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Summary  15 

Ras is a central cellular hub protein controlling multiple cell fates. How Ras interacts with a 16 

variety of potential effector proteins is relatively unexplored, with only some key effectors 17 

characterized in great detail. Here, we have used homology modelling based on X-ray and 18 

AlphaFold templates to build structural models for 54 Ras-effectors complexes. These models 19 

were used to estimate binding affinities using a supervised learning regressor. Furthermore, we 20 

systematically introduced Ras ‘branch-pruning’ (or branchegetic) mutations to identify 200 21 

interface mutations that affect the binding energy with at least one of the model structures. The 22 

impacts of these branchegetic mutants were integrated into a mathematical model to assess the 23 

potential for rewiring interactions at the Ras hub on a systems level. These findings have 24 

provided a quantitative understanding of Ras-effector interfaces and their impact on systems 25 

properties of a key cellular hub.  26 
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Introduction  32 

Ras is a key cellular signaling hub and oncogene (1). The first correct Ras structure was 33 

famously described in 1989 (2) (3) and consists of the G domain super-fold (six β-strands and 34 

five α-helices; (1)). It’s main structural and functional characteristic is the nucleotide binding 35 

site (the typical α,β-fold of nucleotide binding proteins), which can bind GTP and hydrolyze it 36 

to GDP. Then, GDP gets released and a new nucleotide (favorably GTP since it is higher 37 

abundant in cells) gets bound. Depending on which nucleotide is bound, the functional state of 38 

RAS is different. GDP bound Ras assumes a so-called inactive conformation, whereas upon the 39 

binding of GTP, the conformation of Ras is called active. The difference between the active 40 

and the inactive conformation is that, in the active conformation, two loop regions called switch 41 

1 and switch 2 are interacting with the GTP and thereby tightly bound to it (1) (Figure 1A). 42 

This rearranges the interface of Ras in a specific way so that effector proteins with a specific 43 

structural motive can interact with Ras. The structural motive required for the interaction with 44 

Ras has a ubiquitin domain super-fold (4). There exist three families of these domains, called 45 

Ras binding domain (RBD), Ras association domain (RA domain) and PI3K-Ras binding 46 

domain (PI3K RBD) with only minor sequence and structural differences between them. In the 47 

following, for the sake of simplicity, all of these will be called RBDs.  48 

Ras∙GTP can interact and activate many downstream effectors, some of which are better 49 

studied than others (5). Well-studied effectors include PI3-kinases, RalGDS, and Raf kinases, 50 

which control important cellular processes such as survival, polarization, adhesion, migration, 51 

and proliferation. In our previous work, we characterized a set of 56 RBD-containing proteins 52 

as potential Ras effectors, which converge into 12 classes that are linked to different 53 

downstream cellular processes and phenotypes (6) (7) (8) (9).  54 

Ras-effector interactions are interesting from a systems biology and network point of 55 

view. Effectors use a mutually exclusive binding site on Ras, hence competition for binding 56 

can occur under certain conditions (10). Also, the experimental and predicted affinities between 57 

RBDs and Ras∙GTP vary, ranging from nano- to micromolar Kd values (8). Previously we 58 

analyzed how the amount of effectors in complex with Ras varies in different cell types (6) (7). 59 

We find that only 9 effectors are predicted to bind in significant amount to Ras∙GTP using the 60 

RBD alone (7). However, 31 effectors are predicted to form significant complexes with Ras if 61 

they are additionally recruited to the plasma membrane via other domains present in effectors 62 

(piggyback mechanism, (11)). Hence, even weak binding affinities on the level of RBD-RAS 63 

binding can turn into significant complex formation if effectors are recruited (e.g. in a context 64 
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specific manner). Thus, for systems analyses and computational models, we need good 65 

estimations for all binding affinities between RBDs and Ras. 66 

Structural analysis can lead to a deeper understanding of protein-protein interaction 67 

(PPI). Previous we used homology modelling, based on experimentally determined complex 68 

structures, to predict binding between effectors and Ras∙GTP (12) (13). While this has provided 69 

insights into binding propensities, a limitation of this work was that no quantitative binding 70 

affinities were predicted, but qualitative binding by classifying effectors into categories of 71 

‘binding’, ‘non-binding’, and ‘twilight’. It is now timely to revisit homology modelling of Ras-72 

RBD complexes, as new template structures are available by (i) X-ray crystallography (8 of 56 73 

effectors are crystallized in complex with RAS) and (ii) AlphaFold (14) (15). 74 

Ras is frequently mutated in different cancers, where aberrant Ras signaling plays a role 75 

in cancer initiation, progression, and metastasis via alterations in metabolism, proliferation, and 76 

survival (16). As Ras cannot be directly targeted (or only certain  Ras mutations) (17), much 77 

hope rests on network-centric approaches (18) that involve Ras-effector interactions or 78 

downstream pathways (9). Therefore, tinkering with Ras-effector binding is an attractive 79 

alternative strategy for finding suitable targets for therapeutic interventions. Previously we 80 

developed a ‘branch-pruning’ (or “branchegetic”, in analogy to “edgetics” (19) and 81 

“enedgetics” (20)) strategy for Ras effector interactions, where mutations are introduced into 82 

Ras that differentially impact binding to effectors (21). For example, introducing a mutation 83 

can result in a steric clash in the interface formed with one effector, but not with another; hence 84 

the interaction with one effector is broken while intact for another.   85 

In this work, we first generate homology models of all Ras-effector (RBD) interactions 86 

and predict affinities of the RBDs in complex with Ras∙GTP. We then use the generated model 87 

structures to employ a systematic branchegetic strategy that explores the impact of Ras interface 88 

mutants on binding to all effectors. Altogether, our results contribute to a quantitative and 89 

systems-level understanding of Ras-effector interactions and further our understanding of Ras 90 

in health and disease.  91 

 92 

 93 

Results 94 

Structural analysis of experimental complex structures 95 

From the few experimentally determined complex structures of Ras with these RBDs, there are 96 

some structural similarities that can be determined. The main interface on the site of Ras 97 

consists of the two switch regions, switch 1 and switch 2. One of the main structural features 98 
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of the interface between Ras and RBDs is the formation of an intra-molecular β-sheet between 99 

2 on RAS and 2 on the RBD. This interaction is a highly conserved structural feature across 100 

all available complex structures, with deviations in orientation of less than 1 Å (Figure 1B, see 101 

Methods for MAE).  102 

Analyzing the energetic profile of the interface in silico using the FoldX force field 103 

shows that there are also some recurring hotspots in the interface (highlighted in Figure 1C). 104 

I36, D38 and Y40 are well characterized as important residues for the interaction between Ras 105 

and effector domains. Additionally, for the structures 3DDC and 1LFD, the mutation E31K was 106 

introduced to stabilize the complex for crystallization. Our analysis confirms that this interface 107 

mutation has indeed been favorable for the complex formation. Finally, the energetic 108 

contributions of the function regions switch 1 and 2 to the interface were analyzed. Both relative 109 

and absolute contributions are diverse, although switch 1 contributions to binding dominate 110 

(Figure 1D). Altogether, the analysis of existing Ras-RBD effector structures indicates that 111 

although there are many common features of the Ras RBD interface such as the intra-molecular 112 

-sheet or the hydrophobic patch around I36, the actual energetic contributions can come from 113 

different parts of the interface. It also sets the basis for a successful homology modelling 114 

approach. 115 

 116 

Homology modelling and characterization of modelled interfaces 117 

In order to study these interface features in a more diverse set of structures, homology models 118 

of the complex between RAS and RBD were constructed for all proteins containing an RBD in 119 

the human proteome.  120 

The homology modelling pipeline is based on the already existing complex models 121 

(Table S1). Also, with the recent release of AlphaFold2 (14) and the accompanying AlphaFold 122 

Protein Structure Database (15), the RBD domains of all potential effectors were extracted from 123 

that database and used. The structures of RBDs are predicted with good confidence by 124 

AlphaFold2 and our analysis indicates that AlphaFold2 is reliable at predicting the RBD fold 125 

(Figure S1). Additionally, AlphaFold2 complex modelling was attempted for all potential 126 

complex structures and models which AlphaFold2 were confident in (by Predicted Alignment 127 

Error (PAE)) and where the -sheet alignment of the interface was within a tolerance to what 128 

has been observed in crystal structures, were used as templates as well (Figure S2 and S3, 129 

compare MAE Figure 1). There are two kinds of templates to use: 1) complex templates which 130 

comprised of the already experimentally determined complex structures of Ras and RBDs, as 131 

well as “good” AlphaFold2 predicted complex templates (Table S1), and 2) templates of the 132 
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RBDs alone which were extracted from the AlphaFold2 EMBL database (Table S2). An 133 

overview over the pipeline is depicted in Figure 2. Homology modelling was performed using 134 

homelette (22) with modeller and altMod. Evaluation of predicted structures was performed 135 

using QMEAN, MolProbity and SOAP potentials. The top 300 models for each target for each 136 

source of complex templates (experimental or AlphaFold2) were selected by combined score 137 

and FoldX analysis (interaction energy and alanine scan) was performed.  138 

In order to evaluate our approach, we generated a validation set, in which we created 139 

models for the structures already solved by X-ray crystallography without using information 140 

from the specific structure. Models generated in this validation set were compared to the 141 

underlying ground truth by assessing their correlation of the in silico alanine scan results to 142 

those of the crystal structures of interest. Using this ground truth, different methods to select 143 

representative models from the hundreds of structures were assessed. In particular, we evaluated 144 

the hyperparameters of an unsupervised learning pipeline comprised of different feature 145 

selection and dimensionality reduction strategies followed by clustering with the OPTICS 146 

algorithm (see Methods for more details about the hyperparameter space). After clustering, 147 

three representative structures were chosen. Based on the performance in the validation set, the 148 

optimal set of hyperparameters was chosen (Table S3, see Figures S4 and S5). The described 149 

strategy for identifying representative structures was then applied to all target complexes and 150 

we ended up with three representative complex structures for each effector.  151 

Analogous to how we characterized the interfaces of the experimentally determined 152 

complex structures before, we performed the same analysis on the complex models. The overall 153 

FoldX interaction energies for the models are diverse, indicating that maybe some of the 154 

complexes are energetically unfavorable and would not form (Figure S6B). In general, the 155 

binding energies are lower than what would be observed in crystal structures, which is to be 156 

expected. There are one or two outliers with regards to FoldX binding energy, namely RASSF8 157 

and PIK3C2B. In particular, RASSF8 is also showing an uncommon hotspot profile, with 158 

multiple unfavorable hotspots that are only appearing for this set of structures (Figure S6A). 159 

Based on this behavior, RASSF8 is excluded from further analysis. 160 

The analysis of hotspots confirmed the already established hotspots. I36, Y40, D38 and 161 

E37 are the most commonly observed hotspots (Figure 3A, Figure S6A). Interestingly, while 162 

I36, Y40, and E37 are exclusively favorable to the interaction with the effector protein, D38 163 

seems to be also unfavorable in some of the structures (Figure 3B). The energetic diversity of 164 

the hotspot D38 was further investigated in the models. For this, two models were picked for 165 

which D38 was a favorable hotspot in the alanine scan analysis (Figure 3C: RASSF1, Figure 166 
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3D: RGL3), and two models were picked for which it was unfavorable (Figure 3E: ARAP2, 167 

Figure 3F: RAPGEF3). Next, neighboring amino acids were analyzed. For favorable 168 

interactions, we were able to observe positively charged amino acids. On RASSF1, we find 169 

K216 and H217, whereas on RGL3, there is R630. These amino acids probably form strong 170 

interactions with the negatively charged D38 on Ras. In contrast, for the models where D38 171 

comes up as an unfavorable hotspot in the interface, we observe an uncharged, mostly 172 

hydrophobic neighborhood. 173 

 174 

Estimation of binding energies 175 

One of the applications of the structural models that were generated was to use them for the 176 

estimation of binding energies. Since experiments measuring the binding energy between two 177 

proteins are experimentally very challenging and error-prone (23), we were implementing an in 178 

silico approach. Also, while FoldX is good at predicting energy changes to interaction energy 179 

or protein stability on mutation, the absolute interaction energies for protein complexes usually 180 

are not well correlated with experimental values (24). Because of this, a supervised learning 181 

regression pipeline was built based on features extracted from the modelled structures and a 182 

collection of experimentally determined binding energies of different Ras-effector complexes 183 

(Table S5). From a combination of different regressors, feature extraction procedures, and 184 

hyperparameters, the best approach was determined using a cross validation strategy (see 185 

methods). A support vector machine-based regressor (see hyperparameters in Table 4) 186 

performed best in cross-validation with an R2 score of 0.53. Then, the performance of the best 187 

approach was evaluated in an out-of-sample test set, where it achieved an R2 score of 0.77. The 188 

model was then used to predict the interaction energies for the complexes without prior 189 

experimental measurements (Figure 4, Table S5). The predicted binding affinities for our 190 

models range 4 orders of magnitude, between the highest predicted affinity for BRAF of 0.02 191 

M to PIK3C2B with the lowest predicted affinity of 588 M. The highest binding effectors 192 

are quite well characterized (RAF family, PI3K, RASSF5, RIN1, RalGDS, AFDN (8)). As 193 

experimental measurements of the PI3K family members are difficult as the RBD is not easy 194 

to express and purify in isolation, it is noteworthy that we assign three of the good binding 195 

affinities to PI3K family members (PIK3CA, PIK3CD, PIK3CG). A big group of effectors has 196 

affinities in the range of 1 to 10 M. For example, RASIP1 was previously in the “likely no 197 

binding” category (8), and is now predicted to have an affinity in complex with Ras of 2.7 M. 198 

RAPGEF5 and RGL3 were previously in the “unknown” (8) category and have predicted 199 

affinities of 9.2 and 5.6 M, respectively. Another big group of effectors has affinities in the 200 
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range of 10 to 100 M. Especially the first one could be interesting for modulation of binding 201 

affinity by the piggy back mechanism (7).  202 

 203 

Switch contributions to binding 204 

Having Ras-effector structural models available allowed us to analyze the individual 205 

contributions of switch 1 and switch 2 to binding using the results from alanine scanning 206 

(similarly as done before for the X-ray Ras-effector structures).  We find that generally most 207 

structures are dominated by favorable switch 1 contributions (Figure 5 and Figure S7). Switch 208 

2 contributions are surprisingly small. We also predict more contributions from regions outside 209 

switch 1 and switch 2 as in the X-ray structures. For the two weak affinity binding groups (10 210 

M (Kd < 100 M and (Kd > 100 M) switch 1 contributions are in the range of 4 to 5 kcal/mol 211 

with small (~1 kcal/mol) contributions from switch 2 and remaining parts involved in interface 212 

formation. For the two strong affinity groups (Kd < 1 M and 1 M (Kd < 10 M) switch 1 213 

contributions increase to 6 to 9 kcal mol with also increasing switch 2 contributions (1 to 2 214 

kcal/mol). We also observed negative switch contributions (mainly for switch 1), indicating 215 

that these proteins are either not well predicted or non-binders. Indeed, all structures with 216 

negative switch energies are weak binders.  217 

 218 

Branch pruning analysis using Ras-effector model structures 219 

Next, we were interested in exploring surface mutations on Ras that would selectively influence 220 

the binding to some, but not all effectors. Both enhancing and inhibiting mutations are of 221 

interest. This could enable the engineering of the Ras effector system to respond to stimuli in 222 

different ways and to study selective sets of effectors. We previously reported a framework for 223 

the identification and evaluation of so called ‘branch pruning’ mutations (21). Since our protein 224 

is interacting with a many different effectors at the same time through the same interface it will 225 

be quite unlikely to identify mutations that selectively target only one protein. Instead, it is more 226 

likely that we will identify mutations that enhance in interaction with some proteins while 227 

inhibiting some others. 228 

Figure 6 shows a heatmap of all identified mutations of interest and their effect on all 229 

effectors. Some interesting mutations to highlight are mutations around I36, that are almost 230 

exclusively unfavorable while affecting almost every structure. D37 mutation are more 231 

selective and also exclusively disruptive. D38 is mixed, as our analysis of the hotspot already 232 

indicates. This is probably the best point to disrupt the system. Y40, interestingly, while being 233 

a ubiquitous hotspot, is not a good spot for engineering the interface because mutations seem 234 
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to affect protein stability (compare with Figure S8A). Also of interest is that we detect both 235 

mutations that increase and disrupt binding (Figure S8B).  236 

 237 

Assessment of rewiring of Ras-effector interaction on a systems level  238 

Finally, we want to evaluate the behavior of the Ras effector system based on our predicted 239 

binding energies and based on the introduction of different branch pruning mutations. For this 240 

means, we went back to our mathematical model of the Ras-effector system that incorporated 241 

affinities and high-quality proteomics data in 29 human tissues (7). Here, all 29 tissue systems 242 

were simulated at 20% and 90% GTP load on Ras. We are using exclusively the predicted 243 

binding energies for this (except RASSF8, see methods). Overall, the results for the systems 244 

without a branch pruning mutation are comparable to previous findings (Figure 7A; (7)). The 245 

Raf family members ARAF, BRAF and RAF1 dominate the binding profile in complex with 246 

Ras. Other effectors that are in high amount in complex with Ras in at least one of the 29 tissues 247 

are RGL2, RASSF7, RASSF5, RASIP1, RALGDS, PIK3CD, PIK3CA, and AFDN.  248 

Expanding on this, we introduced our branch pruning mutations to the mathematical 249 

model. In total, there are 200 interface mutations that do not significantly affect overall protein 250 

stability but affect binding to at least one of the effectors. Some of the branch pruning mutations 251 

are able to dramatically change the system in all tissues, as can be seen from the example of 252 

D38A (Figure 7B). With a single interface mutation, almost all RAF binding is quenched, and 253 

other effectors start to compete for the binding. Interestingly, which effectors come up depends 254 

on the tissue.  255 

Next, we wanted to explore whether there are recurring states that the modelled system 256 

assumes and whether these states are dependent on Ras-GTP load, the tissue, or interface 257 

mutation. To this end, we applied uniform manifold approximation and projection (UMAP) to 258 

our systems to transform a high-dimensional space of absolute and relative effector binding into 259 

a 2D space. Then, we used OPTICS to identify areas of high density in this 2D plane and 260 

assigned them into 19 distinct clusters (Figure 7C). For each cluster, we picked three of the 261 

systems at random and visualized their relative effector binding (Figure S9). Each of these 262 

clusters belongs to a different “state” that the Ras-effector system can be rewired into, with 263 

systems belonging to a specific state showing similar trends in effector binding. Many of the 264 

systems are dominated by ARAF binding, as it would be expected, but even for these there are 265 

differences in the secondary effectors. To understand what the attributes of different “states” of 266 

the systems are, two of them were picked and investigated for Ras-GTP load, tissue 267 

composition, and interface mutation status (Figure 7DE). We find that there are different ways 268 
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a distinct state of the system can come together: for the state analyzed in Figure 7D, we can see 269 

that it is composed of many different tissues, but only a handful of interface mutations, most of 270 

them D38 mutations. This indicates that this state can be reached from many different tissues 271 

by a specific, recurring set of mutations. In contrast, the state analyzed in Figure 7E is entirely 272 

composed of a single tissue (lymph node) with many different mutations, indicated that this 273 

state can only be reached by a specific tissue. Interestingly, both states analyzed are diverse in 274 

terms of Ras-GTP load. To conclude, we identify 19 distinct states of the Ras-effector systems 275 

and show that there are different mechanisms on how these states are formed.  276 

Finally, we wanted to explore to which extend, for a specific effector, it is possible to 277 

modulate its binding. For this, we visualized the possible changes to the relative amount of 278 

effector bound to Ras across all systems tested (Figure S10). On the side of proteins that can be 279 

negatively influenced, mostly the high-affinity binders such as RAF family proteins show up, 280 

which is to be expected. Some effectors cannot be influenced by the branch pruning mutations, 281 

either because they are energetically not affected or because their concentrations in any of the 282 

29 tissues do not leave them in a position to compete for binding. Examples for this would be 283 

RADIL or the TIAM family proteins. The effectors with the highest propensity to have their 284 

binding enhanced are AFDN, RADIL, SNX27, RASSF5. In summary, based on a large set of 285 

Ras-effector models, we predicted Ras branchegetic mutations and evaluate their binding in a 286 

tissue-specific Ras competition model. The Ras mutations, once introduced into cells or tissues, 287 

can be used as a tool to probe the contribution of specific effector pathways to an output or 288 

cellular phenotype. 289 

 290 

 291 

Discussion 292 

In this work we have shown a complete structural reconstruction of Ras and the RBDs of its 293 

effectors based on state-of-the-art technology. We used these structural models to investigate 294 

the workings of the interface between Ras and its effectors, as well as to search for and identify 295 

potential branch pruning mutations on Ras that would alter the behavior of the underlying 296 

system. We analyzed the effects on the steady state of the Ras effector system. 297 

Recent advances in structural modelling, mostly by the development and release of 298 

AlphaFold2 and similar algorithms have pushed the field of structural bioinformatics forward. 299 

This development was crucial for the quality of this study. While a normal homology modelling 300 

pipeline would have been successful, the inclusion of both aspects of AlphaFold2 models was 301 

essential for the quality of the results. On the one hand, finding additional potential complex 302 
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templates diversified the possible configurations of the interface that we could use to generate 303 

our models. On the other hand, having high quality templates of the RBDs enabled us to 304 

improve the structural predictions. Interestingly, with all the advancements that AlphaFold2 305 

brought, this combined AlphaFold2/homology modelling approach yielded more consistent and 306 

better results for this particular question.  307 

There is a growing body of literature about how Ras dimerizes or forms multimers, or 308 

interacts with the membrane to modulate the signaling. All these aspects have been deliberately 309 

left out for this approach. The essence of the interaction of Ras and its effectors is the binary 310 

protein-protein interaction between the Ras switch regions and the RBD. This common feature 311 

was the focus of this work, and we believe that other factors such as dimer/multimerization of 312 

Ras, the composition of the membrane, etc., are only modulators for this interaction.  313 

By creating a complete structural system, we were able to investigate and understand 314 

the interactions of Ras with its effector molecules on a different level. Crucially, it enabled us 315 

to analyze how in silico mutations of the system could affect its behavior. This is an interesting 316 

approach for a lot of different systems, not just the Ras effector system. However, there are 317 

certainly challenges. The prediction and verification of a protein-protein interface can be very 318 

complicated, and the techniques for modelling protein-protein interactions are not sufficiently 319 

developed to easily translate that approach to a larger scale. Probably the main reason why it 320 

was possible to construct this structural system for the Ras-effector system was because it is a 321 

conserved domain-domain interaction between homologue proteins. Although the sequence 322 

identity of the RBD sequences is not well preserved anymore, the structural fold of these 323 

domains has been preserved. Additionally, there is also the preserved mode of binding by the 324 

formation of the intermolecular β-sheet. These factors were favorable for the construction of 325 

the structural system and would need to be addressed if this approach were to be taken to a 326 

higher scale. Recent publications are already able to work on system-wide structural prediction 327 

for interactions (25). These approaches are very promising for the structural characterization of 328 

known protein complexes and can identify high-confidence novel interactions as well. 329 

However, for the exhaustive characterization of a full system, especially with transient 330 

interactions, the distinction between true and false positives seems to remain challenging.  331 

Finally, we hope that our structural and systems analysis of the branch pruning interface 332 

mutations will enable interesting experimental setups that study different downstream pathways 333 

from Ras. Some of the more promising candidates are AFDN, RADIL, SNX27, RASSF5. The 334 

downstream pathways of Ras that are best characterized are the RAF-MEK-ERK signaling 335 

pathway and the PI3K-AKT signaling pathway. However, some of the other proteins might 336 
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play a role in a physiological or pathophysiological context as well. AFDN is essential for the 337 

organization of adhesion between cells (26), function that is often impaired in cancer (27). 338 

RADIL is also linked to cell adhesion, and recent data showed that knockdown of was linked 339 

to decreased cell proliferation and invasion (28). SNX27 is also part of signaling pathways that 340 

link to cell adhesion and barrier function (29). RASSF5 is a tumor suppressor and has been 341 

shown to inhibit growth and invasion and to induce apoptosis (30). Importantly, all branchegetic 342 

mutations were studied on a systems level using a tissues specific Ras competition model. These 343 

models can easily be adapted for specific cell systems of interest, provided that estimates for 344 

Ras and effector abundances are available. Altogether, this work contributed to a quantitative 345 

understanding of a key cellular hub protein – Ras. 346 

 347 

 348 

STAR★Methods 349 

Detailed methods are provided in the online version of this paper and include the following:  350 

• KEY RESOURCE TABLE 351 

• RESOURCE AVAILABILITY 352 

 353 

Lead contact 354 

Further information and requests for resources should be directed to Philipp Junk 355 

(philipp.junk@ucdconnect.ie) 356 

 357 

Code availability 358 

The code will soon be deposited on Zenodo. 359 

 360 

METHOD DETAILS 361 

Experimentally determined Ras-effector complex structures 362 

Structures were downloaded from the PDB. In the case where multiple models were available, 363 

the best one by MolProbity score was selected (31) (32). The PDB files were processed so that 364 

all GTP and Mg2+ annotations were in the expected format. The list of used template structures 365 

can be found in Table S1. 366 

 367 

Interface characterization 368 
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Hotspots residues were determined by FoldX in silico Alanine scan (33) (24) (20) (34) (35). In 369 

detail, each residue on both RAS and the effector was mutated to alanine and the in silico change 370 

of binding energy G was determined as such: 371 

∆∆𝐺 𝑎𝑙𝑎𝑠𝑐𝑎𝑛 = ∆𝐺(𝑚𝑢𝑡) − ∆𝐺(𝑤𝑡) 372 

A positive G value indicates that the mutated residue is involved favorably in the interaction, 373 

whereas a negative G value indicates that the mutation to alanine improved the interaction 374 

between the two proteins. The standard error for G values in FoldX is around +- 0.8 kcal/mol. 375 

In order to identify the most important residues for the respective interaction, a G cut-off of 376 

1.6 kcal/mol was chosen for the investigation of crystal structures. Since the energies are 377 

systematically lower in the modelled complex structures, a cut-off of 1.2 kcal/mol was chosen 378 

for those.  379 

Based on the alanine scan results, the contribution of the two major functional regions 380 

in the RAS interface (36), switch 1 (residues 20-42) and switch 2 (residues 56-76) to the 381 

interaction were determined. For each functional region and the remainder of Ras, the G 382 

values were filtered by abs(G) > 0.8 kcal/mol and then summed up. The definition of the 383 

switch regions used here is more generous than what is normally used in the literature, and it 384 

would be probably more correct to label them as “switch-influenced” regions. These residue 385 

ranges aim to capture the regions in the interface that are affected by the movement of switch 386 

1 and 2 during the transition from the inactive GDP bound state to the active GTP bound state. 387 

The conserved intra-molecular β-sheet between the 2 sheet on Ras with the 2 sheet on the 388 

effector is evaluated by measuring the differences in inter-molecular distances between the  389 

sheets in the experimentally solved complex structures and comparing them to the ones in a 390 

structure of interest. This measurement has been named Measured Alignment Error (MAE) in 391 

this manuscript: 392 

𝑀𝐴𝐸(𝑟𝑒𝑠𝑒𝑓𝑓, 𝑟𝑒𝑠𝑟𝑎𝑠) =
∑ √(𝑑𝑖𝑠𝑡𝑚𝑜𝑑𝑒𝑙 − 𝑑𝑖𝑠𝑡𝑟𝑒𝑓)2
𝑛
𝑖=1

𝑛
 393 

with 𝑑𝑖𝑠𝑡𝑚𝑜𝑑𝑒𝑙 being the Euclidean distance between two residues in the model of interest; 394 

𝑑𝑖𝑠𝑡𝑟𝑒𝑓 being the Euclidean distance between the residue on Ras and the corresponding residue 395 

in the reference structure, as determined by structural alignment using TMalign (37); and 𝑛 396 

being the number of reference structures. The references used were the X-ray complex 397 

templates found in the PDB (Table S1). When the MAE is calculated for X-ray complex 398 

templates, the comparison with itself is removed from the calculation.  399 

 400 
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 401 

AlphaFold2 determined single structures for RBDs 402 

For each protein containing one or more potential RBD sequences as identified in (6), the full 403 

structure was obtained from the AlphaFold Protein Structure database (14) (15) (Release 1, 404 

accessed September 2021). The sequences of the RBDs were obtained from Pfam (38) and 405 

UNIPROT (39). The part of the structures that correspond to RBD sequences was subsequently 406 

extracted from the AlphaFold2 structures. The list of used templates as well as information 407 

about the extracted RBD domains can be found in Table S2. 408 

 409 

AlphaFold2 determined complex structures: generation and selection 410 

AlphaFold2-multimer/ColabFold (version 1.3.0) was run on a local computer (40) (14) (41). 411 

Multiple sequence alignments were generated from MS2seq (42) (43) (44) (45). Complex 412 

models were generated with HRAS as interaction partner. For each target, five models were 413 

generated with additional template search and five without additional template search (40) (46). 414 

The resulting model were relaxed as per ColabFold defaults (40) (47). For each model, several 415 

metrices were evaluated. Firstly, AlphaFold2’s Predicted Alignment Error (PAE) was taken 416 

into consideration. PAE is an estimation of the error of pairwise distances between residues, 417 

that can be used to assess how confident AlphaFold2 is in the inter-domain arrangement of its 418 

models. Secondly, FoldX (33) (24) (34) (35) interaction energies were determined for the 419 

complexes as described above. Finally, the expected orientation of the inter-molecular β sheets 420 

was evaluated by MAE. The best model by MAE was selected for each target, and then all 421 

complex structures with a MAE > 1A were removed. 422 

 423 

Homology modelling pipeline 424 

Alignment generation, model generation and model evaluation were performed using the 425 

homelette homology modelling interface (22). Inputs to the homology modelling pipeline were 426 

complex structures of Ras in complex with some effectors, either experimentally determined or 427 

selected from AlphaFold2 complex predictions, as well as AlphaFold2 models of all RBDs of 428 

interest. For each target, all combinations of the RBD template with all complex templates were 429 

used to generate 300 models of the target in complex with HRAS each. The different sources 430 

for the complex templates were run separately with slight differences in the modelling 431 

procedure. For complex templates of experimental origin, TMalign (37) was used to generate a 432 

structure-based sequence alignment based on the RBD in the complex template and the single 433 

RBD of the target structure. Then, with those two templates as inputs, models were generated. 434 
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For complex templates of in silico origin, structure-based sequence alignments were generated 435 

with TMalign (37) as described. As an additional template a HRAS single structure (5P21 (3)) 436 

was used in the modelling process since the AlphaFold2-generated complex templates, in 437 

contrast to the complex templates of experimental origin, do not have information about the 438 

important heteroatoms GTP and MG2+ in the Ras part of the structure. Models were generated 439 

using modeller (48) (49) with the altMOD extension (50). All models generated were evaluated 440 

using QMEAN (51) (52), MolProbity, (31) (32) and SOAP (53) potentials. A combined score 441 

was determined based on borda count as such: 442 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑠𝑐𝑜𝑟𝑒(𝑋) =  ∑𝑛 − 𝑟𝑎𝑛𝑘𝑖(𝑋)

𝑚

𝑖=1

 443 

For an observation X with i…m being a collection of evaluation criteria and n the total number 444 

of observations. A structure with high borda score is a structure that performs well across all 445 

metrices.  446 

For each of the different sources of complex templates (experimental or in silico), 300 models 447 

were selected in a first selection step based on the combined score. These 600 models per target 448 

were then further analyzed using FoldX. In silico interaction energies were determined and in 449 

silico alanine scan was performed (see Interface Characterization). 450 

In addition to generating models for unknown targets, a set of validation models based 451 

on the experimentally solved models were generated as well. For each of the seven PDB 452 

complex structures, 300 models were generated. Inputs were restricted so that the structure to 453 

be modelled would not be used as a complex template, but only the remaining six 454 

experimentally derived complex templates. For each validation target, 300 models were 455 

selected as described above. 456 

Using the results from the analysis with FoldX, representative structures were selected 457 

based on an unsupervised learning workflow. As the clustering algorithm of choice, Ordering 458 

Points To Identify the Clustering Structure (OPTICS) (54) was used, as implemented in scikit-459 

learn (https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html). OPTICS is a density-based 460 

clustering method, which unlike the more popular k-means clustering does not require a 461 

manually set input of the number of clusters. Additionally, OPTICS is able to label data points 462 

as outliers. Several approaches to feature selection and/or feature engineering, hyperparameters 463 

of OPTICS, as well as methods for selecting representative structures from clusters were 464 

evaluated against the set of validation models (Table 3). To select the best combination of 465 

hyperparameters, for each combination, the in silico alanine scan results of the representative 466 

structures were correlated to the results of corresponding PDB structures, and the combination 467 
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of hyperparameters with the most stable performance across all validation sets (by minimum z-468 

score of the correlation against the PDB structure for all 7 validation sets) was chosen. The best 469 

combination of hyperparameters is highlighted in (Table 3). 470 

 471 

Estimation of binding energies 472 

Supervised learning based on a number of FoldX-derived features was used in order to estimate 473 

binding energy of complex models. The features consisted of the FoldX interaction energy, the 474 

energy contribution of switch 1, 2 and the remainder of the Ras protein interface (see Interface 475 

characterization), and the G values for hotspot residues on Ras (cut off 1.2 kcal/mol). All 476 

features were standardized and highly intercorrelated features were removed. Data preparation 477 

was performed in R.  478 

The experimental measurements of the dissociation constant between Ras-effector 479 

complexes were collected from several publications (see Table S5, also available as 480 

supplementary data). Effectors that were experimentally determined as non-binders were 481 

removed from the data set due to uncertainty how to encode them with the varying technical 482 

limitations on detectable binding energies at the time of their publication. Also, the models 483 

generated for RASSF3 seem to be outliers with regards to FoldX interaction energy (see figure 484 

7) and were therefore removed from the prediction. A test set was manually chosen from the 485 

available experimental measurements to cover the full spectrum of experimentally determined 486 

interaction energies. At the end, this gave us a training set with 51 observations (17 * 3 models) 487 

and a testing set with 12 observations (4 * 3 models). 488 

Supervised learning was performed in scikit-learn 489 

(https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html) using different combinations of 490 

feature selection algorithms and regressors. Feature selection was performed using either f-491 

regression or mutual information as implemented by scikit-learn. Regression was evaluated for 492 

different algorithms with various hyperparameter spaces (see Table S4). All combination of 493 

feature selection and regression were evaluated using Group-K-Fold cross validation within the 494 

training data, with k=5 and the groups corresponding to the three structural models chosen for 495 

each target. Models were evaluated using R2 score. The best performing combination was 496 

trained on the whole training data and evaluated against the test data. Finally, this model was 497 

used to predict the binding energies for the complex structures without experimental data.  498 

 499 

Branch pruning 500 
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FoldX was used to evaluate the effect of interface mutation on the binding energies in the 501 

modelled complex structures. As previously described, (21) the FoldX command PSSM was 502 

used to evaluate the changes in binding energy, and the FoldX command PosScan was used to 503 

evaluate if mutations impacted the stability of RAS.  504 

All mutations that were destabilizing HRAS in either of two structures (3TGP and 5P21) 505 

were removed from the analysis (cutoff 1.6 kcal/mol). Then, between the three models for each 506 

target structures, it was checked if a mutation had a noticeable impact (> +- 1kcal/mol) in at 507 

least two of the three structures. If so, the changes in binding energy for all models above/below 508 

the cutoff were averaged.  509 

 510 

Systems analysis 511 

A mathematical model of the Ras-effector system was set up as previously described (6) (7). 512 

The model is based on classic ligand-receptor kinetics according to the assumption of 513 

conservation of mass. A system of ordinary differential equations was set up and steady states 514 

were calculated as described. The reactions are expressed as such:  515 

𝑅 + 𝐸𝑖
(𝑘𝑖,𝑘−𝑖)
↔    𝑅𝐸𝑖     With 𝑅 representing the molar concentration of Ras, 𝐸𝑖 the molar 516 

concentration of an effector of the set of 𝑖 ∈ (1, 2, … ,54) effectors (all modelled proteins, 517 

except for proteins from the Ubiquitin family) and 𝑅𝐸𝑖 the molar concentration of a Ras-effector 518 

complexes. The complex is formed at rate 𝑘𝑖 and dismantled at rate 𝑘−𝑖. These rates define the 519 

dissociation constant: 520 

𝐾𝑑𝑖 =
𝑘−𝑖
𝑘𝑖

 521 

Due to the assumption of mass conservation,  522 

𝑅𝑡𝑜𝑡 = 𝑅 +∑𝑅𝐸𝑖

54

1

 523 

and 524 

𝐸𝑡𝑜𝑡𝑖 = 𝐸𝑖 + 𝑅𝐸𝑖 525 

the system to solve therefore is: 526 

𝑅𝑡𝑜𝑡 = 𝑅 +∑𝑅𝐸𝑖

54

1

 527 

𝐸𝑡𝑜𝑡𝑖 = 𝐸𝑖 + 𝑅𝐸𝑖 528 

𝐾𝑑𝑖 =
(𝑅 ∗ 𝐸𝑖)

𝑅𝐸𝑖
 529 
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For the set of 𝑖 = {1,2, … ,54} and can be numerically solved for 𝑅𝐸𝑖. The system was solved 530 

using SciPy.  531 

The concentrations for the species in the model were taken from the supplementary data 532 

of (7), in which molar concentrations were derived from high-quality proteomics data set of 29 533 

different human tissues (55). The concentration of Ras proteins (HRAS, NRAS, KRAS) were 534 

pooled together and then multiplied with a loading factor to take into account the balance 535 

between active (GTP bound) and inactive (GDP bound) Ras. This loading factor was set to 0.2 536 

for a normal RAS system, and 0.9 for a system hyperactivated by an oncogenic hotspot 537 

mutation.  538 

The binding affinities were taken from the predicted binding affinities (see Estimation 539 

of binding affinities), with the exception of RASSF3 for which we are not confident in our 540 

structural predictions. An experimentally determined binding affinity for RASSF3 was 541 

substituted from (56). Additional sets of binding affinities based on the branch pruning analysis 542 

were evaluated as well. For this, the predicted binding affinities were adapted by the ddG values 543 

from the branch pruning analysis. For the case that a system with hyperactivated Ras was 544 

considered, it was made sure that common oncogenic hotspots such as G12, G13 and Q61 do 545 

not influence the binding energies for any effector. 546 

Some sets of parameters were not solvable in a physically meaningful solution space 547 

(negative concentrations) or at all, these parameter sets were removed from further analysis. 548 

To gain an overview over all solved system, absolute and relative effector bindings were 549 

transformed using UMAP (57) and visualized. OPTICS clustering (54) was performed on the 550 

UMAP transformed data (parameters: min_sample = 25, min_cluster_size=200).   551 

 552 

Data analysis and visualization 553 

All data analysis, unless otherwise noted was performed in R using the tidyverse environment 554 

(https://www.R-project.org/). Visualizations were generated using ggplot2 (H. Wickham. 555 

ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.). 556 

Visualizations of protein structures were generated using PyMol (version 2.5.0) 557 

(https://pymol.org/2/support.html). 558 

  559 
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Figure legends 560 

Figure 1. Noticeable features of the Ras-RBD interfaces 561 

(A) Overview of interface features for the Ras-RAF1 interface. Highlighted are the 562 

intramolecular β-sheet alignment, the assembly of the Ras interface by the switch regions and 563 

energetic hotspots in the interface.  564 

(B) -sheet alignment for experimentally determined complexes (MAE). A lower value 565 

indicates a more similar alignment of the intramolecular -sheets compared to other crystal 566 

structures.  567 

(C) FoldX alanine scan hotspots on RAS for experimentally determined complex structures. 568 

The color scale is confined to the limits [-1.6, 1.6]. Positive G values indicate a loss in 569 

binding energy upon mutation, which reflects that the respective amino acid contributes to 570 

binding. 571 

(D) Energetic contributions of functional regions based on alanine scan analysis. 572 

 573 

Figure 2. Overview over the homology modelling pipeline 574 

The principal homology modelling steps are shown from left to right with the steps of “Target 575 

Identification”, “Template Identification”, “Alignment Generation”, “Complex Model 576 

Generation”, “Evaluation & Selection 1”, and “Evaluation & Selection 2”. In the “Validation” 577 

process, the homology modelling pipeline is run on a set of 7 RBD domains from known x-ray 578 

structures. The “Production” process describes the generation of 61 domains (RBD and 579 

Ubiquitin super-fold domains as controls). 580 

 581 

Figure 3. Energy hotspots in modelled structures  582 

(A) Heatmap of FoldX alanine scan averaged from the three representative structures on each 583 

target. The color scale is confined to the limits [-1.6, 1.6]. Hotspot residues with a G >= 1.2 584 

or <= -1.2 kcal/mol were marked.  585 

C-F) Local neighborhood of D38 in structures where D38 is a favorable hotspot (C: RASSF1, 586 

D: RGL3) or an unfavorable hotspot (E: ARAP2, F: RAPGEF3). Ras and the effector structures 587 

are visualized in blue and green, respectively. Polar interactions between charged amino acids 588 

are indicated with dashes.  589 

 590 

Figure 4. Results of the affinity prediction for all Ras-effector complex structures 591 
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Visualization of predicted binding affinities. The three representative structures for each target 592 

are visualized as black dots, with the averaged affinity (based on averaged energy) is visualized 593 

as a red cross. 594 

 595 

Figure 5. Switch contributions for the summed-up energy contributions grouped by their 596 

predicted binding affinity 597 

(A) Energy contributions were separately calculated for switch 1 switch or the rest of the Ras 598 

interface by summing up energy energies from the in silico alanine scan analysis. Complexes 599 

were grouped based on their predicted binding affinities into four groups.  600 

(B – E) Examples of the switch contributions for each of the four groups. Visualized are BRAF 601 

(panel B), AFDN_1 (panel C), ARHGAP20 (panel D), and PIK3C2B (panel E). 602 

 603 

 604 

Figure 6. Energetic characterization of RAS interface mutations that affect effector 605 

binding 606 

The color scale is confined to the limits [-3.2, 3.2]. Hotspot residues with a G >= 1 or <= -1 607 

were marked. 608 

 609 

Figure 7. Ras-effector interaction rewiring at a systems level 610 

(A-B) Effects of interface mutation on the Ras-effector system. Heatmap of effectors bound to 611 

Ras at 20% Ras-GTP load in 29 tissues in (panel A) WT interface and in (panel B) with the 612 

effects of a D38A mutation.  613 

(C-E) Overview over the possible states the Ras-effector system can assume. UMAP 614 

transformation of all simulated systems. Similar systems were identified using OPTICS 615 

clustering (panel C). 19 identified clusters are colored in rainbow colors, with systems classified 616 

as outliers colored in grey. Characterization of two identified state clusters in terms of Ras-GTP 617 

load, tissues, interface mutations, and most representative effectors (panels D and E). For the 618 

tissue and mutation pie charts, all groups that were smaller than 5% of the total observations 619 

were collapsed into the “Other” group.  620 

 621 

 622 

 623 
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(C) UMAP transformation of all simulated systems. Similar systems were identified using 624 

OPTICS clustering. 19 identified clusters are colored in rainbow colors, with systems classified 625 

as outliers colored in grey.  626 

(D) and (E) Characterization of two identified state clusters in terms of Ras-GTP load, tissues, 627 

interface mutations, and most representative effectors. For the tissue and mutation pie charts, 628 

all groups that were smaller than 5% of the total observations were collapsed into the “Other” 629 

group.  630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

  640 
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Figure 2
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Figure 7
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