as cells) with uniform gradient behavior. Figure 2c illustrates the
Morse complex segmentation of the Ackley function shown in Figure 2a. In Figure 2c,
nine Morse complex cells correspond to nine critical points of (local maxima) of the
Ackley function. In our case, the Morse complexes segment the heart surface into cells,
where gradients within a single cell terminate in a single local minimum associated
with a cell (also known as an ascending manifold). Thus, local minima of ECGI solu-
tions provide insight into the positions that have the smallest potential within their
local neighborhood (represented by the Morse complex cell), thus indicating potential
source positions.
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5. Results and Discussions

We now present results for each visualization technique described in Section 4 to
understand the source localization uncertainty.

5.1. Probability and Confidence Maps

We first present the uncertainty visualization results using probability maps and our
proposed confidence maps in Figure 3. Figure 3a visualizes the ground-truth heart
surface voltages (in mV). In all plots, the white dot indicates the position of the
ground-truth source. Figures 3b-c visualize the CGLS and PCGLS inverse solutions
at 1.5% external noise for a single Monte Carlo sample.

Figure 3. Uncertainty analysis of Monte Carlo simulations with probabilistic and confidence maps: (a) The
ground-truth voltages, (b,c) the CGLS and PCGLS inversions for a single Monte Carlo sample at 1.5% external

noise, (d,e) probabilistic maps, (f,g) confidence maps. The white dots denote the true source positions, whereas

the yellow dots in (b,c) denote the estimated source positions. The results (a-c) are colormapped with the
potential values, the results (d,e) are colormapped with the probabilities, and the results (f,g) are colormapped

with the confidence values.

Figures 3b-c illustrate the challenges in obtaining inverse solutions in ECGI, i.e., the
reconstructed voltages in Figures 3b-c differ significantly in both range and magnitude
in comparison to the ground-truth, Figure 3a. This difference is evidence of the sig-
nificant ill-conditioned nature of discrete ECGI problems, as discussed in Section 2.2.
Inversions in Figures 3b-c were performed with the lower resolution “Inverse Model”
mesh in Table 1, and with additive 2 mm Gaussian geometric error on the heart sur-
face, as described in Section 2. The yellow dot in Figures 3b-c indicates the estimated
source location for each individual visualization. This yellow dot corresponds to the
global minima of the reconstructed epicardial potentials.

Figures 3d-e and 3f-g illustrate the probability maps (France and Johnson 2016) and
confidence maps, respectively. For the probability maps visualized in Figures 3d-e, the
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Figure 4. Probability maps for source localization illustrate uncertainty as a function of noise in ECG ob-
servations for the CGLS inversion (top row) and PCGLS inversion using a Laplacian preconditioner (bottom

row). White dots mark the ground-truth source location.

darker green areas indicate the regions of higher probability for source localization. In
the confidence maps visualized in 3f-g, the contour lines separate the 25% (orange),
50% (yellow), and 75% (light green) CI regions for source localization. Specifically, in
the orange regions, our model states that the probability of finding the source is less
than or equal to 25%. Likewise, the probability of finding the source in the combined
orange and yellow regions is less than or equal to 50%. Note the lack of symmetry
around the sites of stimulation, which is due to the coarseness of the grid and its
unstructured nature.

The green region representing the high source localization probability in probabilis-
tic maps (Figures 3d-e) still covers a relatively large surface area. The CI visualizations
could provide clinicians with an improved sequential search strategy for planning abla-
tion therapy. For example, during an ablation procedure, a clinician might sequentially
search the 25%, 50%, and 75% CI regions to locate the source of cardiac tissue re-
sponsible for spontaneous pathological heart beats or reentrant wave activity.

The vertex positions of confidence/probability map contours can be utilized to quan-
tify the positional uncertainty of source localization. For example, in Figure 3g, the
maximum Euclidean distance between contour vertices for the 25% confidence interval
is 8.56 mm. The error in source localization, thus, may not exceed 8.56 mm, assuming
that the 25% confidence region is locally planar and the source resides in the 25% con-
fidence region. More advanced techniques of error quantification may be developed in
the future that take into account contour vertex positions and heart surface curvature.

Figure 4 illustrates probability maps for the CGLS and PCGLS routines at various
external noise levels, as defined in Equation (2). In both algorithms, the probability
tended to aggregate around the ground-truth source location until approximately 3%
external noise. Figure 5 illustrates the corresponding CI regions for the CGLS and
PCGLS routines. For the CGLS and PCGLS routines, the ground-truth source location
fell within the 50% CI region (yellow) and 25% CI region (orange), respectively, for
all noise levels.

Figure 6 illustrates the convergence of the CGLS routine at 0.5% and 2.5% exter-
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Figure 5. Confidence interval (CI) regions for source localization illustrate uncertainty as a function of

external noise in ECG observations for the CGLS inversion (top row) and PCGLS inversion using a Laplacian

preconditioner (bottom row). Dots mark the ground-truth source location. Contour lines separate the 25%,
50%, and 75% CI regions.

Figure 6. At 0.5% external noise (left), modeling error affects convergence, whereas at 2.5% external noise

(right), convergence appears similar both with and without modeling error. For both plots, the dashed line
indicates the Morosov discrepancy principle termination criterion.
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nal noise levels, both with and without modeling error using the CGLS algorithm.
Although not shown, PCGLS gives similar results. At 0.5% external noise (Figure 6,
left), the norm of the residual approaches the norm of the noise after 20 iterations to
satisfy the Morosov discrepancy principle. However, in the presence of modeling error
in the transfer matrix A (from a coarser mesh resolution and torso surface electrode
position errors, as described in Section 2), the CGLS residual does not converge to
the norm of the external noise, even after several hundred iterations (not shown). At
2.5% noise, however (Figure 6, right), the convergence patterns of CGLS on transfer
matrices with and without modeling error follow a nearly identical pattern. Figure
6 (left) illustrates the need to also use the norm of the solution as a constraint to
prevent under-regularization, especially when the ratio of modeling error to external
error is large. Other studies also report difficulties in regularization when modeling
error exceeds measurement error (Johnston and Gulrajani 2002).

5.2. Level-Set Visualizations

Next, we study the source localization uncertainty by extracting level-sets of epicardial
potentials, in which we guide the isovalue selection with parallel coordinate plots and
histograms. Figure 7 shows a parallel coordinates plot (left) and a histogram (right)
plot of the 200 samples denoting the epicardial voltage recordings at each of the 337
heart nodes represented at the 0.5% noise level. A parallel coordinate plot has the
advantage of not losing spatial context as opposed to a histogram. These plots were
useful in the visualization and selection of the low-magnitude heart surface voltages
corresponding to the sources, as described in Section 4. We used these plots in choosing
the isovalue -6.5mV.

Figure 7. Parallel coordinate (left) and histogram (right) plots of heart surface voltage recordings from 200

Monte Carlo samples at the 0.5% noise level. The dotted lines indicate our isovalue selection (-6.5mV) for

level-set rendering.
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Figure 8. Isocontour maps for sample isovalue = −6.5 mV showing the ground-truth isocontours (purple)
overlaid with isocontours (black) from the 200 samples. The top row shows isocontours without any smoothing

(i.e., CGLS) whereas the bottom row shows isocontours with Laplacian smoothing applied (i.e., PCGLS). The

columns indicate different noise levels. Dots mark the ground-truth source location.

Figure 8 shows a spaghetti plot of level-set renderings for the isovalue -6.5 mV
across different noise levels. As can be observed, the ground-truth source location fell
within the confines of level-sets for all noise levels. Thus, the region represented by the
outermost level-set of a spaghetti plot denotes the likely existence of a source location.
In Figure 8, the isocontour shape for the PCGLS solutions (bottom row) appears more
closely aligned with the ground-truth isocontour (purple) shape when compared to the
shape of the CGLS isocontours (top row).

We visualize an isocontour variation plot to reduce the clutter caused by spaghetti
plots. Figure 9 visualizes the variations corresponding to the spaghetti plots shown in
Figure 8. Figure 9 may be easier to analyze and provides a less cluttered visualization
because the 200 samples are summarized by the minimum (white), maximum (red),
and average (yellow) isocontours overlaid on the ground-truth (purple). The mini-
mum isocontour refers to the isocontour generated by using the minimum value from
the reconstructed voltage potentials across all simulations. Likewise, the maximum
isocontour refers to the isocontour generated by using the maximum value from the
reconstructed voltage potentials, and the average isocontour refers to the isocontour
generated by using the average value from the reconstructed voltage potentials. These
isocontours are then overlaid on the ground-truth. This approach significantly reduces
clutter while clearly showing the variation, and therefore, uncertainty, contained in
the reconstructed solutions.
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Figure 9. Isocontour maps for sample isovalue = −6.5 mV showing the ground-truth isocontours (purple)

overlaid with the minimum (white), maximum (red), and average (yellow) isocontours from the 200 samples
at each noise level. The top row shows isocontours without any smoothing (i.e., CGLS) whereas the bottom

row shows isocontours with Laplacian smoothing applied (i.e., PCGLS). The columns indicate different noise

levels.

5.3. Topology-Based Visualizations

Lastly, we analyze the source uncertainty via visualization of critical points and
Morse complexes derived from ECGI solutions. Figure 10a visualizes the critical points
(spheres) and Morse complex (white contours) for the ground-truth. Similar visualiza-
tions are produced for the CGLS (Figure 10b) and PCGLS (Figure 10c) solutions for
the 1% noise level and a single sample. The visualizations are performed in ParaView
(Ayachit 2015) using the topology toolkit (Tierny et al. 2018). The local minima of all
three fields are visualized with the dark blue spheres, and the local maxima are visu-
alized with the orange spheres. As indicated in Figure 9b, there are two local minima
(enclosed by yellow dotted boxes), indicating uncertainty in source positions. However,
this uncertainty can be further reduced by employing better regularization schemes,
e.g., PCGLS, as shown in Figure 10c. Even though Figure 10 visualizes critical points
for the sample 50, a similar trend is observed across all simulations.
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Figure 10. Visualization of Morse complexes and critical points for (a) ground-truth, (b) CGLS at 1% noise,

and (c) PCGLS at 1% noise. The white contours denote the Morse complex cells, the dark blue spheres denote

the local minima associated with each Morse complex cell, and the orange spheres denote local maxima of
respective fields. The potential values are colormapped on the heart surface. The local minimum enclosed by

the bottom yellow box in the CGLS visualization is situated closer (6.55 mm) to the true solution, indicated
by the yellow box in the ground-truth, when compared to the PCGLS solution (7.72 mm).

6. Conclusion and Future Work

In this paper, we use multiple visualization techniques, several of which are new to
ECGI applications, to study the impact of measurement and modeling errors associ-
ated with the ECGI pipeline on epicardial source localization. Specifically, we present
applications of confidence maps, level-sets, and topology-based visualizations for ef-
fective analysis of uncertainty in source localization. In the future, we would like to
study the sensitivity of source localization to variations in other ECGI parameters,
such as electrical conductivity and number and configuration of ECG leads. We would
also like to study and visualize uncertainties arising from multiple sources and add a
quantitative metric to our probability maps and confidence maps to reflect the multi-
ple localization errors resulting from multiple pacing site estimations. The analysis for
multiple sources would require additional research into more sophisticated statistical
models and uncertainty visualizations and would be an interesting extension of the
methods presented here. Lastly, we would like to study how the different visualization
methods we presented compare under different arrhythmia scenarios.
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Cluitmans M, Brooks DH, MacLeod R, Dössel O, Guillem MS, van Dam PM, Svehlikova J,
He B, Sapp J, Wang L, et al. 2018. Validation and opportunities of electrocardiographic
imaging: From technical achievements to clinical applications. Frontiers in Physiology.
9:1305. Available from: https://www.frontiersin.org/article/10.3389/fphys.2018.

01305.
Davenport DM. 1995. Temporal, spatial and frequency constraings on heart surface potential

distributions [master’s thesis]. Northeastern University.
Davenport DM, Brooks DH, MacLeod RS. 1995. Experimentally derived realistic constraints

on epicardial potential distributions. In: Proceedings of the 21st N.E. Bioengineering Con-
ference. p. 10–12.

Edelsbrunner H, Harer J, Zomorodian A. 2001. Hierarchical Morse complexes for piecewise
linear 2-manifolds. In: Proceedings of the 17th Annual Symposium on Computational Ge-
ometry. p. 70–79.

Fikal, Najib, Aboulaich, Rajae, El Guarmah, El Mahdi, Zemzemi, Nejib. 2019. Propagation of
two independent sources of uncertainty in the electrocardiography imaging inverse solution.
Math Model Nat Phenom. 14(2):206. Available from: https://doi.org/10.1051/mmnp/

2018065.
France J, Johnson CR. 2016. Source localization probability maps for uncertainty quantifica-

tion in electrocardiographic imaging. In: Computing in Cardiology (CinC). p. 697–700.
Ghosh S, Avari JN, Rhee EK, Woodard PK, Rudy Y. 2008a. Noninvasive electrocardiographic

imaging (ECGI) of a univentricular heart with Wolff-Parkinson-White syndrome. Heart
Rhythm. 4:605–608.

Ghosh S, Avari JN, Rhee EK, Woodard PK, Rudy Y. 2008b. Noninvasive electrocardiographic
imaging (ecgi) of epicardial activation before and after catheter ablation of accessory path-
way in a patient with Ebstein’s anomaly. Heart Rhythm: The Official Journal of the Heart
Rhythm Society. 5:857–860.

Hansen PC. 2010. Discrete inverse problems insight and algorithms. Philadelphia: Society for

16

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.09.02.506414doi: bioRxiv preprint 

https://www.frontiersin.org/article/10.3389/fphys.2018.01305
https://www.frontiersin.org/article/10.3389/fphys.2018.01305
https://doi.org/10.1051/mmnp/2018065
https://doi.org/10.1051/mmnp/2018065
https://doi.org/10.1101/2022.09.02.506414
http://creativecommons.org/licenses/by-nc/4.0/


Industrial and Applied Mathematics.
Hestenes MR, Stiefel E. 1952. Methods of conjugate gradients for solving linear systems. Jour-

nal of Research of the National Bureau of Standards. 49:409–436.
Hilton A, Illingworth J. 1997. Marching triangles: Delaunay implicit surface triangulation.

University of Surrey. Report No:.
Huiskamp G, van Oosterom A. 1988. The depolarization sequence of the human heart sur-

face computed from measured body surface potentials. IEEE Transactions on Biomedical
Engineering. 35:1047–1058.

Inselberg A. 1985. The plane with parallel coordinates. Visual Computer. 1(4):69 – 91.
Johnson C. 1997. Computational and numerical methods for bioelectric field problems. Critical

Reviews in BioMedical Engineering. 25(1):1–81.
Johnson C. 2015. Computational methods and software for bioelectric field problems. In:

Bronzino J, Peterson D, editors. Biomedical engineering handbook. 4th ed.; vol. 1. CRC
Press; chap. 43; p. 1–28.

Johnson CR, Sanderson AR. 2003. A next step: Visualizing errors and uncertainty. IEEE
Computer Graphics and Applications. 23(5):6–10.

Johnston PR, Gulrajani RM. 2002. A new method for regularization parameter determination
in the inverse problem of electrocardiography. IEEE Transactions on Biomedical Engineer-
ing. 44:19–39.

Kaipio J, Somersalo E. 2004. Statistical and computational inverse problems. New York:
Springer.

Kaipio J, Somersalo E. 2007. Statistical inverse problems: discretization, model reduction and
inverse crimes. Journal of Computational and Applied Mathematics. 198:493–504.

Karayiannis N, Mukherjee A, Glover J, Ktonas P, Frost J, Hrachovy R, Mizrahi E. 2004.
Quantifying and visualizing uncertainty in eeg data of neonatal seizures. In: The 26th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society; vol. 1.
p. 423–426.

Lorensen WE, Cline HE. 1987. Marching cubes: A high resolution 3D surface construction
algorithm. SIGGRAPH Computer Graphics. 21(4):163–169.

MacLeod R, Stinstra J, Lew S, Whitaker R, Swenson D, Cole M, Krüger J, Brooks D, John-
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Milanič M, Jazbinšek V, MacLeod RS, Brooks DH, Hren R. 2014. Assessment of reg-
ularization techniques for electrocardiographic imaging. Journal of Electrocardiology.
47(1):20–28. Available from: https://www.sciencedirect.com/science/article/pii/

S0022073613005566.
Miller P, Bremer PT, Cabot W, Cook A, Laney D, Mascarenhas A, Pascucci V. 2006. Ap-

plication of Morse theory to analysis of Rayleigh-Taylor topology. In: 10th International
Workshop on the Physics of Compressible Turbulent Mixing.

O’Donnell D, Furniss SS, Dunuwille A, Bourke JP. 2003. Delayed cure rate despite early recur-
rence after pulmonary vein isolation for atrial fibrillation. American Journal of Cardiology.
91:83–85.

Potter K, Wilson A, Bremer PT, Williams D, Doutriaux C, Pascucci V, Johhson CR. 2009.
Ensemble-vis: A framework for the statistical visualization of ensemble data. In: IEEE Work-
shop on Knowledge Discovery from Climate Data: Prediction, Extremes. p. 233–240.

Ristovski G, Preusser T, Hahn HK, Linsen L. 2014. Uncertainty in medical visualization:
Towards a taxonomy. Computers & Graphics. 39:60–73.

Rudy Y. 2013. Noninvasive electrocardiographic imaging of arrhythmogenic substrates in hu-
mans. Circulation Research. 112:863–874.

Tate JD, Good WW, Zemzemi N, Boonstra M, van Dam P, Brooks DH, Narayan A,
MacLeod RS. 2021. Uncertainty quantification of the effects of segmentation variability

17

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.09.02.506414doi: bioRxiv preprint 

https://www.sciencedirect.com/science/article/pii/S0022073613005566
https://www.sciencedirect.com/science/article/pii/S0022073613005566
https://doi.org/10.1101/2022.09.02.506414
http://creativecommons.org/licenses/by-nc/4.0/


in ecgi. In: Ennis DB, Perotti LE, Wang VY, editors. Functional Imaging and Modeling of
the Heart; Cham. Springer International Publishing. p. 515–522.

Tierny J, Favelier G, Levine JA, Gueunet C, Michaux M. 2018. The topology toolkit. IEEE
Transactions on Visualization and Computer Graphics. 24(1):832 – 842.

van der Graaf AW, Bhagirath P, Ramanna H, van Driel VJ, de Hooge J, de Groot NM,
Götte MJ. 2014. Noninvasive imaging of cardiac excitation: current status and future per-
spective. Annals of Noninvasive Electrocardiology. 19(2):105–13.

Wang D, Kirby RM, Johnson CR. 2011a. Finite-element-based discretization and regular-
ization strategies for 3-D inverse electrocardiography. IEEE Transactions on Biomedical
Engineering. 58(6):1827–1838.

Wang D, Kirby RM, Johnson CR. 2011b. Resolution strategies for the finite element based
solution of the electrocardiographic inverse problem. IEEE Transactions on Biomedical En-
gineering. 57(2):220–237.

Wang D, Kirby RM, MacLeod RS, Johnson CR. 2013. Inverse electrocardiographic source
localization of ischemia: An optimization framework and finite element solution. Journal of
Computational Physics. 250:403–424.

Wang Y, Cuculich PS, Zhang J, Desouza KA, Vijayakumar R, Chen J, Faddis MN, Lindsay BD,
Smith TW, Rudy Y. 2011c. Noninvasive electroanatomical mapping of human ventricular
arrhythmias with electrocardiographic imaging. Science Translational Medicine. 3:98ra84.

Wang Y, Rudy Y. 2006. Application of the method of fundamental solutions to potential-based
inverse electrocardiography. Annals of Biomedical Engineering. 34:1272–1288.

Whitaker R, Mirzargar M, Kirby R. 2013. Contour boxplots: A method for characterizing
uncertainty in feature sets from simulation ensembles. IEEE Transactions on Visualization
and Computer Graphics. 19(12):2713–2722.

18

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.09.02.506414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.02.506414
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Inverse Problem of Electrocardiography
	Mathematical Model
	Ill-Posedness and Ill-Conditioning
	Regularization
	Conjugate-Gradient Least Squares (CGLS)
	Preconditioned Conjugate-Gradient Least Squares (PCGLS)
	Choosing the Iteration Parameter k

	Simulation Setup

	Monte Carlo Approach to Studying Solution Uncertainty
	Visualizing Source Localization Uncertainty
	Probability Maps
	Confidence Intervals
	Level-Set Visualizations
	Topology-Based Visualizations

	Results and Discussions
	Probability and Confidence Maps
	Level-Set Visualizations
	Topology-Based Visualizations

	Conclusion and Future Work

