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Figure 8: The mucus in usual interstitial pneumonia has distinct features from mucinous 
adenocarcinoma. (A) Venn diagram showing the proteins detected in the mucus of mucinous adenocarcinoma 
(MA) or usual interstitial pneumonia (UIP). (B) 3-dimensional principal component analysis for each mucus type. 
(C) Volcano plot comparing the UIP mucus to MA mucus showing the negative natural log of the false discovery 
values (FDR) values plotted against the base 2 log (fold change) for each protein. (D) Immunofluorescence for 
MUC5B, MUC5AC, and BPIFB1 in UIP mucus (n = 4 specimens) and MA mucus (n = 3 specimens) with 
representative images shown for each disease type. White arrows points to regions of mucus accumulation and 
asterisk shows positivity of MUC5AC within UIP mucus. Scale bar represents 100 microns. 
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Discussion 307 

In this work, we produced an unbiased spatial proteomic profile of the non-fibrotic, fibrotic 308 

uninvolved and honeycomb airway cells to create a tissue map that defines pathway 309 

changes along the progression of lung fibrosis (Figure 9). We showed that the structurally 310 

intact low-in-mucus airway cells in uninvolved regions of the fibrotic lung have an 311 

abnormal protein signature with increased Slits/Robo pathway as the strongest category; 312 

Slits/Robo pathway is also increased in the fibrotic HC airway cells. We confirmed that 313 

the fibrotic honeycomb airways are the site of mucin biogenesis with other categories 314 

related to protein modification and transport increased. Importantly, many proteins 315 

associated with ciliogenesis are decreased or absent from the fibrotic HC airways. In 316 

addition, honeycombing is associated with decreased extracellular matrix organization 317 

and elastic fibre formation. Lastly, the fibrotic mucus is enriched with immune defence 318 

proteins, including BPIFB1 and MUC5B, and is enriched with neutrophil degranulation 319 

pathway. 320 

 321 

Other groups support our results that demonstrate that the fibrotic uninvolved airway cells 322 

are abnormal at the structural and genetic level. Lung fibrosis is associated with a variety 323 

of genetic risk factors affecting epithelial cells, which may abnormally prime lung airway 324 

cells to fibrosis initiation [61]. Structurally, regions without microscopic fibrosis are shown 325 

to have reduced numbers of terminal airways and have an increase of airway wall areas 326 

[4-6], suggesting that early lung airway perturbations precede fibrotic extracellular matrix 327 

remodelling. Thus, it is plausible that airway cell dysfunction is an early event in the fibrotic 328 

process. Further LCM-MS studies with precise distance registration and patient  329 
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Figure 9: The fibrotic honeycomb airway. Spatial proteomics reveal that the fibrotic uninvolved 
airway cells (found in regions of structurally intact lung) have an abnormal protein signature. The fibrotic 
uninvolved airway cells, like the honeycomb (HC) airway cells (a pathological feature of lung fibrosis), 
are over-represented in proteins associated with SLITs and ROBO pathway. The fibrotic HC airway 
cells are further defined by increased pathways associated with mucin biogenesis, and a loss of both 
cilia and extracellular matrix organization/elastic fibres. We find that the mucus proteome is enriched 
with neutrophil degranulation pathway, with a marked increase of BPIFB1 protein. 

BPIFB1-rich mucus 
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genotyping will inform whether there exists a transition zone where a normal airway 331 

proteome is present, or perhaps it may be that the entire airway proteome is abnormal. 332 

 333 

Aberrant ciliogenesis has previously been described in UIP/IPF. Whole transcriptomic 334 

studies demonstrate an elevation of cilium gene expression [62]. In contrast, our results 335 

demonstrate a reduced cilia-associated protein profile within the fibrotic HC airway cells. 336 

This likely reflects the advancement of our spatial proteomic capability or that previously 337 

observed increases in ciliary gene expression represent a compensatory mechanism 338 

occurring in response to loss of ciliated epithelial cells in fibrosis. Structurally, 339 

transmission electron microscopy demonstrates that the UIP/IPF distal airways display 340 

defects in microtubule organization, which will have detrimental effect on cilia function 341 

[39]. In the context in cystic fibrosis, it is reported that airway epithelial also have 342 

decreased ciliated cells with enhanced mucin expression [63]. Thus, future studies 343 

determining the mechanism of deranged ciliogenesis is warranted. 344 

 345 

Current literature suggests that basal airways cells differentiate into either mucin 346 

producing cells or cilia-containing cells [64]. Our spatial proteomic data fits the notion that 347 

the HC airway microenvironment directs the differentiation of basal airway cells into mucin 348 

producing cells whereas the uninvolved airway microenvironment favors ciliated cells. 349 

Given that extracellular matrix governs cell differentiation and function [65], we speculate 350 

that changes to ECM properties (mechanical, composition, and topography) may play a 351 

role in airway cell differentiation and function. Prior work utilizing decellularized COPD 352 
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airway tissue as a scaffold for cell-matrix interactions (as compared to donor) show that 353 

COPD matrix dramatically affects cilia gene expression in epithelial cells [66]. Other 354 

studies using decellularized UIP/IPF tissue confirm that fibrotic matrix is a driver of fibrosis 355 

progression [67]. Therefore, the changes in mucin and cilia-associated proteins may be 356 

reflective, or a consequence of the changes in airway ECM properties. 357 

 358 

Our spatial proteomic data characterizing fibrotic HC airway cells (MUC5B-positive) are 359 

in agreement with sc-RNAseq data characterizing MUC5B-positive secretory cells in 360 

human lung. In one study, secretory airway cells have increased RNA expression of 361 

MUC5B, LCN2, BPIFB1, SERPINB3, S100P, RARRES1, TSPAN8, CP, and FAM3D [68], 362 

which are also increased or uniquely expressed at the protein level in fibrotic HC airway 363 

cells. Other mRNAs increased in MUC5B-positive secretory cells include TSPAN1, 364 

AKR1C1, ZG16B, GSTA1, and SCGB1A1, which are unchanged at the protein level in 365 

the fibrotic HC airway cells. A separate study showed that MUC5B-positive cells by sc-366 

RNAseq have increased mRNA expression of SCGB1A1, SCGB3A1, SLPI, BPIFB1, 367 

LCN2, and WFDC2 [69]. At the protein level, SLPI, BPIFB1, LCN2, and WFDC2 are 368 

increased or uniquely expressed in the fibrotic HC airway cells (SCGB1A1 and SCGB3A1 369 

are unchanged at the protein level). Thus, the fibrotic HC airway cells represent a 370 

secretory cell phenotype. Future work integrating spatial multi-omic analysis (RNA and 371 

protein) will further our understanding of lung fibrosis. 372 

 373 
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To our knowledge, we are the first to determine the composition of UIP mucus plugs by 374 

using an LCM-MS approach. This approach allows precise capture of the entirety of 375 

mucus plugs without the introduction of contaminants (salivary and upper airway proteins) 376 

as seen by traditional BALF. Proteomic analysis of BALF (an unfixed or stained sample) 377 

from lung fibrosis patients show agreement with our findings. Several reports utilizing 378 

mass spectrometry approaches show increases of immunoglobulins, complement C3, 379 

transferrin, Apolipoprotein A1, plastin-2, annexin A2, and CCL18 in fibrotic lung BALF 380 

(summarized in [70]); all of which are detected in our LCM-MS dataset. In accord with our 381 

findings, Foster et al. demonstrated that MUC5B is an abundant protein in IPF BALF [57]. 382 

S100A9, detected by LCM-MS, is a potential BALF biomarker in IPF [71]. In addition, IPF 383 

patients with acute exacerbations show increased PIGR, LRG1, and SERPINA1 in BALF, 384 

which are also detected in our LCM-MS dataset [72]. Our LCM-MS approach is therefore 385 

a useful tool to determine the protein composition of mucus in archived FFPE specimens. 386 

 387 

Our results demonstrate that the mucus found in lung cancer (mucinous adenocarcinoma; 388 

MA) has elevated levels of MUC5AC as compared to UIP mucus. A likely explanation is 389 

that the mucin-secreting cells comprising the UIP/IPF HC airway differ than the mucin-390 

secreting cells in MA and/or that the environmental/immune signals controlling mucin 391 

production differ. For instance, reports show that there are 5X more MUC5B-positive cells 392 

versus MUC5AC-positive cells in the honeycomb airways of UIP/IPF, suggesting marked 393 

cell type heterogeneity [73]. In contrast, the morphology of MA cells are distinct and 394 

composed of goblet and/or columnar cells [74]. Another explanation is that MUC5AC 395 

gene expression is differentially regulated as compared to MUC5B [75]. For instance, 396 
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MUC5AC gene expression is increased by IL-13. In other disease settings, MUC5AC 397 

mRNA is increased in asthma, whereas MUC5B levels are decreased [76]. Further 398 

studies determining the functional consequence of varying MUC5AC to MUC5B protein 399 

ratios on fibrosis progression are needed. 400 

 401 

Increases of BPIFB1 in both the UIP mucus and HC airway cells is of interest. BPIFB1 is 402 

a secretory protein that is implicated in immune regulatory functions and shown to have 403 

anti-tumor effects (reviewed in [77]). In other lung disorders, BPIFB1 is increased in cystic 404 

fibrosis, COPD, asthma, and IPF [78]. It is decreased in nasopharyngeal carcinoma, 405 

gastic cancer, and lung cancer, which agrees with our findings that mucinous 406 

adenocarcinoma mucus has low expression of BPIFB1. Understanding of its function in 407 

lung fibrosis is currently incomplete. 408 

 409 

Conclusion: 410 

Spatial proteomics has allowed us to create an unbiased protein tissue map of the 411 

fibrotic/UIP lung airway cells. We show that the fibrotic honeycomb airway cells are the 412 

active site of mucin biogenesis affiliated with a loss of cilia. Importantly, we show that the 413 

fibrotic uninvolved airway cells have an abnormal protein signature. Therapeutic 414 

intervention of the fibrotic uninvolved airway cells may therefore slow fibrosis progression.  415 

 416 

Materials and Methods: 417 
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Histological staining: Five micron sections of formalin-fixed and paraffin-embedded 418 

(FFPE) specimens were H&E-stained by using an automated stainer (Leica XL) at the 419 

University of Manchester Histology Core Facility as previously described [19]. Importantly, 420 

slides were stored at 4oC for up to one week while laser capture microdissection (LCM) 421 

was being performed. Captured material was stored at -80oC until all samples were ready 422 

for mass spectrometry processing. Alcian Blue/Periodic Acid Schiff (AB-PAS) was 423 

performed as follows. De-paraffinized slide sections were incubated for 5 minutes in 1% 424 

alcian blue 8GX (Sigma; A5268), 3% acetic acid. Slides were then washed in tap water 425 

followed by a 5-minute incubation in 1% periodic acid (Sigma; 375810). Finally, slides 426 

were washed in tap water and incubated in Schiff’s reagent (Sigma – 3952016) for 15 427 

minutes. After extensive washing in tap water, slides were coverslipped without 428 

counterstain. For pentachrome, we followed a protocol as previously described [19]. 429 

 430 

For immunohistochemistry (IHC), we utilized the Novolink Polymer Detection Systems 431 

(Leica, RE7200-CE) as previously described in detail [79]. We used the following 432 

antibodies anti-BPIFB1 (Abcam; ab219098, titre 1:60,000), anti-elastin (Proteintech; 433 

15257-1-AP; titre 1:16,000) anti-PIGR (Abcam; ab224086, titre1:8,000), anti-434 

serotransferrin (Abcam; ab268117, titre 1: 30,000). Anti-MUC5B (titre 1:10,000) and anti-435 

MUC5AC (titre 1:12,000) was previously purified and used here [80]. For all samples, we 436 

used antigen heat retrieval using citrate buffer pH 6.0 (Sigma, C9999), with the exception 437 

of EDTA pH 9.0 antigen heat retrieval for serotransferrin and elastin. Slides were 438 

hematoxylin counterstained and coverslipped using permount (ThermoScientific, SP15). 439 

 440 
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For MUC5B, immunostains followed a modified protocol. After citrate buffer pH 6.0 441 

antigen heat retrieval, the sections underwent reduction and alkylation. Sections were 442 

reduced by incubation at 37oC for 30 minutes in 10 mM DTT, 0.1 M Tris/HCl pH 8.0. 443 

Sections are washed in water and then incubated in 25 mM Iodoacetamide, and 0.1 M 444 

Tris/HCl pH 8.0 for 30 minutes at room temperature (kept in the dark). Lastly, sections 445 

were washed in water followed by blocking and primary antibody incubation. 446 

 447 

For immunofluorescence, dewaxed slides were subjected to citrate buffer pH 6.0 antigen 448 

heat retrieval and probed overnight with anti-MUC5AC (titre 1:100), anti-MUC5B (post 449 

reduction/alkylation; titre 1:100), or BPIFB1 (Abcam; ab219098, titre 1:100). Sections 450 

were then incubated with secondary anti-mouse fluorophore 680 (Invitrogen, A21058, 451 

1:500) or anti-rabbit fluorophore 680 (Invitrogen; A21109; 1:500) for 1 hour. Sections were 452 

coverslipped using ProLong antifade with DAPI (Invitrogen; P36931). 453 

 454 

Laser Capture Microdissection: The MMI CellCut Laser Microdissection System 455 

(Molecular Machines & Industries) was used to capture regions of interest on MMI 456 

membrane slides (MMI, 50102) as previously described [19, 20]. For this set of 457 

experiments, we collected a volume 0.03 mm3 of tissue per sample. 458 

 459 

Histological Imaging: For fluorescence microscopy, all stains were performed at the 460 

same time. In addition, images were taken at the same intensity utilizing EVOS FL 461 
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imaging system (ThermoScientific). For light microscopy, we used a DMC2900 Leica 462 

instrument with Leica Application Suite X software. 463 

 464 

Data Availability: We have deposited the raw mass spectrometry data files to 465 

ProteomeXchange under the identifier of PD036465. 466 

 467 

Mass spectrometry sample preparation: Samples were prepared as described [19, 20]. 468 

In short, samples underwent a series of steps to maximize protein yield, including high 469 

detergent treatment, heating, and physical disruption.  470 

 471 

Liquid chromatography coupled tandem mass spectrometry: The separation was 472 

performed on a Thermo RSLC system (ThermoFisher) consisting of a NCP3200RS nano 473 

pump, WPS3000TPS autosampler and TCC3000RS column oven configured with buffer 474 

A as 0.1% formic acid in water and buffer B as 0.1% formic acid in acetonitrile. An injection 475 

volume of 4 µl was loaded into the end of a 5 µl loop and reversed flushed on to the 476 

analytical column (Waters nanoEase M/Z Peptide CSH C18 Column, 130Å, 1.7 µm, 75 477 

µm X 250 mm) kept at 35 C at a flow rate of 300 ηl/min with an initial pulse of 500 ηl/min 478 

for 0.1 minute to rapidly re-pressurize the column. The separation consisted of a 479 

multistage gradient of 1% B to 6% B over 2 minutes, 6% B to 18% B over 44 minutes, 480 

18% B to 29% B over 7 minutes and 29% B to 65% B over 1 minute before washing for 481 

4 minutes at 65% B and dropping down to 2% B in 1 minute. The complete method time 482 

was 85 minutes. 483 
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 484 

The analytical column was connected to a Thermo Exploris 480 mass spectrometry 485 

system via a Thermo nanospray Flex Ion source via a 20 µm ID fused silica capillary. The 486 

capillary was connected to a fused silica spray tip with an outer diameter of 360 µm, an 487 

inner diameter of 20 µm, a tip orifice of 10 µm and a length of 63.5 mm (New Objective 488 

Silica Tip FS360-20-10-N-20-6.35CT) via a butt-to-butt connection in a steel union using 489 

a custom-made gold frit (Agar Scientific AGG2440A) to provide the electrical connection. 490 

The nanospray voltage was set at 1900 V and the ion transfer tube temperature set to 491 

275 C.  492 

 493 

Data was acquired in a data dependent manner using a fixed cycle time of 1.5 sec, an 494 

expected peak width of 15 sec and a default charge state of 2. Full MS data was acquired 495 

in positive mode over a scan range of 300 to 1750 Th, with a resolution of 120,000, a 496 

normalized AGC target of 300% and a max fill time of 25 mS for a single microscan. 497 

Fragmentation data was obtained from signals with a charge state of +2 or +3 and an 498 

intensity over 5,000 and they were dynamically excluded from further analysis for a period 499 

of 15 sec after a single acquisition within a 10-ppm window. Fragmentation spectra were 500 

acquired with a resolution of 15,000 with a normalized collision energy of 30%, a 501 

normalized AGC target of 300%, first mass of 110 Th and a max fill time of 25 mS for a 502 

single microscan. All data was collected in profile mode. 503 

 504 
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Mass spectrometry data analysis and statistics:  Raw data for regional samples were 505 

processed using MaxQuant [81] version 1.6.17.0 against the human proteome obtained 506 

from uniprot (May 2021) [82]. Raw data for UIP and MA mucus samples were processed 507 

using MaxQuant [81] version 2.0.3.0 against the human proteome obtained from uniprot 508 

(May 2022) [82]. All Maxquant processing were performed with a fixed modification of 509 

carbamidomethylation of cysteine, with variable modifications of methionine oxidation and 510 

protein N-terminal acetylation. Precursor tolerance was set at 20ppm and 4.5pm for the 511 

first and main searches, with MS/MS tolerance set at 20ppm. A false discovery rate (FDR) 512 

of 0.01 was set for PSM and protein level, up to two missed cleavages were permitted 513 

and “match-between-runs” was selected. 514 

 515 

Stastical analysis was carried out in R (v4.1.2) [83] using the MSqRob package (v0.7.7) 516 

[84]. Significantly changing proteins were taken at a 5% false discovery rate (FDR). 517 

Pathway analysis utilising Reactome Pathways was performed on significantly changing 518 

proteins using the R package ReactomePA (1.38.0) [85] 519 

 520 

 521 

Study Approval: For this study, we utilized a variety of Research Ethics Committee 522 

(REC) protocols to obtain patient-consented lung tissue: REC#14/NW/0260 (provided by 523 

JFB and RVV, Manchester, United Kingdom) for transplanted fibrotic lung; 524 

REC#20/NW/0302 (provided by MAM and FG, Manchester, United Kingdom) for non-525 

fibrotic lung specimens; REC#18/NW/0092 (provided by Manchester Cancer Research 526 
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Centre Biobank, Manchester, United Kingdom) for mucinous lung adenocarcinoma. 527 

Usual Interstitial Pneumonia (UIP) specimens were defined by current guidelines [1, 86]. 528 

Non-fibrotic controls were collected from morphologically normal lung tissue distal to 529 

tumor during resection (fibrotic and control patient demographics may be found in 530 

Supplemental Figure 3). Mucinous adenocarcinoma (MA) was defined by current 531 

guidelines (MA patient demographics may be found in Supplemental Figure 4) [59]. In 532 

this study, we utilized 10 UIP, 6 non-fibrotic, and 6 MA specimens.  533 

 534 
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