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Summary  15 

Ras is a central cellular hub protein controlling multiple cell fates. How Ras interacts with a 16 

variety of potential effector proteins is relatively unexplored, with only some key effectors 17 

characterized in great detail. Here, we have used homology modelling based on X-ray and 18 

AlphaFold2 templates to build structural models for 54 Ras-effectors complexes. These models 19 

were used to estimate binding affinities using a supervised learning regressor. Furthermore, we 20 

systematically introduced Ras ‘branch-pruning’ (or branchegetic) mutations to identify 200 21 

interface mutations that affect the binding energy with at least one of the model structures. The 22 

impacts of these branchegetic mutants were integrated into a mathematical model to assess the 23 

potential for rewiring interactions at the Ras hub on a systems level. These findings have 24 

provided a quantitative understanding of Ras-effector interfaces and their impact on systems 25 

properties of a key cellular hub.  26 
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Introduction  32 

Ras is a key cellular signaling hub and oncogene 1. The first correct Ras structure was famously 33 

described in 1989 2 3 and consists of the G domain super-fold (six β-strands and five α-helices; 34 

1). It’s main structural and functional characteristic is the nucleotide binding site (the typical 35 

α,β-fold of nucleotide binding proteins), which can bind GTP and hydrolyze it to GDP. Then, 36 

GDP gets released and a new nucleotide (favorably GTP since it is higher abundant in cells) 37 

gets bound. Depending on which nucleotide is bound, the functional state of RAS is different. 38 

GDP bound Ras assumes a so-called inactive conformation, whereas upon the binding of GTP, 39 

the conformation of Ras is called active. The difference between the active and the inactive 40 

conformation is that, in the active conformation, two loop regions called switch 1 and switch 2 41 

are interacting with the GTP and thereby tightly bound to it 1 (Figure 1A). This rearranges the 42 

interface of Ras in a specific way so that effector proteins with a specific structural motive can 43 

interact with Ras. The structural motive required for the interaction with Ras has a ubiquitin 44 

domain super-fold 4. There exist three families of these domains, called Ras binding domain 45 

(RBD), Ras association domain (RA domain) and PI3K-Ras binding domain (PI3K RBD) with 46 

only minor sequence and structural differences between them. In the following, for the sake of 47 

simplicity, all of these will be called RBDs.  48 

Ras∙GTP can interact and activate many downstream effectors, some of which are better 49 

studied than others 5. Well-studied effectors include PI3-kinases, RalGDS, and Raf kinases, 50 

which control important cellular processes such as survival, polarization, adhesion, migration, 51 

and proliferation. In our previous work, we characterized a set of 56 RBD-containing proteins 52 

as potential Ras effectors, which converge into 12 classes that are linked to different 53 

downstream cellular processes and phenotypes 6 7 8 9.  54 

Ras-effector interactions are interesting from a systems biology and network point of 55 

view. Effectors use a mutually exclusive binding site on Ras, hence competition for binding 56 

can occur under certain conditions 10. Also, the experimental and predicted affinities between 57 

RBDs and Ras∙GTP vary, ranging from nano- to micromolar Kd values 8. Previously we 58 

analyzed how the amount of effectors in complex with Ras varies in different cell types 6 7. We 59 

find that only 9 effectors are predicted to bind in significant amount to Ras∙GTP using the RBD 60 

alone 7. However, 31 effectors are predicted to form significant complexes with Ras if they are 61 

additionally recruited to the plasma membrane via other domains present in effectors 62 

(piggyback mechanism, 11). Hence, even weak binding affinities on the level of RBD-RAS 63 

binding can turn into significant complex formation if effectors are recruited (e.g. in a context 64 
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specific manner). Thus, for systems analyses and computational models, we need good 65 

estimations for all binding affinities between RBDs and Ras. 66 

Structural analysis can lead to a deeper understanding of protein-protein interaction 67 

(PPI). Previous we used homology modelling, based on experimentally determined complex 68 

structures, to predict binding between effectors and Ras∙GTP 12 13. While this has provided 69 

insights into binding propensities, a limitation of this work was that no quantitative binding 70 

affinities were predicted, but qualitative binding by classifying effectors into categories of 71 

‘binding’, ‘non-binding’, and ‘twilight’. It is now timely to revisit homology modelling of Ras-72 

RBD complexes, as new template structures are available by (i) X-ray crystallography (8 of 56 73 

effectors are crystallized in complex with RAS) and (ii) AlphaFold 14 15. 74 

Ras is frequently mutated in different cancers, where aberrant Ras signaling plays a role 75 

in cancer initiation, progression, and metastasis via alterations in metabolism, proliferation, and 76 

survival 16. As Ras cannot be directly targeted (or only certain  Ras mutations) 17, much hope 77 

rests on network-centric approaches 18 that involve Ras-effector interactions or downstream 78 

pathways 9. Therefore, tinkering with Ras-effector binding is an attractive alternative strategy 79 

for finding suitable targets for therapeutic interventions. Previously we developed a ‘branch-80 

pruning’ (or “branchegetic”, in analogy to “edgetics” 19 and “enedgetics” 20) strategy for Ras 81 

effector interactions, where mutations are introduced into Ras that differentially impact binding 82 

to effectors 21. For example, introducing a mutation can result in a steric clash in the interface 83 

formed with one effector, but not with another; hence the interaction with one effector is broken 84 

while intact for another.   85 

In this work, we first generate homology models of all Ras-effector (RBD) interactions 86 

and predict affinities of the RBDs in complex with Ras∙GTP. We then use the generated model 87 

structures to employ a systematic branchegetic strategy that explores the impact of Ras interface 88 

mutants on binding to all effectors. Altogether, our results contribute to a quantitative and 89 

systems-level understanding of Ras-effector interactions and further our understanding of Ras 90 

in health and disease.  91 

 92 

 93 

Results 94 

Structural analysis of experimental complex structures 95 

From the few experimentally determined complex structures of Ras with these RBDs, there are 96 

some structural similarities that can be determined (Figure 1). The main interface on the site of 97 

Ras consists of the two switch regions, switch 1 and switch 2. One of the main structural features 98 
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of the interface between Ras and RBDs is the formation of an intra-molecular β-sheet between 99 

2 on RAS and 2 on the RBD. This interaction is a highly conserved structural feature across 100 

all available complex structures, with deviations in orientation of less than 1 Å (Figure 1B, see 101 

Methods for MAE).  102 

Analyzing the energetic profile of the interface in silico using the FoldX force field 103 

shows that there are also some recurring hotspots in the interface (highlighted in Figure 1C). 104 

I36, D38 and Y40 are well characterized as important residues for the interaction between Ras 105 

and effector domains. Additionally, for the structures 3DDC and 1LFD, the mutation E31K was 106 

introduced to stabilize the complex for crystallization. Our analysis confirms that this interface 107 

mutation has indeed been favorable for the complex formation. Finally, the energetic 108 

contributions of the function regions switch 1 and 2 to the interface were analyzed. Both relative 109 

and absolute contributions are diverse, although switch 1 contributions to binding dominate 110 

(Figure 1D). Altogether, the analysis of existing Ras-RBD effector structures indicates that 111 

although there are many common features of the Ras RBD interface such as the intra-molecular 112 

-sheet or the hydrophobic patch around I36, the actual energetic contributions can come from 113 

different parts of the interface. It also sets the basis for a successful homology modelling 114 

approach. 115 

 116 

Homology modelling and characterization of modelled interfaces 117 

In order to study these interface features in a more diverse set of structures, homology models 118 

of the complex between RAS and RBD were constructed for all proteins containing an RBD in 119 

the human proteome.  120 

The homology modelling pipeline is based on the already existing complex models 121 

(Table S1). Also, with the recent release of AlphaFold2 14 and the accompanying AlphaFold 122 

Protein Structure Database 15, the RBD domains of all potential effectors were extracted from 123 

that database and used. The structures of RBDs are predicted with good confidence by 124 

AlphaFold2 and our analysis indicates that AlphaFold2 is reliable at predicting the RBD fold 125 

(Figure S1). Additionally, AlphaFold2 complex modelling was attempted for all potential 126 

complex structures and models which AlphaFold2 were confident in (by Predicted Alignment 127 

Error (PAE)) and where the -sheet alignment of the interface was within a tolerance to what 128 

has been observed in crystal structures, were used as templates as well (Figure S2 and S3, 129 

compare MAE Figure 1). There are two kinds of templates to use: 1) complex templates which 130 

comprised of the already experimentally determined complex structures of Ras and RBDs, as 131 

well as “good” AlphaFold2 predicted complex templates (Table S1), and 2) templates of the 132 
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RBDs alone which were extracted from the AlphaFold2 Protein Structure Database (Table S2). 133 

An overview over the pipeline is depicted in Figure 2. Homology modelling was performed 134 

using homelette 22 with modeller and altMod 23-25. Evaluation of predicted structures was 135 

performed using QMEAN, MolProbity and SOAP potentials 26-29. The top 300 models for each 136 

target for each source of complex templates (experimental or AlphaFold2) were selected by 137 

combining the different scores. Subsequently, analysis using FoldX (interaction energy and 138 

alanine scan) was performed.  139 

In order to evaluate our approach, we generated a validation set, in which we created 140 

models for the structures already solved by X-ray crystallography without using information 141 

from the specific structure. Models generated in this validation set were compared to the 142 

underlying ground truth by assessing their correlation of the in silico alanine scan results to 143 

those of the crystal structures of interest. Using this ground truth, different methods to select 144 

representative models from the hundreds of structures were assessed. In particular, we evaluated 145 

the hyperparameters of an unsupervised learning pipeline comprised of different feature 146 

selection and dimensionality reduction strategies followed by clustering with the OPTICS 147 

algorithm (see Methods for more details about the hyperparameter space). After clustering, 148 

three representative structures were chosen. Based on the performance in the validation set, the 149 

optimal set of hyperparameters was chosen (Table S3, see Figures S4). The described strategy 150 

for identifying representative structures was then applied to all target complexes and we ended 151 

up with three representative complex structures for each effector.  152 

Analogous to how we characterized the interfaces of the experimentally determined 153 

complex structures before, we performed the same analysis on the complex models. The overall 154 

FoldX interaction energies for the models are diverse, indicating that maybe some of the 155 

complexes are energetically unfavorable and would not form (Figure S5B). In general, the 156 

binding energies are lower than what would be observed in crystal structures, which is to be 157 

expected. There are one or two outliers with regards to FoldX binding energy, namely RASSF8 158 

and PIK3C2B. In particular, RASSF8 is also showing an uncommon hotspot profile, with 159 

multiple unfavorable hotspots that are only appearing for this set of structures (Figure S5A). 160 

Based on this behavior, RASSF8 is excluded from further analysis. 161 

The analysis of hotspots confirmed the already established hotspots. I36, Y40, D38 and 162 

E37 are the most commonly observed hotspots (Figure 3AB, Figure S5A). Interestingly, while 163 

I36, Y40, and E37 are exclusively favorable to the interaction with the effector protein, D38 164 

seems to be also unfavorable in some of the structures (Figure 3B). The energetic diversity of 165 

the hotspot D38 was further investigated in the models. For this, two models were picked for 166 
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which D38 was a favorable hotspot in the alanine scan analysis (Figure 3C: RASSF1, Figure 167 

3D: RGL3), and two models were picked for which it was unfavorable (Figure 3E: ARAP2, 168 

Figure 3F: RAPGEF3). Next, neighboring amino acids were analyzed. For favorable 169 

interactions, we were able to observe positively charged amino acids. On RASSF1, we find 170 

K216 and H217, whereas on RGL3, there is R630. These amino acids probably form strong 171 

interactions with the negatively charged D38 on Ras. In contrast, for the models where D38 172 

comes up as an unfavorable hotspot in the interface, we observe an uncharged, mostly 173 

hydrophobic neighborhood. 174 

 175 

Estimation of binding energies 176 

One of the applications of the structural models that were generated was to use them for the 177 

estimation of binding energies. Since experiments measuring the binding energy between two 178 

proteins are experimentally very challenging and error-prone 30, we were implementing an in 179 

silico approach. Also, while FoldX is good at predicting energy changes to interaction energy 180 

or protein stability on mutation, the absolute interaction energies for protein complexes usually 181 

are not well correlated with experimental values 31. Because of this, a supervised learning 182 

regression pipeline was built based on features extracted from the modelled structures and a 183 

collection of experimentally determined binding energies of different Ras-effector complexes 184 

(Table S5). From a combination of different regressors, feature selection procedures, and 185 

hyperparameters, the best approach was determined using a cross validation strategy (see 186 

methods). A support vector machine-based regressor (see hyperparameters in Table 4) 187 

performed best in cross-validation with an R2 score of 0.53. Then, the performance of the best 188 

approach was evaluated in an out-of-sample test set, where it achieved an R2 score of 0.77. The 189 

model was then used to predict the interaction energies for the complexes without prior 190 

experimental measurements (Figure 4, Table S5). The predicted binding affinities for our 191 

models range 4 orders of magnitude, between the highest predicted affinity for BRAF of 0.02 192 

M to PIK3C2B with the lowest predicted affinity of 588 M. The highest binding effectors 193 

are quite well characterized (RAF family, PI3K, RASSF5, RIN1, RalGDS, AFDN 8). As 194 

experimental measurements of the PI3K family members are difficult as the RBD is not easy 195 

to express and purify in isolation, it is noteworthy that we assign three of the good binding 196 

affinities to PI3K family members (PIK3CA, PIK3CD, PIK3CG). A big group of effectors has 197 

affinities in the range of 1 to 10 M. For example, RASIP1 was previously in the “likely no 198 

binding” category 8, and is now predicted to have an affinity in complex with Ras of 2.7 M. 199 

RAPGEF5 and RGL3 were previously in the “unknown” 8 category and have predicted 200 
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affinities of 9.2 and 5.6 M, respectively. Another big group of effectors has affinities in the 201 

range of 10 to 100 M. Especially the first one could be interesting for modulation of binding 202 

affinity by the piggy back mechanism 7.  203 

 204 

Switch contributions to binding 205 

Having Ras-effector structural models available allowed us to analyze the individual 206 

contributions of switch 1 and switch 2 to binding using the results from alanine scanning 207 

(similarly as done before for the X-ray Ras-effector structures). We find that generally most 208 

structures are dominated by favorable switch 1 contributions (Figure 5 and Figure S6). Switch 209 

2 contributions are surprisingly small. We also predict more contributions from regions outside 210 

switch 1 and switch 2 as in the X-ray structures. For the two weak affinity binding groups (10 211 

M (Kd < 100 M and (Kd > 100 M) switch 1 contributions are in the range of 4 to 5 kcal/mol 212 

with small (~1 kcal/mol) contributions from switch 2 and remaining parts involved in interface 213 

formation. For the two strong affinity groups (Kd < 1 M and 1 M (Kd < 10 M) switch 1 214 

contributions increase to 6 to 9 kcal/mol with also increasing switch 2 contributions (1 to 2 215 

kcal/mol). We also observed negative switch contributions (mainly for switch 1), indicating 216 

that these proteins are either not well predicted or non-binders. Indeed, all structures with 217 

negative switch energies are predicted to be weak binders.  218 

 219 

Branch pruning analysis using Ras-effector model structures 220 

Next, we were interested in exploring surface mutations on Ras that would selectively influence 221 

the binding to some, but not all effectors. Both enhancing and inhibiting mutations are of 222 

interest. This could enable the engineering of the Ras effector system to respond to stimuli in 223 

different ways and to study selective sets of effectors. We previously reported a framework for 224 

the identification and evaluation of so called ‘branch pruning’ mutations 21. Since our protein 225 

is interacting with a many different effectors at the same time through the same interface it will 226 

be quite unlikely to identify mutations that selectively target only one protein. Instead, it is more 227 

likely that we will identify mutations that enhance in interaction with some proteins while 228 

inhibiting some others. 229 

Figure 6 shows a heatmap of all identified mutations of interest and their effect on all 230 

effectors. Some interesting mutations to highlight are mutations around I36, that are almost 231 

exclusively unfavorable while affecting almost every structure. D37 mutation are more 232 

selective and also exclusively disruptive. D38 is mixed, as our analysis of the hotspot already 233 

indicated. This is probably the best point to disrupt the system. Y40, interestingly, while being 234 
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a ubiquitous hotspot, is not a good spot for engineering the interface because mutations seem 235 

to affect protein stability (compare with Figure S7A). Also of interest is that we detect both 236 

mutations that increase and disrupt binding (Figure S7B).  237 

 238 

Assessment of rewiring of Ras-effector interaction on a systems level  239 

Finally, we want to evaluate the behavior of the Ras effector system based on our predicted 240 

binding energies and based on the introduction of different branch pruning mutations. For this 241 

means, we went back to our mathematical model of the Ras-effector system that incorporated 242 

affinities and high-quality proteomics data in 29 human tissues 7. Here, all 29 tissue systems 243 

were simulated at 20% and 90% GTP load on Ras. We are using exclusively the predicted 244 

binding energies for this (except RASSF8, see methods). Overall, the results for the systems 245 

without a branch pruning mutation are comparable to previous findings (Figure 7A; 7). The Raf 246 

family members ARAF, BRAF and RAF1 dominate the binding profile in complex with Ras. 247 

Other effectors that are in high amount in complex with Ras in at least one of the 29 tissues are 248 

RGL2, RASSF7, RASSF5, RASIP1, RALGDS, PIK3CD, PIK3CA, and AFDN.  249 

Expanding on this, we introduced our branch pruning mutations to the mathematical 250 

model. In total, there are 200 interface mutations that do not significantly affect overall protein 251 

stability but affect binding to at least one of the effectors. Some of the branch pruning mutations 252 

are able to dramatically change the system in all tissues, as can be seen from the example of 253 

D38A (Figure 7B). With a single interface mutation, almost all RAF binding is quenched, and 254 

other effectors start to compete for the binding. Interestingly, which effectors come up depends 255 

on the tissue.  256 

Next, we explored to which extend, for a specific effector, it is possible to modulate its 257 

binding. For this, we visualized the possible changes to the relative amount of effector bound 258 

to Ras across all systems tested (Figure 7C). On the side of proteins that can be negatively 259 

influenced, mostly the high-affinity binders such as RAF family proteins show up, which is to 260 

be expected. Some effectors cannot be influenced by the branch pruning mutations, either 261 

because they are energetically not affected or because their concentrations in any of the 29 262 

tissues do not leave them in a position to compete for binding. Examples for this would be 263 

RADIL or the TIAM family proteins. The effectors with the highest propensity to have their 264 

binding enhanced are AFDN, RADIL, SNX27, RASSF5. 265 

Finally, we investigated whether there are recurring states that the modelled system 266 

assumes and whether these states are dependent on Ras-GTP load, the tissue, or interface 267 

mutation. To this end, we applied uniform manifold approximation and projection (UMAP) to 268 
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our systems to transform a high-dimensional space of absolute and relative effector binding into 269 

a 2D space. Then, we used OPTICS to identify areas of high density in this 2D plane and 270 

assigned them into 24 distinct clusters as well as outliers outside the clusters (Figure 8A). For 271 

each cluster, we picked three of the systems at random and visualized their relative effector 272 

binding (Figure S8). Each of these clusters belongs to a different “state” that the Ras-effector 273 

system can be rewired into, with systems belonging to a specific state showing similar trends 274 

in effector binding. Many of the systems are dominated by ARAF binding, as it would be 275 

expected, but even for these there are differences in the secondary effectors. To understand 276 

what the attributes of different “states” of the systems are, two of them were picked and 277 

investigated for Ras-GTP load, tissue composition, and interface mutation status (Figure 8BC). 278 

We find that there are different ways a distinct state of the system can come together: for the 279 

state analyzed in Figure 8B, we can see that it is composed of many different tissues, but only 280 

a handful of interface mutations, most of them D38 mutations. This indicates that this state can 281 

be reached from many different tissues by a specific, recurring set of mutations. In contrast, the 282 

state analyzed in Figure 8C is entirely composed of a single tissue (lymph node) with many 283 

different mutations, indicated that this state can only be reached by a specific tissue. 284 

Interestingly, both states analyzed are diverse in terms of Ras-GTP load. To conclude, we 285 

identify 24 distinct states of the Ras-effector systems and show that there are different 286 

mechanisms on how these states are formed.  287 

In summary, based on a large set of Ras-effector models, we predicted Ras branchegetic 288 

mutations and evaluate their binding in a tissue-specific Ras competition model. The Ras 289 

mutations, once introduced into cells or tissues, can be used as a tool to probe the contribution 290 

of specific effector pathways to an output or cellular phenotype. 291 

 292 

 293 

Discussion 294 

In this work we have shown a complete structural reconstruction of Ras and the RBDs of its 295 

effectors based on state-of-the-art technology. We used these structural models to investigate 296 

the workings of the interface between Ras and its effectors, as well as to search for and identify 297 

potential branch pruning mutations on Ras that would alter the behavior of the underlying 298 

system. We analyzed the effects on the steady state of the Ras effector system. 299 

Recent advances in structural modelling, mostly by the development and release of 300 

AlphaFold2 and similar algorithms have pushed the field of structural bioinformatics forward. 301 

This development was crucial for the quality of this study. While a normal homology modelling 302 
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pipeline would have been successful, the inclusion of both aspects of AlphaFold2 models was 303 

essential for the quality of the results. On the one hand, finding additional potential complex 304 

templates diversified the possible configurations of the interface that we could use to generate 305 

our models. On the other hand, having high quality templates of the RBDs enabled us to 306 

improve the structural predictions. Interestingly, with all the advancements that AlphaFold2 307 

brought, this combined AlphaFold2/homology modelling approach yielded more consistent and 308 

better results for this particular question.  309 

There is a growing body of literature about how Ras dimerizes or forms multimers, or 310 

interacts with the membrane to modulate the signaling. All these aspects have been deliberately 311 

left out for this approach. The essence of the interaction of Ras and its effectors is the binary 312 

protein-protein interaction between the Ras switch regions and the RBD. This common feature 313 

was the focus of this work, and we believe that other factors such as dimer/multimerization of 314 

Ras, the composition of the membrane, etc., are only modulators for this interaction.  315 

By creating a complete structural system, we were able to investigate and understand 316 

the interactions of Ras with its effector proteins on a different level. Crucially, it enabled us to 317 

analyze how in silico mutations of the system could affect its behavior. This is an interesting 318 

approach for a lot of different systems, not just the Ras effector system. However, there are 319 

certainly challenges. The prediction and verification of a protein-protein interface can be very 320 

complicated, and the techniques for modelling protein-protein interactions are not sufficiently 321 

developed to easily translate that approach to a larger scale. Probably the main reason why it 322 

was possible to construct this structural system for the Ras-effector system was because it is a 323 

conserved domain-domain interaction between homologue proteins. Although the sequence 324 

identity of the RBD sequences is not well preserved anymore, the structural fold of these 325 

domains has been preserved. Additionally, there is also the preserved mode of binding by the 326 

formation of the intermolecular β-sheet. These factors were favorable for the construction of 327 

the structural system and would need to be addressed if this approach were to be taken to a 328 

higher scale. Recent publications are already able to work on system-wide structural prediction 329 

for interactions 32. These approaches are very promising for the structural characterization of 330 

known protein complexes and can identify high-confidence novel interactions as well. 331 

However, for the exhaustive characterization of a full system, especially with transient 332 

interactions, the distinction between true and false positives seems to remain challenging.  333 

Finally, we hope that our structural and systems analysis of the branch pruning interface 334 

mutations will enable interesting experimental setups that study different downstream pathways 335 

from Ras. Some of the more promising candidates are AFDN, RADIL, SNX27, RASSF5. The 336 
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downstream pathways of Ras that are best characterized are the RAF-MEK-ERK signaling 337 

pathway and the PI3K-AKT signaling pathway. However, some of the other proteins might 338 

play a role in a physiological or pathophysiological context as well. AFDN is essential for the 339 

organization of adhesion between cells 33, function that is often impaired in cancer 34. RADIL 340 

is also linked to cell adhesion, and recent data showed that knockdown of was linked to 341 

decreased cell proliferation and invasion 35. SNX27 is also part of signaling pathways that link 342 

to cell adhesion and barrier function 36. RASSF5 is a tumor suppressor and has been shown to 343 

inhibit growth and invasion and to induce apoptosis 37. Importantly, all branchegetic mutations 344 

were studied on a systems level using a tissues specific Ras competition model. These models 345 

can easily be adapted for specific cell systems of interest, provided that estimates for Ras and 346 

effector abundances are available. Altogether, this work contributed to a quantitative 347 

understanding of a key cellular hub protein – Ras. 348 

 349 

 350 

Acknowledgements 351 

The authors would like to thank Cian D’Arcy, Thomas Sevrin, Simona Catozzi, Swathi 352 

Ramachandra Upadhya, and Hiroaki Imoto for discussions and/or critical reading of the 353 

manuscript. 354 

This work is part of the research program “Quantitative and systems analysis of 355 

(patho)physiological signaling networks” [16/FRL/3886], which is financed by Science 356 

Foundation Ireland (SFI) to C.K.  357 

This publication has emanated from research conducted with the financial support of Science 358 

Foundation Ireland under Grant number [16/FRL/3886]. For the purpose of Open Access, the 359 

author has applied a CC BY public copyright licence to any Author Accepted Manuscript 360 

version arising from this submission. 361 

 362 

Author contributions 363 

Conceptualization, P.J. and C.K.; Methodology, P.J. and C.K.; Software, P.J; Investigation, 364 

P.J.; Data Curation, P.J.; Writing – Original Draft, P.J. and C.K.; Writing – Review & Editing, 365 

P.J. and C.K.; Visualization, P.J. and C.K.; Supervision, C.K.; Funding Acquisition, C.K 366 

 367 

Declaration of interests 368 

The authors declare no competing interests. 369 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.09.04.506480doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.04.506480
http://creativecommons.org/licenses/by/4.0/


12 
 

 370 

STAR★Methods 371 

Lead contact 372 

Further information and requests for resources should be directed to Philipp Junk and will be 373 

fulfilled by the lead contact, Philipp Junk (philipp.junk@ucdconnect.ie) 374 

 375 

Material availability 376 

This study did not generate new unique reagents. 377 

 378 

Data and Code availability 379 

The code and generated data have been deposited on Zenodo: 380 

https://doi.org/10.5281/zenodo.7188727  381 

 382 

METHOD DETAILS 383 

Experimentally determined Ras-effector complex structures 384 

Structures were downloaded from the PDB. In the case where multiple models were available, 385 

the best one by MolProbity score was selected 27 28. The PDB files were processed using pdb-386 

tools so that all GTP and Mg2+ annotations were in the expected format 38. The list of used 387 

template structures can be found in Table S1. 388 

 389 

Interface characterization 390 

Hotspots residues were determined by FoldX in silico Alanine scan 39 31 20 40 41. In detail, each 391 

residue on both RAS and the effector was mutated to alanine and the in silico change of binding 392 

energy G was determined as such: 393 

∆∆𝐺 𝑎𝑙𝑎𝑠𝑐𝑎𝑛 = ∆𝐺(𝑚𝑢𝑡) − ∆𝐺(𝑤𝑡) 394 

A positive G value indicates that the mutated residue is involved favorably in the interaction, 395 

whereas a negative G value indicates that the mutation to alanine improved the interaction 396 

between the two proteins. The standard error for G values in FoldX is around +- 0.8 kcal/mol. 397 

In order to identify the most important residues for the respective interaction, a G cut-off of 398 

1.6 kcal/mol was chosen for the investigation of crystal structures. Since the energies are 399 

systematically lower in the modelled complex structures, a cut-off of 1.2 kcal/mol was chosen 400 

for those.  401 
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Based on the alanine scan results, the contribution of the two major functional regions 402 

in the RAS interface 42, switch 1 (residues 20-42) and switch 2 (residues 56-76) to the 403 

interaction were determined. For each functional region and the remainder of Ras, the G 404 

values were filtered by abs(G) > 0.8 kcal/mol and then summed up. The definition of the 405 

switch regions used here is more generous than what is normally used in the literature, and it 406 

would be probably more correct to label them as “switch-influenced” regions. These residue 407 

ranges aim to capture the regions in the interface that are affected by the movement of switch 408 

1 and 2 during the transition from the inactive GDP bound state to the active GTP bound state. 409 

The conserved intra-molecular β-sheet between the 2 sheet on Ras with the 2 sheet on the 410 

effector is evaluated by measuring the differences in inter-molecular distances between the  411 

sheets in the experimentally solved complex structures and comparing them to the ones in a 412 

structure of interest. This measurement has been named Measured Alignment Error (MAE) in 413 

this manuscript: 414 

𝑀𝐴𝐸(𝑟𝑒𝑠𝑒𝑓𝑓 , 𝑟𝑒𝑠𝑟𝑎𝑠) =
∑ √(𝑑𝑖𝑠𝑡𝑚𝑜𝑑𝑒𝑙 − 𝑑𝑖𝑠𝑡𝑟𝑒𝑓)2
𝑛
𝑖=1

𝑛
 415 

with 𝑑𝑖𝑠𝑡𝑚𝑜𝑑𝑒𝑙 being the Euclidean distance between two residues in the model of interest; 416 

𝑑𝑖𝑠𝑡𝑟𝑒𝑓 being the Euclidean distance between the residue on Ras and the corresponding residue 417 

in the reference structure, as determined by structural alignment using TMalign 43; and 𝑛 being 418 

the number of reference structures. The references used were the X-ray complex templates 419 

found in the PDB (Table S1). When the MAE is calculated for X-ray complex templates, the 420 

comparison with itself is removed from the calculation.  421 

 422 

 423 

AlphaFold2 determined single structures for RBDs 424 

For each protein containing one or more potential RBD sequences as identified in 6, the full 425 

structure was obtained from the AlphaFold Protein Structure database 14 15 (Release 1, accessed 426 

September 2021). The sequences of the RBDs were obtained from Pfam 44 and UNIPROT 45. 427 

The part of the structures that correspond to RBD sequences was subsequently extracted from 428 

the AlphaFold2 structures. The list of used templates as well as information about the extracted 429 

RBD domains can be found in Table S2. 430 

 431 

AlphaFold2 determined complex structures: generation and selection 432 

AlphaFold2-multimer/ColabFold (version 1.3.0) was run on a local computer 46 14 47. Multiple 433 

sequence alignments were generated from MS2seq 48 49 50 51. Complex models were generated 434 
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with HRAS as interaction partner. For each target, five models were generated with additional 435 

template search and five without additional template search 46 52. The resulting model were 436 

relaxed as per ColabFold defaults 46 53. For each model, several metrices were evaluated. Firstly, 437 

AlphaFold2’s Predicted Alignment Error (PAE) was taken into consideration. PAE is an 438 

estimation of the error of pairwise distances between residues, that can be used to assess how 439 

confident AlphaFold2 is in the inter-domain arrangement of its models. Secondly, FoldX 39 31 440 

40 41 interaction energies were determined for the complexes as described above. Finally, the 441 

expected orientation of the inter-molecular β sheets was evaluated by MAE. The best model by 442 

MAE was selected for each target, and then all complex structures with a MAE > 1A were 443 

removed. 444 

 445 

Homology modelling pipeline 446 

Alignment generation, model generation and model evaluation were performed using the 447 

homelette homology modelling interface 22. Inputs to the homology modelling pipeline were 448 

complex structures of Ras in complex with some effectors, either experimentally determined or 449 

selected from AlphaFold2 complex predictions, as well as AlphaFold2 models of all RBDs of 450 

interest. For each target, all combinations of the RBD template with all complex templates were 451 

used to generate 300 models of the target in complex with HRAS each. The different sources 452 

for the complex templates were run separately with slight differences in the modelling 453 

procedure. All sequence alignments for RAS were generated with M-Coffee 54,55. For complex 454 

templates of experimental origin, TMalign 43 was used to generate a structure-based sequence 455 

alignment based on the RBD in the complex template and the single RBD of the target structure. 456 

Then, with those two templates as inputs, models were generated. For complex templates of in 457 

silico origin, structure-based sequence alignments were generated with TMalign 43 as described. 458 

As an additional template a HRAS single structure (5P21 3) was used in the modelling process 459 

since the AlphaFold2-generated complex templates, in contrast to the complex templates of 460 

experimental origin, do not have information about the important heteroatoms GTP and MG2+ 461 

in the Ras part of the structure. Models were generated using modeller 23 24 with the altMOD 462 

extension 25. All models generated were evaluated using QMEAN 26 56, MolProbity, 27 28 and 463 

SOAP 29 potentials. A combined score was determined based on borda count as such: 464 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑠𝑐𝑜𝑟𝑒(𝑋) =  ∑𝑛 − 𝑟𝑎𝑛𝑘𝑖(𝑋)

𝑚

𝑖=1

 465 
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For an observation X with i…m being a collection of evaluation criteria and n the total number 466 

of observations. A structure with high borda score is a structure that performs well across all 467 

metrices.  468 

For each of the different sources of complex templates (experimental or in silico), 300 models 469 

were selected in a first selection step based on the combined score. These 600 models per target 470 

were then further analyzed using FoldX. In silico interaction energies were determined and in 471 

silico alanine scan was performed (see Interface Characterization). 472 

In addition to generating models for unknown targets, a set of validation models based 473 

on the experimentally solved models were generated as well. For each of the seven PDB 474 

complex structures, 300 models were generated. Inputs were restricted so that the structure to 475 

be modelled would not be used as a complex template, but only the remaining six 476 

experimentally derived complex templates. For each validation target, 300 models were 477 

selected as described above. 478 

Using the results from the analysis with FoldX, representative structures were selected 479 

based on an unsupervised learning workflow. As the clustering algorithm of choice, Ordering 480 

Points To Identify the Clustering Structure (OPTICS) 57 was used, as implemented in scikit-481 

learn 58. OPTICS is a density-based clustering method, which unlike the more popular k-means 482 

clustering does not require a manually set input of the number of clusters. Additionally, 483 

OPTICS is able to label data points as outliers. Several approaches to feature selection and/or 484 

feature engineering, hyperparameters of OPTICS, as well as methods for selecting 485 

representative structures from clusters were evaluated against the set of validation models 486 

(Table 3). To select the best combination of hyperparameters, for each combination, the in silico 487 

alanine scan results of the representative structures were correlated to the results of 488 

corresponding PDB structures, and the combination of hyperparameters with the most stable 489 

performance across all validation sets (by minimum z-score of the correlation against the PDB 490 

structure for all 7 validation sets) was chosen. The best combination of hyperparameters is 491 

highlighted in (Table 3). 492 

 493 

Estimation of binding energies 494 

Supervised learning based on a number of FoldX-derived features was used in order to estimate 495 

binding energy of complex models. The features consisted of the FoldX interaction energy, the 496 

energy contribution of switch 1, 2 and the remainder of the Ras protein interface (see Interface 497 

characterization), and the G values for hotspot residues on Ras (cut off 1.2 kcal/mol). All 498 
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features were standardized and highly intercorrelated features were removed. Data preparation 499 

was performed in R.  500 

The experimental measurements of the dissociation constant between Ras-effector 501 

complexes were collected from several publications (see Table S5, also available as 502 

supplementary data). Effectors that were experimentally determined as non-binders were 503 

removed from the data set due to uncertainty how to encode them with the varying technical 504 

limitations on detectable binding energies at the time of their publication. Also, the models 505 

generated for RASSF3 seem to be outliers with regards to FoldX interaction energy (see Figure 506 

S5B) and were therefore removed from the prediction. A test set was manually chosen from the 507 

available experimental measurements to cover the full spectrum of experimentally determined 508 

interaction energies. At the end, this gave us a training set with 51 observations (17 * 3 models) 509 

and a testing set with 12 observations (4 * 3 models). 510 

Supervised learning was performed in scikit-learn 58 using different combinations of 511 

feature selection algorithms and regressors. Feature selection was performed using either f-512 

regression or mutual information as implemented by scikit-learn. Regression was evaluated for 513 

different algorithms with various hyperparameter spaces (see Table S4). All combination of 514 

feature selection and regression were evaluated using Group-K-Fold cross validation within the 515 

training data, with k=5 and the groups corresponding to the three structural models chosen for 516 

each target. Models were evaluated using R2 score. The best performing combination was 517 

trained on the whole training data and evaluated against the test data. Finally, this model was 518 

used to predict the binding energies for the complex structures without experimental data.  519 

 520 

Branch pruning 521 

FoldX was used to evaluate the effect of interface mutation on the binding energies in the 522 

modelled complex structures. As previously described, 21 the FoldX command PSSM was used 523 

to evaluate the changes in binding energy, and the FoldX command PosScan was used to 524 

evaluate if mutations impacted the stability of RAS.  525 

All mutations that were destabilizing HRAS in either of two structures (3TGP and 5P21) 526 

were removed from the analysis (cutoff 1.6 kcal/mol). Then, between the three models for each 527 

target structures, it was checked if a mutation had a noticeable impact (> +- 1kcal/mol) in at 528 

least two of the three structures. If so, the changes in binding energy for all models above/below 529 

the cutoff were averaged.  530 

 531 

Systems analysis 532 
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A mathematical model of the Ras-effector system was set up as previously described 6 7. The 533 

model is based on classic ligand-receptor kinetics according to the assumption of conservation 534 

of mass. A system of ordinary differential equations was set up and steady states were calculated 535 

as described. The reactions are expressed as such:  536 

𝑅 + 𝐸𝑖
(𝑘𝑖,𝑘−𝑖)
↔    𝑅𝐸𝑖      537 

With 𝑅 representing the molar concentration of Ras, 𝐸𝑖 the molar concentration of an effector 538 

of the set of 𝑖 ∈ (1, 2, … ,54) effectors (all modelled proteins, except for proteins from the 539 

Ubiquitin family) and 𝑅𝐸𝑖 the molar concentration of a Ras-effector complexes. The complex 540 

is formed at rate 𝑘𝑖 and dismantled at rate 𝑘−𝑖. These rates define the dissociation constant: 541 

𝐾𝑑𝑖 =
𝑘−𝑖
𝑘𝑖

 542 

Due to the assumption of mass conservation,  543 

𝑅𝑡𝑜𝑡 = 𝑅 +∑𝑅𝐸𝑖

54

1

 544 

and 545 

𝐸𝑡𝑜𝑡𝑖 = 𝐸𝑖 + 𝑅𝐸𝑖 546 

the system to solve therefore is: 547 

𝑅𝑡𝑜𝑡 = 𝑅 +∑𝑅𝐸𝑖

54

1

 548 

𝐸𝑡𝑜𝑡𝑖 = 𝐸𝑖 + 𝑅𝐸𝑖 549 

𝐾𝑑𝑖 =
(𝑅 ∗ 𝐸𝑖)

𝑅𝐸𝑖
 550 

For the set of 𝑖 = {1,2, … ,54} and can be numerically solved for 𝑅𝐸𝑖. The system was solved 551 

using SciPy 59.  552 

The concentrations for the species in the model were taken from the supplementary data 553 

of 7, in which molar concentrations were derived from high-quality proteomics data set of 29 554 

different human tissues 60. The concentration of Ras proteins (HRAS, NRAS, KRAS) were 555 

pooled together and then multiplied with a loading factor to take into account the balance 556 

between active (GTP bound) and inactive (GDP bound) Ras. This loading factor was set to 0.2 557 

for a normal RAS system, and 0.9 for a system hyperactivated by an oncogenic hotspot 558 

mutation.  559 

The binding affinities were taken from the predicted binding affinities (see Estimation 560 

of binding affinities), with the exception of RASSF3 for which we are not confident in our 561 
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structural predictions. An experimentally determined binding affinity for RASSF3 was 562 

substituted from 61. Additional sets of binding affinities based on the branch pruning analysis 563 

were evaluated as well. For this, the predicted binding affinities were adapted by the ΔΔG values 564 

from the branch pruning analysis. For the case that a system with hyperactivated Ras was 565 

considered, it was made sure that common oncogenic hotspots such as G12, G13 and Q61 do 566 

not influence the binding energies for any effector. 567 

To gain an overview over all solved system, absolute and relative effector bindings were 568 

transformed using UMAP 62 and visualized. OPTICS clustering 57 was performed on the UMAP 569 

transformed data (parameters: min_sample = 25, min_cluster_size=200).   570 

 571 

Data analysis and visualization 572 

All data analysis, unless otherwise noted was performed in R using the tidyverse environment 573 

63,64. Visualizations were generated using ggplot2 65. Visualizations of protein structures were 574 

generated using PyMol 66. 575 

 576 

Figure legends 577 

Figure 1. Noticeable features of the Ras-RBD interfaces 578 

(A) Overview of interface features for the Ras-RAF1 interface. Highlighted are the 579 

intramolecular β-sheet alignment, the assembly of the Ras interface by the switch regions and 580 

energetic hotspots in the interface.  581 

(B) -sheet alignment for experimentally determined complexes (MAE). A lower value 582 

indicates a more similar alignment of the intramolecular -sheets compared to other crystal 583 

structures.  584 

(C) FoldX alanine scan hotspots on RAS for experimentally determined complex structures. 585 

The color scale is confined to the limits [-1.6, 1.6]. Positive G values indicate a loss in 586 

binding energy upon alanine mutation, which reflects that the respective amino acid contributes 587 

to binding. 588 

(D) Energetic contributions of functional regions based on alanine scan analysis. 589 

 590 

Figure 2. Overview over the homology modelling pipeline 591 

The principal homology modelling steps are shown from left to right with the steps of “Target 592 

Identification”, “Template Identification”, “Alignment Generation”, “Complex Model 593 

Generation”, “Evaluation & Selection 1”, and “Evaluation & Selection 2”. In the “Validation” 594 

process, the homology modelling pipeline is run on a set of 7 RBD domains from known x-ray 595 
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structures. The “Production” process describes the generation of 61 domains (RBD and 596 

Ubiquitin super-fold domains as controls). 597 

 598 

Figure 3. Energy hotspots in modelled structures  599 

(A) Heatmap of FoldX alanine scan averaged from the three representative structures on each 600 

target. The color scale is confined to the limits [-1.6, 1.6]. Hotspot residues with a G >= 1.2 601 

or <= -1.2 kcal/mol were marked. Positive and negative G values indicate a destabilization 602 

and stabilization of the RAS effector models by alanine mutation at the indicated position, 603 

respectively. 604 

C-F) Local neighborhood of D38 in structures where D38 is a favorable hotspot (C: RASSF1, 605 

D: RGL3) or an unfavorable hotspot (E: ARAP2, F: RAPGEF3). Ras and the effector structures 606 

are visualized in blue and green, respectively. Polar interactions between charged amino acids 607 

are indicated with dashes.  608 

 609 

Figure 4. Results of the affinity prediction for all Ras-effector complex structures 610 

Visualization of predicted binding affinities. The three representative structures for each target 611 

are visualized as black dots, with the averaged affinity (based on averaged energy) is visualized 612 

as a red cross. 613 

 614 

Figure 5. Switch contributions for the summed-up energy contributions grouped by their 615 

predicted binding affinity 616 

(A) Energy contributions were separately calculated for switch 1 switch or the rest of the Ras 617 

interface by summing up energy energies from the in silico alanine scan analysis. Complexes 618 

were grouped based on their predicted binding affinities into four groups.  619 

(B – E) Examples of the switch contributions for each of the four groups. Visualized are BRAF 620 

(panel B), AFDN_1 (panel C), ARHGAP20 (panel D), and PIK3C2B (panel E). 621 

 622 

Figure 6. Energetic characterization of RAS interface mutations that affect effector 623 

binding 624 

The color scale is confined to the limits [-3.2, 3.2]. Hotspot residues with a G >= 1 or <= -1 625 

were marked. Negative G values indicate an increase in binding energy compared to the WT 626 

interface, and positive G values indicate a decrease in binding energy compared to the WT 627 

interface.  628 

 629 
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Figure 7. Ras-effector interaction rewiring at a systems level 630 

(A-B) Effects of interface mutation on the Ras-effector system. Heatmap of effectors bound to 631 

Ras at 20% Ras-GTP load in 29 tissues in (panel A) WT interface and in (panel B) with the 632 

effects of a D38A mutation.  633 

(C) Visualization of change in relative binding compared to WT system for each effector across 634 

all tested branch pruning mutations in all 29 tissues at 20 % or 90 % Ras-GTP load. Positive 635 

values indicate a relative increase in bound effector to Ras. 636 

 637 

Figure 8. Ras-effector systems are rewired into distinct states 638 

(A) UMAP transformation of all simulated systems. Similar systems were identified using 639 

OPTICS clustering. 24 identified clusters are colored in rainbow colors, with systems classified 640 

as outliers colored in grey.  641 

(B) and (C) Characterization of two identified state clusters in terms of Ras-GTP load, tissues, 642 

interface mutations, and most representative effectors. For the tissue and mutation pie charts, 643 

all groups that were smaller than 5% of the total observations were collapsed into the “Other” 644 

group.   645 
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Figure 2
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