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Abstract: Gene flow between previously isolated populations during the founding of an admixed or hybrid 13 

population has the potential to introduce adaptive alleles into the new population. If the adaptive allele is 14 

common in one source population, but not the other, then as the adaptive allele rises in frequency in the 15 

admixed population, genetic ancestry from the source containing the adaptive allele will increase nearby as 16 

well. Patterns of genetic ancestry have therefore been used to identify post-admixture positive selection in 17 

humans and other animals, including examples in immunity, metabolism, and animal coloration. A common 18 

method identifies regions of the genome that have local ancestry ‘outliers’ compared to the distribution across 19 

the rest of the genome, considering each locus independently. However, we lack theoretical models for 20 

expected distributions of ancestry under various demographic scenarios, resulting in potential false positives 21 

and false negatives. Further, ancestry patterns between distant sites are often not independent. As a result, 22 

current methods tend to infer wide genomic regions containing many genes as under selection, limiting 23 

biological interpretation. Instead, we develop a deep learning object detection method applied to images 24 

generated from local ancestry-painted genomes. This approach preserves information from the surrounding 25 

genomic context and avoids potential pitfalls of user-defined summary statistics. We find the-method is robust 26 

to a variety of demographic misspecifications using simulated data. Applied to human genotype data from 27 

Cabo Verde, we localize a known adaptive locus to a single narrow region compared to multiple or long 28 

windows obtained using two other ancestry-based methods. 29 

 30 
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Introduction 32 

Genetic exchange between previously separated populations is ubiquitous across species (Moran et 33 

al., 2021; Payseur & Rieseberg 2016), often referred to as ‘admixture’ or ‘hybridization’ when moderate- to 34 

large-scale movements of individuals create new populations with ancestors from multiple source populations. 35 

In admixed populations, genetic ancestry varies between individuals and along the chromosome within 36 

individuals (Aguillon et al., 2022; Gopalan et al., 2022; Hellenthal et al., 2014). Across the tree of life, variation 37 

in genetic ancestry shapes genetic and phenotypic variation, such as differences in disease risk between 38 

populations. Small amounts of gene flow or larger admixture may introduce advantageous alleles which then 39 

undergo positive selection. Such cases have been identified in diverse taxa, often termed adaptive 40 

introgression (Aguillon et al., 2022; Edelman & Mallet 2021; Hedrick, 2013; Hsieh et al., 2019; Huerta-Sánchez 41 

et al., 2014; Moran et al., 2021; Norris et al., 2015; Oziolor et al., 2019; Racimo et al., 2015; Whitney et al., 42 

2006) or, in humans, post-admixture positive selection (Cuadros-Espinoza et al., 2022; Gopalan et al., 2022; 43 

Tang et al., 2007).  44 

Despite the ubiquity and biological importance of admixture, understanding evolutionary processes in 45 

admixed populations remains challenging (Gopalan et al., 2022; Moran et al., 2021). Classical methods to 46 

detect selection may pick up signatures of pre-admixture selection, and are often confounded by the process of 47 

admixture, which can increase linkage disequilibrium (LD) and change the distribution of allele frequencies 48 

(Cuadros-Espinoza et al., 2022; Lohmueller et al., 2010, 2011; Yelman et al., 2021). Yet, because admixture 49 

can introduce advantageous alleles at intermediate frequencies, post-admixture selection provides an 50 

opportunity for particularly rapid adaptation on the scale of tens or hundreds of generations (Hellenthal et al., 51 

2016; Hamid et al., 2021). Thus, methods tailored to the genetic signatures of admixed populations are 52 

important to investigate the extent and impact of post-admixture adaptation across many organisms.  53 

Recent methods have advanced our ability to identify regions of admixed genomes containing 54 

haplotypes under positive selection by using patterns of genetic ancestry. When one source population 55 

provides a beneficial allele, we expect that, as the beneficial allele increases in frequency, linked alleles from 56 

the source population will hitchhike along with it, and thereby the proportion of admixed individuals with 57 

ancestry from that source population at the selected locus (i.e. the local ancestry proportion) increases too. 58 

This logic has been leveraged to detect selection in recently admixed populations by identifying outliers in local 59 

ancestry proportion compared to a genome-wide average. Applied to human populations, variations on 60 

ancestry outlier detection have identified genomic regions associated with a range of phenotypic traits 61 

potentially underlying adaptation, including response to high altitude, diet, pigmentation, immunity, and disease 62 

susceptibility (Bryc et al., 2010; Bryc et al., 2015;  Busby et al., 2016;  Busby et al., 2017; Cuadros-Espinoza et 63 

al., 2022; Fernandes et al., 2019; Hamid et al., 2021; Isshiki et al., 2021; Jeong et al., 2014; Jin et al., 2012; 64 

Laso-Jadart et al., 2017; Lopez et al., 2019; Norris et al., 2020; Patin et al., 2017; Pierron et al., 2018; 65 

Rishishwar et al., 2015; Tang et al., 2007; Triska et al., 2015; Vicuña et al., 2020; Zhou et al., 2016).  66 

This ancestry outlier detection approach is useful for identifying regions that may be under selection, 67 

but it can yield false positives due to long-range LD from the source populations or allele frequencies drifting as 68 

a result of serial founder effects, and the criteria for determining outliers is difficult (Bhatia et al., 2014; Buby et 69 

al., 2017; Price et al., 2008); false negatives may also occur if the number of true adaptive events is greater 70 

than the number of outliers retained. Importantly, the ancestry outlier approach discards the wealth of 71 

information from the surrounding genomic context. Along-genome spatial patterns of ancestry, such as the 72 

distribution of ancestry tract lengths containing a selected locus, may be informative about selection on this 73 

timescale in admixed populations. The length of ancestry tracts is influenced by the timing and strength of 74 

selection, analogous to the increase in LD around selective sweeps in homogeneous populations (Kelley 1997; 75 
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Kim & Nielsen, 2004; Sabeti et al., 2002; Voight et al., 2006). Similarly, strong selection can influence ancestry 76 

patterns along long stretches of the genome, often in complex patterns depending on the evolutionary scenario 77 

(Hamid et al., 2021; Shchur et al., 2020; Svedberg et al., 2021 ). For example, Svedberg et al. 2021 extend 78 

their prior model (Ancestry_HMM, Corbett-Detig & Nielsen 2017) to explicitly incorporate post-admixture 79 

selection by modeling increased ancestry frequency at the selected allele and a longer introgressed haplotype. 80 

We used similar expected signatures summarized in the iDAT statistic developed in Hamid et al. 2021. 81 

However, the expected distributions of the length and frequency of ancestry tracts surrounding post-admixture 82 

positively selected alleles has been difficult to explore theoretically, particularly combined with variable 83 

demographic histories (with the notable exception of Shchur et al. 2020). 84 

However, information about the complex patterns of ancestry around a selected locus is lost when 85 

relying on summary statistics, and there is a bias inherent in the user’s choice of quantitative summaries to 86 

include during inference. More generally, we lack theoretical expectations for patterns of ancestry expected 87 

under post-admixture selection, especially under a range of selective and demographic histories. 88 

 To overcome the loss of spatial information along the genome and the simplifying assumptions of 89 

classical summary statistics, deep learning techniques have been increasingly used in population genetics. 90 

Deep learning algorithms are multi-layered networks trained on example datasets with known response 91 

variables with the goal of learning a relationship between the input data and output variable(s) (applications to 92 

population genetics reviewed in Schrider & Kern (2018). Deep learning techniques are flexible with respect to 93 

data type and the specific task at hand, and have been shown to be effective for inferring demographic 94 

histories (Flagel et al., 2019; Sanchez et al., 2021; Sheehan & Song, 2016; Wang et al., 2021), recombination 95 

rates (Adrion et al., 2020; Chan et al., 2018; Flagel et al., 2019), and natural selection (Gower et al., 2021; 96 

Kern & Schrider, 2018; Sheehan & Song, 2016). Among the branches of deep learning, computer vision 97 

methods are a family of techniques originally developed to recognize images by using convolutional neural 98 

networks (CNNs) (Krizhevsky et al., 2012; LeCun et al., 2015; Lecun & Bengio, 1995). CNNs learn from 99 

complex spatial patterns in large datasets through a series of filtering and down sampling operations that 100 

compress the data into features that are informative for inference. CNNs have recently been applied to images 101 

of genotype matrices for population genetic inference with great success (Battey et al., 2020; Battey et al., 102 

2021; Blischak et al., 2021; Chan et al., 2018; Flagel et al., 2019; Gower et al., 2021; Isildak et al., 2021; 103 

Sanchez et al., 2021; Torada et al., 2019). In doing so, researchers can circumvent the loss of information and 104 

bias from using user-defined population genetic summary statistics and make inferences for study systems and 105 

questions for which we lack theoretical expectations. Simulation-based inference is also often flexible enough 106 

that one may be able to incorporate various demographic histories into models, which has proven difficult for 107 

theoretical models. 108 

Here, we build on recent successes in deep learning applications to population genetics problems and 109 

develop a deep learning object detection strategy that localizes genomic regions under selection from images 110 

of chromosomes ‘painted’ by ancestry (Figure 1) (Lawson et al., 2012; Maples et al., 2012). In using local 111 

ancestry rather than the genotypes directly, we focus on post-admixture processes and are potentially well-112 

suited to low coverage or sparse SNP data common in non-model systems (Schaefer et al., 2016; Schaefer et 113 

al., 2017; Schumer et al., 2020; Wall et al., 2016). Using this approach, we demonstrate that complex ancestry 114 

patterns beyond single-locus summary statistics are informative about selection in recently admixed 115 

populations. We take advantage of existing deep learning object detection frameworks, illustrating the ease of 116 

use and accessibility of deep learning applications for population genetic researchers without experience in 117 

machine learning techniques. In simulated as well as human SNP data, we show that our method is able to 118 

localize regions under positive selection post admixture, and remains effective at identifying selection under a 119 

range of demographic misspecifications. We focus on scenarios with moderate to high admixture contributions 120 
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occurring in the last tens to hundreds of generations; multiple other methods have recently been developed 121 

focused on older admixture scenarios at low admixture contribution rates, often termed adaptive introgression 122 

(Gower et al., 2021; Racimo et al., 2017; Setter et al., 2020; Svedberg et al., 2021).  123 

 124 

 125 

Figure 1. Schematic of our baseline simulation scenario. Image input for the object detection model is 126 

generated by sampling 200 ancestry-painted chromosomes from a simulated admixed population. Rows 127 

represent individuals, with chromosome position along columns. Training samples have a known “target” 128 

bounding box (yellow box), spanning an 11-pixel window centered on the position of the known beneficial 129 

variant. Using training examples, the object detection model learns the complex patterns of ancestry indicative 130 

of positive selection post-admixture and uses this information to localize a beneficial variant to a small genomic 131 

region. The trained object detection model is then expected to output bounding boxes that contain variants 132 

under selection.   133 

  134 
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Results 135 

 136 

Baseline Model Performance 137 

 138 

We first describe the object detection method’s performance in a baseline simulated scenario, before 139 

exploring the effects of model misspecification and finally comparing the method to other approaches. Full 140 

details on simulations, image generation, model training, and performance metrics are in Materials and 141 

Methods. Briefly, in the baseline scenario, we simulated a single-pulse admixture event between two isolated 142 

source populations. One source population was fixed for a beneficial variant randomly placed along the 50 Mb 143 

chromosome tract, with positive selection strength post admixture drawn from a uniform distribution s ~ U(0, 144 

0.5). For each simulation, we generated two images representing two types of genetic data that a user may be 145 

analyzing: one with full local ancestry (the high resolution scenario) representing whole-genome, high-density 146 

SNP, or similar data, and the second scenario with only 100 ancestry informative markers (AIMs, the low 147 

resolution scenario) in the 50 Mb. We then trained and validated the method for each of these two sets of 148 

images. Performance metrics included precision and recall (P-R), the proportion of inferred bounding boxes 149 

that contain the true selected variant, the average width of the inferred bounding boxes, and the average 150 

number of inferred bounding boxes per image. 151 

 152 

Overall, the locus simulated to be under positive selection was contained within the inferred bounding 153 

box ~95% of the time in both the full ancestry (high resolution) and low-resolution scenarios (Table 1 & Figure 154 

2). As expected, the high-resolution ancestry scenario had higher precision and recall across the range of 155 

detection thresholds (Figure 2), though both had P-R curves well above a no-skill (random) classifier.  156 

 157 

 158 

 159 
Figure 2. Precision-Recall curves for high (full) and low (AIMs) ancestry resolution images across a range of 160 

detection thresholds. Area under the curve (AUC) is calculated for the two scenarios, with the no-skill classifier 161 

indicated by the dashed black line. 162 

 163 

 164 
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Table 1. Performance of object detection method on images with high and low ancestry resolution. 165 

ancestry resolution bbox 
detection 
rate 

average 
width 

average 
number of 
bounding 
boxes 

precision recall AUC 

high (full ancestry) 0.950 10.830 
(var = 0.615, 
n = 1978) 

1.027 
(var = 0.063, 
n = 2000) 

0.886 0.897 0.871 

low (100 AIMs) 0.950 10.834 
(var = 0.580, 
n = 1964) 

1.0175 
(var = 0.064, 
n = 2000) 

0.867 0.870 0.811 

 166 

 167 

Model Misspecification 168 

 169 

Often, we do not know the full model and parameters of a population’s history. We tested the 170 

robustness of our method to several demographic model misspecifications, performing inference based on 171 

images generated from simulations that differed in model and/or parameter from the ones used to generate 172 

training images. Generally, we followed the high-resolution full ancestry baseline scenario described above 173 

and in the Materials and Methods, and altered one aspect of the admixed population’s history for each 174 

scenario. We separately altered parameters for the admixture proportion, the number of generations since 175 

admixture occurred, as well as different models of the population size trajectory (bottleneck with a return to 176 

original size, expansion, or contraction). We also considered a scenario in which both source populations have 177 

the beneficial mutation segregating at a frequency of 0.5 at the time of admixture (i.e. FST = 0 between the 178 

source populations at this allele) (see also Gopalan et al., 2022 for post-admixture positive selection 179 

simulations under different FST values between sources at the adaptive locus) 180 

 181 

That is, we trained the model once under the baseline scenario, and then conducted inference on 182 

simulated versions that represent empirical data under different evolutionary scenarios. We then evaluated 183 

performance using the same set of metrics as described above for the baseline model, presented in Table 2 & 184 

Figure S1. Under these demographic misspecifications, the model was still able to detect 80-98% of variants 185 

under selection, except in two scenarios where the impact of selection on patterns of local ancestry is expected 186 

to be very weak or entirely absent (Table 2).  187 

 188 

First, the model underperforms when contributing ancestry proportions was varied such that we inferred 189 

from images generated under an admixture scenario with 90% ancestral contribution from the source 190 

population providing the beneficial allele (m = 0.9). In this scenario the method has difficulty detecting regions 191 

under selection resulting in a high rate of false negatives (Figure S1A) because, even in regions unaffected by 192 

selection, the image is primarily one color by the end of 50 generations. We do not see this effect in the 193 

opposite scenario involving 10% ancestral contribution from the source population providing the beneficial 194 

allele (m = 0.1). In this scenario, the beneficial allele increasing in frequency results in the “minor” image color 195 

increasing specifically around that region. 196 

 197 

Second, the model also underperforms when the two source populations carry the beneficial allele at 198 

the same frequency (FST = 0). The performance of the model under this misspecification follows the no-skill 199 

classifier (Figure S1D), suggesting the model is randomly assigning bounding boxes. In this case, the model is 200 
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unable to detect any ancestry-based patterns of selection because both ancestries are being equally selected. 201 

We have previously suggested and demonstrated this same result with other ancestry-based signatures of 202 

selection (Gopalan et al., 2022; Hamid et al., 2021).  203 

 204 

 205 

 206 

Table 2. Performance of object detection method on images generated from demographic misspecifications. 207 

Further details of models in Materials and Methods, Figure S1. The two scenarios that perform poorly are 208 

marked (*). 209 

misspecification bbox 
detection 
rate 

average  
width 

average 
number of 
bounding 
boxes 

precision recall AUC 

none (baseline) 0.950 10.830 
(var = 0.615, 
n = 1978) 

1.027 
(var = 0.063, 
n = 2000) 

0.886 0.897 0.871 

m = 0.1 0.767 10.771 
(var=0.850, 
n = 774) 

0.787 
(var = 0.198, 
n=1000) 

0.942 0.734 0.743 

m = 0.25 0.885 10.838 
(var=0.619, 
n = 906) 

0.953 
(var = 0.181, 
n = 1000) 

0.912 0.851 0.860 

m = 0.75 0.846 10.795 
(var = 0.683, 
n = 876) 

0.881 
(var = 0.115, 
n = 1000) 

0.875 0.765 0.731 

m = 0.9* 0.082 10.763 
(var = 0.277, 
n = 213) 

0.213 
(var = 0.168, 
n = 1000) 

0.342 0.073 0.044 

gen = 25 0.874 10.824 
(var = 0.624, 
n = 959) 

0.995 
(var = 0.087, 
n = 1000) 

0.814 0.799 0.771 

gen = 100 0.977 10.777 
(var = 0.837, 
n = 996) 

1.013 
(var = 0.025, 
n = 1000) 

0.914 0.918 0.884 

Fst = 0* 0.046 10.879 
(var = 0.287, 
n = 717) 

1.262 
(var = 1.173, 
n = 1000) 

0.054 0.057 0.015 

bottleneck (50%) 0.953 10.858 
(var = 0.498, 
n = 995) 

1.046 
(var = 0.092, 
n =  1000) 

0.872 0.895 0.860 

bottleneck (10%) 0.939 10.846 
(var = 0.544, 
n = 990) 

1.021 
(var = 0.047, 
n = 1000) 

0.860 0.870 0.836 
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expansion 0.945 10.809 
(var = 0.700, 
n = 981) 

1.017 
(var = 0.063, 
n = 1000) 

0.887 0.889 0.865 

contraction 0.944 10.881 
(var = 0.403, 
n = 987) 

1.042 
(var = 0.088, 
n = 1000) 

0.864 0.883 0.852 

 210 

 211 

Performance on neutrally evolving chromosomes 212 

 213 

Thus far, we have tested performance on positive examples (i.e. simulated chromosomes with a 214 

positively selected variant); here we consider negative examples where the correct inference would be that 215 

there are no regions under selection. Our method as described above is flexible enough to infer 0, 1, or 216 

multiple bboxes. However, we did not initially provide any negative examples in our training, which may impact 217 

performance for a truly neutrally evolving chromosome. First, we test our current model performance on 218 

simulated negative examples, then we train a new model including such examples.  219 

 220 

First, we generated 1000 full ancestry images for neutrally evolving chromosomes generated under our 221 

baseline demographic model. We performed inference using our originally trained full ancestry model without 222 

training on neutral images. At a detection threshold (“bbox score”) of 0.5, our standard setting, the model 223 

predicted no bbox for 26.5% of images (see Materials and Methods for an explanation of the detection 224 

threshold parameter). For the remaining 73.5% of images, the average bbox score is 0.660, indicating overall 225 

low confidence in the predictions. If we increase the detection threshold to a bbox score of 0.7, the model 226 

predicted no bbox for 63.2% of images. If we increase the detection threshold to a bbox score of 0.9, the model 227 

predicts no bbox for 94.9% of images. For comparison, on the original validation set, the average bbox score is 228 

0.972. To summarize, by increasing the detection threshold, one can weed out low confidence predictions and have 229 

high accuracy on neutrally evolving chromosomes.  230 

 231 

Next, we train our model including neutral simulations (“negative examples”) to understand the potential 232 

benefits of more tailored training sets. We trained a random subset of our original training images but included 233 

neutral images as well (training set = 800 total images [640 selection images, 160 neutral images], validation 234 

set = 200 total images [180 selection, 40 neutral]). Then, we tested the newly trained model on the remaining 235 

800 neutral images. We find that of these, 797 (>99%) accurately predict no variant under selection (meaning 236 

no bounding boxes are predicted), while 3 (0.375%) predict a variant under selection even at a detection 237 

threshold of 0.5 (model default, but relatively low confidence). When we increased the detection threshold to 238 

0.75 to include only high confidence predictions, 100% of the neutral simulations were correctly predicted to 239 

have no bboxes. 240 

 241 

Accuracy on selected images (n=9180) remains high in this newly trained model with 90.8% of 242 

predicted bounding boxes containing a selected variant (precision: 0.904, recall 0.828 at a detection threshold 243 

of 0.5). This is trained on a much smaller dataset than the original model, which explains the slightly lower 244 

overall performance. 245 

 246 

Performance on chromosomes with multiple selected variants 247 

 248 

We primarily considered scenarios with a single locus under selection, yet depending on the window 249 

size considered, there may be multiple sites under selection. There are many complex scenarios that one 250 
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could possibly test based on combinations of the number of loci across various selection strengths at different 251 

spacing between variants. In order to gain a general intuition for the model performance in scenarios where 252 

multiple sites are hypothesized to be under selection, we consider a simple example and outline a possible 253 

solution to improve performance in similar cases.  254 

 255 

If multiple selected sites are in close proximity, their ancestry signals may interfere with one another, 256 

and the model may have difficulty distinguishing the signals resulting in the model predicting a broad region or 257 

a region between the two sites to be under selection. If one site has undergone much stronger selection than 258 

the other, the model may only confidently identify the stronger signal. As a simple example, we generated 10 259 

images with two sites under equal selection strengths (s=0.05 for both sites). We generated a large 260 

chromosome (250 Mb, roughly the size of human chromosome 1), and placed the selected variants near 261 

opposite ends of the chromosome so their signals would not interfere with one another; variant 1: 10% of the 262 

chromosome length (physical position = 25 Mb); variant 2: 90% of the chromosome length (225 Mb). Both 263 

variants were fixed in ancestral population 1 and absent in ancestral population 2, so that the selection signal 264 

would come from the same ancestry for both sites. The demographic scenario followed our baseline trained 265 

model. The model, which was trained with a single positively-selected locus, correctly picked out at least one 266 

selected variant for 10 out of 10 images. The model was able to identify both selected variants for 5 out of the 267 

10 images. 268 

 269 

Alternatively, if one wanted to use the model pre-trained with a single selected locus, and reasonably 270 

suspected multiple sites were under selection, one could consider splitting large chromosomes into smaller 271 

chunks in order to pick up multiple sites. To test this scenario, we split the 10 chromosomes from the example 272 

above in half to generate two separate images, each containing only one selected variant. In this case, the 273 

model was able to detect the selected variants for 100% of images. 274 

 275 

Comparison to ancestry outlier detection 276 

 277 

We next sought to evaluate whether our method constitutes an improvement on the most commonly 278 

used method for detecting regions under selection for admixed populations.The ‘local ancestry outlier’ 279 

approach identifies regions that deviate from the genome-wide average ancestry proportion, which are 280 

hypothesized to be enriched for regions under selection (Bryc et al., 2010; Gopalan et al., 2022; Tang et al., 281 

2007). We compared performance between ancestry outlier detection and our method by calculating precision 282 

and recall, including over a range of selection coefficients (Table 3 & Figure 3B-E). For each genomic window, 283 

we additionally calculated the proportion of simulations that were classified as being “under selection” at that 284 

region as a measure of localization ability (Figure 3A). The local ancestry approach has much lower precision 285 

resulting from increased false positives, even in scenarios with greater selection strength (Table 3 & Figure 286 

3B&C). This is further visualized in Figure 3A, where the object detection method detects a narrower region 287 

under selection (~3 Mb) compared to the local ancestry outlier approach (~8 Mb). The width of the inferred 288 

region in object detection is highly determined by the bbox size in training data, as well as window length and 289 

input image size so it is likely possible to narrow the inferred region further. 290 

 291 

Table 3. Performance of object detection and local ancestry outlier methods. 292 

method bbox 
detection 
rate 

average 
width 

average 
number of 
bounding 
boxes 

precision recall 
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object detection 0.948 10.990 
(var = 0.002, 
n = 990) 

1.037 
(var = 0.092, 
n = 1000) 

0.875 0.890 

local ancestry outlier - - - 0.542  0.901 

 293 

 294 
 295 

 296 

Figure 3. Comparison of local ancestry outlier approach and object detection method. A) Heatmap showing, 297 

for each genomic window, the proportion of simulations that had that region classified as “under selection” by 298 

either the object detection (top) or local ancestry outlier (bottom) methods. The position of the true selected 299 

variant is indicated by the vertical dashed red line. Precision across a range of selection coefficients (s) for the 300 

B) local ancestry outlier approach and C) the object detection method. Recall across a range of selection 301 

coefficients (s) for the D) local ancestry outlier approach and E) object detection method. (Also see Figures S2 302 

and S3.) 303 

 304 

Object detection Local Ancestry Outlier 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2022.09.04.506532doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.04.506532
http://creativecommons.org/licenses/by/4.0/


 

11 

Application to human genotype data from Cabo Verde 305 

 306 

We next tested the object detection method on human genotype data from the admixed population of 307 

Santiago, Cabo Verde using genotype data from 172 individuals at ~800k SNPs genome-wide (Beleza et al., 308 

2013). We previously showed multiple lines of evidence for adaptation in this dataset at the Duffy-null that is 309 

protective against P. vivax malaria, including ancestry outlier detection and a statistic that incorporates the 310 

length of tracts as well as their frequency, iDAT; this allele is common in African ancestry and rare in 311 

Portuguese ancestry (Hamid et al., 2021). This locus has been a candidate for post-admixture positive 312 

selection in multiple other populations as well (Busby et al., 2017; Fernandes et al., 2019; Hodgson et al., 313 

2014; Laso-Jadart et al., 2017; Pierron et al., 2018; Triska et al., 2015). 314 

We test for post-admixture selection along the entirety of chromosome 1. Figure 4 shows that all three 315 

methods detect an adaptive locus in the nearby region; the object detection approach is highly specific, 316 

returning a single bbox approximately centered on the adaptive locus (center is ~130 kb from truth), whereas 317 

the ancestry-outlier approach returns multiple nearby hits across ~48 Mb (outliers sum to ~6 Mb). iDAT finds 318 

one region as an outlier spanning ~12 Mb and not centered on the locus under selection. The nearby 319 

centromere may be extending the window that ancestry outlier detection identifies as under selection by 320 

repressing recombination. We generated the image of ancestry on Santiago using genetic distances so the 321 

object detection approach is less sensitive to recombination variation without needing to explicitly model 322 

recombination variation in the training data. 323 

 Notably, inference was conducted using the pre-trained baseline model whose demographic and 324 

genomic scenario differs from that in Cabo Verde. Specifically, the training model included 50% ancestry 325 

contributions from each source 50 generations ago; Santiago is estimated to have a 73% African ancestry 326 

contribution about 22 generations ago (Hamid et al., 2021; Korunes et al., 2022). We also trained on a 50 Mb 327 

window and applied the method to the whole ~250 Mb chromosome 1. Despite these substantial differences, 328 

the method performs well, suggesting it can be used widely for populations without well-studied demographic 329 

histories. Further, leveraging the general applicability of the baseline model, we made the pre-trained baseline 330 

model available online at 331 

https://huggingface.co/spaces/imanhamid/ObjectDetection_AdmixtureSelection_Space (see Data and Code 332 

Availability). Users can upload an image of painted chromosomes and quickly use the pre-trained set to get 333 

inferred adaptation under our method. 334 

In this example, we used genetic recombination distance rather than physical distance. To consider 335 

how this choice impacts inference, we generated an image from the Cabo Verde ancestry calls for 336 

chromosome 1, but we used physical distance rather than genetic distance. Then, we uploaded that image to 337 

the online app with the pretrained data. The model predicts a single bounding box corresponding to physical 338 

positions 134,370,749 - 148,191,519. For reference, Duffy-null is at physical position 159,174,683 in this 339 

genome build (GRCh37). The center of the bbox is ~18Mb away from Duffy-null. This suggests longer tracts 340 

spanning the centromere are affecting the model’s ability to localize the selection signal surrounding the Duffy-341 

null allele. That is, when using physical distance, the model detects a region nearby but less localized to a site 342 

under selection, likely owing to recombination interference from the centromere. Therefore, for the purpose of 343 

applying this method to real data, users can consider training a model using relevant recombination maps for 344 

their system. Alternatively, for reasonably strong performance, users can do as we did here, and generate 345 

images using genetic map when inferring with a model that was trained using a uniform recombination map. 346 

 347 

 348 

 349 
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 350 
Figure 4. Identification of a known adaptive allele in a human population using multiple ancestry-based 351 

methods. We compare multiple methods to detect a well-known example of post-admixture positive selection in 352 

the admixed human populations from Santiago, Cabo Verde on the Duffy-null allele protective against P. vivax 353 

malaria (Hamid et al., 2021). (A) iDAT from Hamid et al., 2021, (B) ancestry outlier detection using a 3 354 

standard deviation cutoff, and (C) the object detection approach developed in this paper. African ancestry in 355 

black and European ancestry in white. The image represents the entirety of chromosome 1 for 172 individuals. 356 

The dashed line indicates the position of the adaptive allele. The inferred bbox using object detection (C) is in 357 

yellow, closely matching the true bbox centered on the adaptive allele (red) in size and location. The other two 358 

methods infer multiple and/or longer regions as potentially under selection. 359 

  360 
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Discussion 361 

We developed a deep learning object detection strategy to detect and localize within the genome post-362 

admixture positive selection based on images of chromosomes painted by local genetic ancestry. Our results 363 

demonstrate the power gained when including spatial patterns of ancestry beyond single locus summary 364 

statistics, and emphasize the need for further development of methods tailored to populations that do not fit the 365 

expectations of classical population genetics methods. 366 

Our object detection approach can leverage complex local ancestry patterns without discarding 367 

information about the surrounding genomic context or requiring user choice of statistics. Using simulated and 368 

empirical human genetic data from Cabo Verde, we show that our framework better localizes the adaptive 369 

locus to a narrower genomic window and is less prone to false positives compared to common ancestry outlier 370 

approaches (Figures 3, 4). We expect many empirical examples to actually perform better than this case study 371 

because admixture is so recent (~22 generations) and strong (s = 0.08 from Hamid et al., 2021) with ~73% 372 

admixture contributions from the source with the adaptive allele, which together produce extremely long 373 

stretches of African ancestry often spanning the entirety of chromosome 1 reminiscent of the poor performance 374 

observed in Table 2 for m = 0.9. In both simulated data and our empirical example, the object detection 375 

approach remains generally effective at identifying selection even when we misspecify aspects of demographic 376 

history such as admixture proportion, admixture timing, and population size trajectory. That is, we expect 377 

strong performance on empirical data even without knowing the full details of an admixed population’s history. 378 

The size of the window that our method identifies will depend on the chromosome size, input image size, and 379 

choice of bbox size used in training. It may indeed be possible to identify a narrower window for a small 380 

chromosome, a larger image, or if we train with smaller target boxes. The midpoint of the bbox is a reasonable 381 

metric for a point estimate for the location of the adaptive locus.  382 

Despite the overall strong performance of the method, we note several potential pitfalls and areas 383 

where future work could make this type of approach more generalizable. A primary barrier to effective 384 

implementation is the availability and accuracy of local ancestry calls. As with all ancestry-based approaches, 385 

such as ancestry outlier scans, local ancestry calling is a necessary prerequisite for this method. Many tools 386 

exist to infer local ancestry along admixed chromosomes, including recent developments for samples in which 387 

it is difficult to confidently call genotypes because of low or sparse coverage (Schaefer et al., 2016; Schaefer et 388 

al., 2017; Schumer et al., 2020; Wall et al., 2016). Still, local ancestry calling remains potentially challenging, 389 

especially in nonmodel systems, and the quality of local ancestry estimates often depends on reference 390 

dataset availability and the degree of differentiation between source populations. Notably, we tested our object 391 

detection strategy using phased ancestry haplotypes, and further work is needed to address the effects of 392 

phase errors. Phasing accuracy can be sensitive to factors such as the availability of reference panels, the 393 

number of unrelated individuals present in the sample, and the choice of phasing method (Browning & 394 

Browning, 2011). The extent of the impact will vary by species, and empirical tests suggest phasing error is 395 

minor in humans (Belsare et al. 2019). The pixel structure that combines multiple loci per pixel may smooth 396 

over some of the impact of errors at short stretches of base pairs. We recommend that researchers hoping to 397 

take ancestry-based approaches to detecting selection first confirm the validity of their local ancestry calls, for 398 

example by first simulating admixed haplotypes from genomes representing proxies for source populations and 399 

testing local ancestry assignment accuracy (Schumer et al., 2020; Williams, 2016). Though local ancestry 400 

calling is necessary, the similar performance of the object detection method in the high resolution and low-401 

resolution ancestry scenarios demonstrates the utility of our method for a variety of organisms or situations 402 

where a limited set of markers are available for assigning local ancestry. Compared to local ancestry outlier 403 

approaches, our method may include a potential loss of information or resolution from binning many sites into 404 

much fewer possible pixels. However, the selected locus is unlikely to be near the edge of an ancestry tract, 405 
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and we focus on selection within the last ~100 generations or less; therefore, we expect tracts to be quite long 406 

and regions prone to binning error (i.e. edges) constitute a small proportion of the overall tract length. If 407 

resolution is a concern, researchers can consider testing different image sizes or genomic window sizes as 408 

well. 409 

Ancestry-based methods such as the one presented here that leverage long stretches of higher than 410 

expected frequency are well-suited to detect selection on short timescales; we focus on history within a couple 411 

hundred generations after admixture and selection onset. For admixture more than a few hundred generations 412 

old, the length of ancestry tracts will decay due to recombination over time. As local ancestry at distant sites is 413 

decoupled over generations, detectable signatures of long ancestry tracts or high ancestry proportion in a large 414 

genomic region surrounding a variant under selection are less likely. Therefore, ancestry-based approaches 415 

are better suited for detecting post-admixture selection on the scale of tens to hundreds of generations since 416 

admixture. The optimal detection time frame (in generations) will depend both on strength of selection and the 417 

timing and proportion of admixture. When admixture is older, assuming selection occurs immediately post-418 

admixture, there has been more time for ancestry tract lengths and frequencies to diverge between neutral and 419 

selected sites. That is, recombination has had time to break up ancestry tracts in neutral regions, while the 420 

ancestry tracts remain longer in the selected region. So, ancestry-based methods such as ours may perform 421 

slightly better for older admixture scenarios (Table 2 & Figure S1). However, this increase in accuracy is true 422 

only until a point: if enough time has passed or the selected allele has fixed, the haplotypes decay such that 423 

detection of sites under selection becomes more difficult. 424 

Many of the methods we consider in this study, including the object detection method presented here, 425 

use the length of ancestry tracts to detect selection. This signature is influenced by the recombination 426 

landscape. We demonstrated the impact of one type of recombination nonuniformity, centromere 427 

interreference, in the empirical example from Cabo Verde. Notably, the impact was different for the common 428 

local ancestry outlier approach, iDAT, and our object detection method. Local ancestry outlier approaches may 429 

have increased false positives and poorer localization if selection occurs in a low recombination region as local 430 

ancestry proportions are impacted at wider distances surrounding a selected variant. The recombination 431 

landscape will also affect iDAT because the statistic is based on the length of tracts in one genomic region 432 

compared to others, so the statistic risks both false positives and false negatives when using physical 433 

distances. Incorporating genetic map distances into iDAT may decrease some of the impact, but this approach 434 

has not been tested and may not improve localization. Under the object detection method, if one uses genetic 435 

map distances to generate images as done here, the recombination landscape has less of an influence on 436 

performance. We further demonstrated this in our example for detecting selection at Duffy-null in Cabo Verde 437 

wherein we compared localization using genetic map distances versus physical distance. We saw worse 438 

localization using physical distance owing to the nearby centromere decreasing the recombination rate in the 439 

region. 440 

Our empirical example also showed the utility of using our pre-trained model available online, even if 441 

the model is misspecified. A central choice that users make is the size of the chromosomal window to include 442 

in the 200-pixel image. One can consider whole chromosomes, as we did in our empirical example of Cabo 443 

Verde, or partial chromosomes, similar to our example with multiple selected sites. In this study, we tested our 444 

model on chromosomes ranging from 50-250Mb. Depending on the population, study system, and the size of 445 

the chromosomal region included in the image, the 11-pixel bbox will correspond to a different number of 446 

SNPs. The ideal size therefore will depend on the study question and selection history of the population, and 447 

there may be a tradeoff between the ability to localize a narrower genomic region and the potential loss of 448 

information if signatures of selection unable to be captured in too small of a window. 449 
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Our empirical example used human genetic data, though post-admixture selection has been observed 450 

across a range of organisms. The baseline model scenario is fairly general and not organism specific. For 451 

example, the uniform recombination rate used is reasonable for Anopheles mosquitoes and humans (though 452 

their overall recombination landscapes differ substantially, the mean rate is similar), and the range of 453 

chromosome sizes used in inference (50-250Mb) covers a wide range of organisms. However, the accuracy of 454 

local ancestry calls may be impacted by the availability of high-quality reference datasets as proxies for source 455 

populations. Available references vary by population and organism, so this could preclude applicability of our 456 

method for specific study systems. 457 

Our use of out-of-the box object detection frameworks demonstrates that population genetics 458 

researchers can apply deep learning applications without prior experience with machine learning techniques. 459 

We required only ~1.5 hours to train the object detection method on 8000 images. To train on 800 images, it 460 

only took ~15 minutes with comparably high performance (~90% of selected variants detected vs ~95% with 461 

more training examples), making optimization and troubleshooting on small training sets possible in a 462 

reasonable timeframe before scaling up to a larger final dataset. That is, one may consider using a smaller 463 

training set for optimization of window size and other model decisions prior to training on a larger set. 464 

Additionally, with the availability of free GPU access via platforms such as Google Colab, deep learning 465 

methodology is accessible to researchers without the means or desire to buy their own GPU or pay for access 466 

to a remote server. The same training set can be used for multiple regions of the genome and for multiple 467 

populations given the limited impact of model misspecification. More generally, the success of our approach 468 

suggests that researchers should consider object detection methods for other problems in detecting selection 469 

and population genetics.   470 
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Materials and Methods 471 

 472 

Simulations 473 

Simulated data were generated with the forward simulator SLiM 3, combined with tree-sequence 474 

recording to track and assign local ancestry (Haller et al., 2019; Haller & Messer, 2019). For our baseline 475 

scenario, we considered a single-pulse admixture event between two source populations (Figure 1). One 476 

source population was fixed for a beneficial mutation randomly placed along a 50 Mb chromosome, with 477 

selection strength drawn from a uniform distribution ranging from 0 to 0.5. The newly admixed population had a 478 

population size N of 10000, with 50% ancestral contribution from each source. That is, the range of Ns is in 479 

[0,5000]. Tree sequence files were output after 50 generations. We used a dominance coefficient of 0.5 (an 480 

additive model), recombination rate was set to a probability of a crossover of 1.3 ×10-8 between adjacent 481 

basepairs per gamete. The SLiM script for our baseline model is available on github 482 

(https://github.com/agoldberglab/ObjectDetection_AdmixtureSelection/blob/main/admixture.slim) 483 

 484 

Ancestry Image Generation 485 

For each simulation, we used tskit to read the tree sequence files and extract local ancestry information 486 

for 200 sampled chromosomes from 100 diploid individuals from the admixed population (Haller et al., 2019; 487 

Kelleher et al., 2016, 2018). We then used R to generate a black and white 200x200 pixel image of the entire 488 

set of sampled chromosomes for each simulation (y-axis representing sampled chromosomes, x-axis 489 

representing genomic position), with each position colored by local ancestry for that individual chromosome. In 490 

these images, “black” represented ancestry from the source population that was fixed for the beneficial 491 

mutation, and “white” represented the other source population. That is, each pixel usually contains many sites 492 

depending on the length of the chromosome one uses. We chose 200 pixels for convenience, but other sizes 493 

could work. Larger images will take up more computational resources for storage and training. 494 

 495 

For our high resolution, or full ancestry images, we used true local ancestry at every position. For our 496 

low-resolution ancestry images, we used the same simulations but instead only assigned local ancestry at 100 497 

randomly dispersed markers to generate images. We used the same internally consistent markers across all 498 

simulations from the same demographic model. This approach to assigning local ancestry allowed us to test 499 

the model performance for scenarios where we have only a few Ancestry Informative Markers (AIMs) for 500 

population(s) of interest. 501 

 502 

Object detection model architecture and training 503 

We implemented an object detection model using the IceVision computer vision framework (v0.5.2; 504 

https://airctic.com/0.5.2/). Specifically, we trained a FasterRCNN model (Ren et al., 2016) 505 

(https://airctic.com/0.5.2/model_faster_rcnn/) with the FastAI deep learning framework (built on PyTorch; 506 

https://docs.fast.ai/). We used a resnet18 backbone and pretrained model weights from ImageNet 507 

(https://image-net.org/). 508 

 509 

For the sets of high- and low-resolution ancestry images described above, we generated 8000 images 510 

for training and 2000 images for validation from the same demographic model. In object detection models, the 511 

goal is to predict a bounding box around an object of interest. Under the IceVision framework, the bounding 512 

box is set as [x-min, y-min, x-max, y-max]. In our case, our goal is to detect the position of the selected variant 513 

(if there is one). Thus, for each image in our training and validation sets, we defined the target bounding box as 514 

an 11-pixel-wide window centered on the selected variant. For example, if the selected variant is in x-axis 515 

position 155, the bounding box was defined as [150, 0, 161, 200]. 516 
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We trained each model for 30 epochs using the learn.fine_tune function, freezing the pretrained layers 517 

for one epoch. We used a base learning rate of 3 x 10-3 and a weight decay of 1 x 10-2. 518 

 519 

We largely use an out-of-the-box FasterRCNN architecture with preselected hyperparameters; base 520 

learning rate & weight decay were based on testing a few different values and picking the one with the best 521 

overall performance. Number of epochs was based on the tradeoff between time to train and gain in validation 522 

performance. 523 

 524 

The high resolution and low-resolution ancestry models were both trained on an NVIDIA GeForce RTX 525 

2080 Ti GPU. The time to train one model was approximately 1.5 hours. 526 

 527 

Bounding box size and genomic resolution 528 

The method can work on other bounding box sizes, however one would need to train a model on their 529 

desired bounding box size. As a proof of concept, we retrained a small set (800 training images from our 530 

original training set, 200 validation images from our original validation set) to detect bboxes 5 pixels wide, 531 

centered on the variant under selection. We then inferred on the remaining 9000 images from our original 532 

training and validation sets. We still see reasonably high performance with this smaller bbox size (~86% of 533 

variants detected within a bounding box, Precision = 0.768, recall = 0.756) (Supplemental Table 1). Training on 534 

more images should improve this performance. 535 

 536 

Alternatively, if researchers wanted higher resolution (i.e. narrower windows), it is likely simpler use a 537 

smaller chunk of the chromosome to generate images rather than retrain the entire model to your desired 538 

window size. 539 

 540 

Detection threshold 541 

The model essentially is performing a classification task that identifies bboxes, and then returns a 542 

probability that that bbox actually contains a selected variant. This probability is defined as the bbox score, 543 

which can be interpreted as the model’s level of confidence in that predicted bbox. By default, the model will 544 

only return a predicted bbox if the score is above 0.5. This is the detection threshold. Users can alter the 545 

detection threshold to return bboxes above any arbitrary score (i.e. make the threshold higher if one wants only 546 

higher confidence predictions, lower if one wants to increase recall at the risk of lower precision). We used the 547 

default detection threshold of 0.5 for all performance evaluations, except in the case of Precision-Recall 548 

Curves (and AUC). For those, we calculated PR over a range of 10000 detection thresholds from 0 to 1. 549 

Detection threshold can be set during inference by adding the argument to the predict_dl() function in 550 

IceVision, or directly in our demo app via the slider input. 551 

 552 

Validation 553 

We evaluated performance on the validation sets using several metrics. We first calculated precision 554 

and recall by defining each x-axis pixel position as an independent test. Each image target had 11 true 555 

positives (the size of the bbox, ideally centered on the adaptive allele +/- 5 pixels) and 189 negatives. That is, 556 

pixels within the true bbox are all labeled as positive and pixels outside the true bbox are labeled as negative. 557 

Because some images may have multiple predicted bboxes, and the sizes of these bboxes can vary, the 558 

predicted positives and predicted negatives can be greater than or less than 1 for each pixel. For the purpose 559 

of getting a single classification for each pixel, if a pixel was predicted within the x-min and x-max of any 560 

bounding box with a score above the threshold, it was classified as a “region under selection” (i.e. a “positive” 561 

classification). X-axis positions outside all predicted bounding boxes were classified as a “region not under 562 

selection” (i.e. a “negative” classification). In this way, we were able to calculate true and false positives and 563 
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negatives. We defined P-R in this manner to capture multiple aspects of the method’s performance such as 564 

how well it identifies a bbox of the correct size in the correct region. 565 

  566 

We also defined several other metrics to assist in evaluating object detection performance across 567 

different demographic scenarios. First, we calculated the proportion of predicted bounding boxes that contain 568 

the true selected variant, which we defined as the bbox detection rate. We chose this metric because some 569 

images have more than one predicted bounding box, and some have none. We wanted to correctly punish the 570 

model for returning bboxes that did not contain a selected variant. For example, if the model predicts two 571 

bboxes for an image, one which correctly contains the selected variant within the bounds, and a second which 572 

does not, the method is not performing as well as we would like. A value close to 1 indicates high sensitivity, or 573 

that the method is consistently able to detect a region under selection. 574 

 575 

We also calculated the average width of the predicted bounding boxes. If the average width is much 576 

wider than the 11-pixels we used in training, this may indicate we have low specificity to detect a region under 577 

selection. Finally, we calculated the average number of predicted bounding boxes per image. Since we are 578 

only simulating one variant under selection, the model should predict 1 bounding box per image. These metrics 579 

combined with the more universal precision and recall statistics allowed us to compare performance of our 580 

model across different scenarios and between different methods. 581 

 582 

Code to calculate metrics during both training and inference is found in our github example notebook 583 

(https://github.com/agoldberglab/ObjectDetection_AdmixtureSelection/blob/6fa95b941608292d219585b1bd8b584 

8dec9c315dce/objectdetection_ancestryimages_example.ipynb). 585 

 586 

Model Misspecifications 587 

We tested the performance of our baseline high resolution ancestry model under several demographic 588 

model misspecifications (Results & Table 2). For each misspecification scenario, we generated 1000 high 589 

resolution full ancestry images (i.e. incorporating full local ancestry information), ran inference using our trained 590 

baseline model, and calculated performance metrics detailed in the previous section. 591 

 592 

For these simulations, we followed the baseline scenario described previously while changing one 593 

feature of the admixture or population history. We tested inference on images generated from different 594 

admixture contributions than what we trained on (10%, 25%, 75% or 90% contribution from the source 595 

population providing the beneficial mutation), number of generations since admixture began (25 and 100 596 

generations), population size histories (expansion, contraction, and moderate (50%) and severe (10%) 597 

bottlenecks), and a scenario where the selected variant is present in both sources at a frequency of 0.5 (i.e. 598 

FST of 0 between the sources). 599 

 600 

For the population size misspecifications, the expansion (200%) or contraction (50%) events occurred 601 

at 25 generations (halfway through the simulation). The bottlenecks occurred at 25 generations and lasted for 602 

10 generations before expanding to the original population size of 10000. All scenarios start with N=10000. 603 

 604 

Comparison to local ancestry outlier approach 605 

We generated 1000 ‘genome-wide’ simulations of 5 independently segregating chromosomes of 50 Mb 606 

each. For each simulation, the beneficial allele was fixed at the center of the first chromosome. The rest of the 607 

simulation followed exactly the admixture scenario for our baseline model described previously. After sampling 608 

200 haplotypes from the population, we binned the first chromosome into 200 equally-sized windows (to be 609 

analogous with the 200x200 pixel images for comparison). Any window with an average local ancestry 610 
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proportion greater than 3 standard deviations from the genome-wide mean was classified as “under selection” 611 

by this outlier approach. We generated ancestry-painted images from the same simulated chromosomes and 612 

classified regions under selection using our object detection method trained on the baseline high resolution 613 

ancestry scenario. 614 

 615 

Application to human SNP data from Cabo Verde 616 

We used local ancestry calls for ~800k genome-wide SNPs from a previous study of post-admixture 617 

selection in Cabo Verde, which included 172 individuals from the island of Santiago (Beleza et al., 2013; 618 

Hamid et al., 2021). We focused on Santiago because we had previously detected evidence of strong positive 619 

selection in this population for the Duffy-null allele at the DARC (also known as ACKR1) gene. We generated a 620 

200x200 pixel image of West African and European ancestry tracts on Chromosome 1 for these 172 621 

individuals (344 haplotypes). The length of ancestry tracts can be influenced by the recombination landscape 622 

along the chromosome (e.g. long ancestry tracts are often found close to the centromere). To account for this 623 

effect, we used genetic map distances rather than physical positions to calculate ancestry tract lengths, and 624 

suggest this approach for others using our method if a genetic map is available. We then identified regions 625 

under selection on Chromosome 1 using our pre-trained high resolution object detection method for the 626 

baseline ancestry scenario (Figure 4). 627 

 628 

To compare our results to the local ancestry outlier approach, we identified sites where the proportion 629 

of individuals with West African ancestry was more than 3 standard deviations from the mean genome-wide 630 

ancestry proportion (~0.73). 631 

 632 

We also compared our results to the calculated iDAT values from Hamid et al. 2021 (the full genome-633 

wide iDAT scores can also be downloaded from Hamid et al.’s associated github repository). This data consists 634 

of iDAT values for 10,000 randomly sampled SNPs across the genome. iDAT is a summary statistic designed 635 

to detect ancestry-specific post-admixture selection by calculating the difference in the rate of tract length 636 

decay between two ancestries at a site of interest, similar to how iHS compares the decay in homozygosity 637 

between haplotypes bearing the ancestral and derived alleles at a focal site (Voight et al., 2006). Duffy-null 638 

was previously shown to be in a genomic window with extreme values of iDAT in Santiago, indicative of the 639 

strong recent positive selection at the locus. For our purposes, we first standardized iDAT by the genome-wide 640 

background. Then, we identified standardized iDAT values on Chromosome 1 that were more than 3 standard 641 

deviations from the mean genome-wide standardized iDAT.      642 

 643 
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Data and Code Availability: Code for this study is available at 648 

https://github.com/agoldberglab/ObjectDetection_AdmixtureSelection. The pretrained high resolution baseline 649 

model that was used for most analyses in this study is uploaded and deployed at 650 

https://huggingface.co/spaces/imanhamid/ObjectDetection_AdmixtureSelection_Space. Here, users can input 651 

a 200x200 pixel, black and white, ancestry-painted image and the model will return vertices and scores for 652 

bboxes centered on predicted regions under selection (if there are any). We recommend that users follow the 653 

example code in our github for generating ancestry images to ensure that files are in the correct format. We 654 

emphasize that this model is trained under a simple single-locus selection scenario, so users should use 655 

discretion when deciding if this is an appropriate method for their data. Inferred local ancestry information for 656 
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the individuals from Cabo Verde can be found at https://doi.org/10.5281/zenodo.4021277, originally published 657 

by Hamid et al. 2021 from genotype data published in Beleza et al. 2013.   658 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2022.09.04.506532doi: bioRxiv preprint 

https://doi.org/10.5281/zenodo.4021277
https://doi.org/10.1101/2022.09.04.506532
http://creativecommons.org/licenses/by/4.0/


 

21 

References 659 

Adrion, J. R., Galloway, J. G., & Kern, A. D. (2020). Predicting the landscape of recombination using deep 660 
learning. Molecular biology and evolution, 37(6), 1790-1808.  661 

Aguillon, S. M., Dodge, T. O., Preising, G. A., & Schumer, M. (2022). Introgression. Current Biology, 32(16), 662 
R865-R868. 663 

Battey, C. J., Ralph, P. L., & Kern, A. D. (2020). Predicting geographic location from genetic variation with 664 
deep neural networks. eLife, 9, e54507. 665 

Battey, C. J., Coffing, G. C., & Kern, A. D. (2021). Visualizing population structure with variational 666 
autoencoders. G3, 11(1), jkaa036. 667 

Beleza, S., Johnson, N. A., Candille, S. I., Absher, D. M., Coram, M. A., Lopes, J., et al. (2013). Genetic 668 
architecture of skin and eye color in an African-European admixed population. PLoS genetics, 9(3), 669 
e1003372. 670 

Belsare, S., Levy-Sakin, M., Mostovoy, Y., Durinck, S., Chaudhuri, S., Xiao, M., et al. (2019). Evaluating the 671 
quality of the 1000 genomes project data. BMC genomics, 20(1), 1-14.  672 

Bhatia, G., Tandon, A., Patterson, N., Aldrich, M. C., Ambrosone, C. B., Amos, C., Bandera, E. V., Berndt, S. 673 
I., Bernstein, L., Blot, W. J., Bock, C. H., Caporaso, N., Casey, G., Deming, S. L., Diver, W. R., 674 
Gapstur, S. M., Gillanders, E. M., Harris, C. C., Henderson, B. E., et al. (2014). Genome-wide Scan of 675 
29,141 African Americans Finds No Evidence of Directional Selection since Admixture. The American 676 
Journal of Human Genetics, 95(4), 437–444. https://doi.org/10.1016/j.ajhg.2014.08.011 677 

Blischak, P. D., Barker, M. S., & Gutenkunst, R. N. (2021). Chromosome-scale inference of hybrid speciation 678 
and admixture with convolutional neural networks. Molecular Ecology Resources, 21(8), 2676–2688. 679 
https://doi.org/10.1111/1755-0998.13355 680 

Browning, S. R., & Browning, B. L. (2011). Haplotype phasing: Existing methods and new developments. 681 
Nature Reviews Genetics, 12(10), 703–714. https://doi.org/10.1038/nrg3054 682 

Bryc, K., Auton, A., Nelson, M. R., Oksenberg, J. R., Hauser, S. L., Williams, S., Froment, A., Bodo, J.-M., 683 
Wambebe, C., Tishkoff, S. A., & Bustamante, C. D. (2010). Genome-wide patterns of population 684 
structure and admixture in West Africans and African Americans. Proceedings of the National Academy 685 
of Sciences, 107(2), 786–791. https://doi.org/10.1073/pnas.0909559107 686 

Bryc, K., Durand, E. Y., Macpherson, J. M., Reich, D., & Mountain, J. L. (2015). The Genetic Ancestry of 687 
African Americans, Latinos, and European Americans across the United States. The American Journal 688 
of Human Genetics, 96(1), 37–53. https://doi.org/10.1016/j.ajhg.2014.11.010 689 

Busby, G. B., Band, G., Si Le, Q., Jallow, M., Bougama, E., Mangano, V. D., Amenga-Etego, L. N., Enimil, A., 690 
Apinjoh, T., Ndila, C. M., Manjurano, A., Nyirongo, V., Doumba, O., Rockett, K. A., Kwiatkowski, D. P., 691 
Spencer, C. C., & Malaria Genomic Epidemiology Network. (2016). Admixture into and within sub-692 
Saharan Africa. ELife, 5, e15266. https://doi.org/10.7554/eLife.15266 693 

Busby, G., Christ, R., Band, G., Leffler, E., Le, Q. S., Rockett, K., Kwiatkowski, D., & Spencer, C. (2017). 694 
Inferring adaptive gene-flow in recent African history. BioRxiv, 205252. https://doi.org/10.1101/205252 695 

Chan, J., Perrone, V., Spence, J. P., Jenkins, P. A., Mathieson, S., & Song, Y. S. (2018). A Likelihood-Free 696 
Inference Framework for Population Genetic Data using Exchangeable Neural Networks. Advances in 697 
Neural Information Processing Systems, 31, 8594–8605. 698 

Corbett-Detig, R., & Nielsen, R. (2017). A hidden Markov model approach for simultaneously estimating local 699 
ancestry and admixture time using next generation sequence data in samples of arbitrary ploidy. PLoS 700 
genetics, 13(1), e1006529. 701 

Cuadros-Espinoza, S., Laval, G., Quintana-Murci, L., & Patin, E. (2022). The genomic signatures of natural 702 
selection in admixed human populations. The American Journal of Human Genetics, 109(4), 710-726.  703 

Edelman, N. B., & Mallet, J. (2021). Prevalence and adaptive impact of introgression. Annual Review of 704 
Genetics, 55, 265-283.  705 

Fernandes, V., Brucato, N., Ferreira, J. C., Pedro, N., Cavadas, B., Ricaut, F.-X., Alshamali, F., & Pereira, L. 706 
(2019). Genome-Wide Characterization of Arabian Peninsula Populations: Shedding Light on the 707 
History of a Fundamental Bridge between Continents. Molecular Biology and Evolution, 36(3), 575–708 
586. https://doi.org/10.1093/molbev/msz005 709 

Flagel, L., Brandvain, Y., & Schrider, D. R. (2019). The Unreasonable Effectiveness of Convolutional Neural 710 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2022.09.04.506532doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.04.506532
http://creativecommons.org/licenses/by/4.0/


 

22 

Networks in Population Genetic Inference. Molecular Biology and Evolution, 36(2), 220–238. 711 
https://doi.org/10.1093/molbev/msy224 712 

Gopalan, S., Smith, S. P., Korunes, K., Hamid, I., Ramachandran, S., & Goldberg, A. (2022). Human genetic 713 
admixture through the lens of population genomics. Philosophical Transactions of the Royal Society B, 714 
377(1852), 20200410. 715 

Gower, G., Picazo, P. I., Fumagalli, M., & Racimo, F. (2021). Detecting adaptive introgression in human 716 
evolution using convolutional neural networks. ELife, 10, e64669. https://doi.org/10.7554/eLife.64669 717 

Gravel, S., Stephens, M., & Pritchard, J. K. (2012). Population genetics models of local ancestry. Genetics, 718 
191(2), 607–619. https://doi.org/10.1534/genetics.112.139808 719 

Haller, B. C., Galloway, J., Kelleher, J., Messer, P. W., & Ralph, P. L. (2019). Tree-sequence recording in SLiM 720 
opens new horizons for forward-time simulation of whole genomes. Molecular Ecology Resources, 721 
19(2), 552–566. https://doi.org/10.1111/1755-0998.12968 722 

Haller, B. C., & Messer, P. W. (2019). SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher Model. 723 
Molecular Biology and Evolution, 36(3), 632–637. https://doi.org/10.1093/molbev/msy228 724 

Hamid, I., Korunes, K. L., Beleza, S., & Goldberg, A. (2021). Rapid adaptation to malaria facilitated by 725 
admixture in the human population of Cabo Verde. ELife, 10, e63177. 726 
https://doi.org/10.7554/eLife.63177 727 

Hedrick, P. W. (2013). Adaptive introgression in animals: Examples and comparison to new mutation and 728 
standing variation as sources of adaptive variation. Molecular Ecology, 22(18), 4606–4618. 729 
https://doi.org/10.1111/mec.12415 730 

Hellenthal, G., Busby, G. B., Band, G., Wilson, J. F., Capelli, C., Falush, D., & Myers, S. (2014). A genetic atlas 731 
of human admixture history. science, 343(6172), 747-751. 732 

Hodgson, J. A., Pickrell, J. K., Pearson, L. N., Quillen, E. E., Prista, A., Rocha, J., et al. (2014). Natural 733 
selection for the Duffy-null allele in the recently admixed people of Madagascar. Proceedings of the 734 
Royal Society B: Biological Sciences, 281(1789), 20140930.  735 

Hsieh, P., Vollger, M. R., Dang, V., Porubsky, D., Baker, C., Cantsilieris, S., et al. (2019). Adaptive archaic 736 
introgression of copy number variants and the discovery of previously unknown human genes. Science, 737 
366(6463), eaax2083.  738 

Huerta-Sánchez, E., Jin, X., Bianba, Z., Peter, B. M., Vinckenbosch, N., Liang, Y., et al. (2014). Altitude 739 
adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512(7513), 194-197. 740 

Isildak, U., Stella, A., & Fumagalli, M. (2021). Distinguishing between recent balancing selection and 741 
incomplete sweep using deep neural networks. Molecular Ecology Resources, 21(8), 2706–2718. 742 
https://doi.org/10.1111/1755-0998.13379 743 

Isshiki, M., Naka, I., Kimura, R., Nishida, N., Furusawa, T., Natsuhara, K., Yamauchi, T., Nakazawa, M., Ishida, 744 
T., Inaoka, T., Matsumura, Y., Ohtsuka, R., & Ohashi, J. (2021). Admixture with indigenous people 745 
helps local adaptation: Admixture-enabled selection in Polynesians. BMC Ecology and Evolution, 21(1), 746 
179. https://doi.org/10.1186/s12862-021-01900-y 747 

Jeong, C., Alkorta-Aranburu, G., Basnyat, B., Neupane, M., Witonsky, D. B., Pritchard, J. K., Beall, C. M., & 748 
Rienzo, A. D. (2014). Admixture facilitates genetic adaptations to high altitude in Tibet. Nature 749 
Communications, 5(1), 1–7. https://doi.org/10.1038/ncomms4281 750 

Jin, W., Xu, S., Wang, H., Yu, Y., Shen, Y., Wu, B., & Jin, L. (2012). Genome-wide detection of natural 751 
selection in African Americans pre- and post-admixture. Genome Research, 22(3), 519–527. 752 
https://doi.org/10.1101/gr.124784.111 753 

Kelleher, J., Etheridge, A. M., & McVean, G. (2016). Efficient Coalescent Simulation and Genealogical Analysis 754 
for Large Sample Sizes. PLOS Computational Biology, 12(5), e1004842. 755 
https://doi.org/10.1371/journal.pcbi.1004842 756 

Kelleher, J., Thornton, K. R., Ashander, J., & Ralph, P. L. (2018). Efficient pedigree recording for fast 757 
population genetics simulation. PLOS Computational Biology, 14(11), e1006581. 758 
https://doi.org/10.1371/journal.pcbi.1006581 759 

Kelly, J. K. (1997). A test of neutrality based on interlocus associations. Genetics, 146(3), 1197-1206.  760 
Kern, A. D., & Schrider, D. R. (2018). diploS/HIC: An Updated Approach to Classifying Selective Sweeps. G3: 761 

Genes, Genomes, Genetics, 8(6), 1959–1970. https://doi.org/10.1534/g3.118.200262 762 
Kim, Y., & Nielsen, R. (2004). Linkage Disequilibrium as a Signature of Selective Sweeps. Genetics, 167(3), 763 

1513–1524. https://doi.org/10.1534/genetics.103.025387 764 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2022.09.04.506532doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.04.506532
http://creativecommons.org/licenses/by/4.0/


 

23 

Korunes, K., Soares-Souza, G. B., Bobrek, K., Tang, H., Araújo, I. I., Goldberg, A., Beleza, S. (2022) Sex-765 
biased admixture and assortative mating shape genetic variation and influence demographic inference 766 
in admixed Cabo Verdeans. G3: Genes|Genomes|Genetics, jkac183 767 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural 768 
Networks. Advances in Neural Information Processing Systems, 25. 769 
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html 770 

Laso-Jadart, R., Harmant, C., Quach, H., Zidane, N., Tyler-Smith, C., Mehdi, Q., Ayub, Q., Quintana-Murci, L., 771 
& Patin, E. (2017). The Genetic Legacy of the Indian Ocean Slave Trade: Recent Admixture and Post-772 
admixture Selection in the Makranis of Pakistan. The American Journal of Human Genetics, 101(6), 773 
977–984. https://doi.org/10.1016/j.ajhg.2017.09.025 774 

Lawson, D. J., Hellenthal, G., Myers, S., & Falush, D. (2012). Inference of population structure using dense 775 
haplotype data. PLoS genetics, 8(1), e1002453.  776 

Lecun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time-series. In M. A. Arbib 777 
(Ed.), The handbook of brain theory and neural networks. MIT Press. 778 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 779 
https://doi.org/10.1038/nature14539 780 

Lohmueller, K. E., Bustamante, C. D., & Clark, A. G. (2010). The Effect of Recent Admixture on Inference of 781 
Ancient Human Population History. Genetics, 185(2), 611–622. 782 
https://doi.org/10.1534/genetics.109.113761 783 

Lohmueller, K. E., Bustamante, C. D., & Clark, A. G. (2011). Detecting Directional Selection in the Presence of 784 
Recent Admixture in African-Americans. Genetics, 187(3), 823–835. 785 
https://doi.org/10.1534/genetics.110.122739 786 

Lopez, M., Choin, J., Sikora, M., Siddle, K., Harmant, C., Costa, H. A., Silvert, M., Mouguiama-Daouda, P., 787 
Hombert, J.-M., Froment, A., Le Bomin, S., Perry, G. H., Barreiro, L. B., Bustamante, C. D., Verdu, P., 788 
Patin, E., & Quintana-Murci, L. (2019). Genomic Evidence for Local Adaptation of Hunter-Gatherers to 789 
the African Rainforest. Current Biology, 29(17), 2926-2935.e4. 790 
https://doi.org/10.1016/j.cub.2019.07.013 791 

Maples, B. K., Gravel, S., Kenny, E. E., & Bustamante, C. D. (2013). RFMix: a discriminative modeling 792 
approach for rapid and robust local-ancestry inference. The American Journal of Human Genetics, 793 
93(2), 278-288.  794 

Moran, B. M., Payne, C., Langdon, Q., Powell, D. L., Brandvain, Y., & Schumer, M. (2021). The genomic 795 
consequences of hybridization. ELife, 10, e69016. 796 

Norris, E. T., Rishishwar, L., Chande, A. T., Conley, A. B., Ye, K., Valderrama-Aguirre, A., & Jordan, I. K. 797 
(2020). Admixture-enabled selection for rapid adaptive evolution in the Americas. Genome Biology, 798 
21(1), 29. https://doi.org/10.1186/s13059-020-1946-2 799 

Norris, L. C., Main, B. J., Lee, Y., Collier, T. C., Fofana, A., Cornel, A. J., & Lanzaro, G. C. (2015). Adaptive 800 
introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated 801 
bed nets. Proceedings of the National Academy of Sciences, 112(3), 815–820. 802 
https://doi.org/10.1073/pnas.1418892112 803 

Oziolor, E. M., Reid, N. M., Yair, S., Lee, K. M., Guberman VerPloeg, S., Bruns, P. C., et al. (2019). Adaptive 804 
introgression enables evolutionary rescue from extreme environmental pollution. Science, 364(6439), 805 
455-457.  806 

Patin, E., Lopez, M., Grollemund, R., Verdu, P., Harmant, C., Quach, H., Laval, G., Perry, G. H., Barreiro, L. 807 
B., Froment, A., Heyer, E., Massougbodji, A., Fortes-Lima, C., Migot-Nabias, F., Bellis, G., Dugoujon, 808 
J.-M., Pereira, J. B., Fernandes, V., Pereira, L., et al. (2017). Dispersals and genetic adaptation of 809 
Bantu-speaking populations in Africa and North America. Science, 356(6337), 543–546. 810 
https://doi.org/10.1126/science.aal1988 811 

Payseur, B. A., & Rieseberg, L. H. (2016). A genomic perspective on hybridization and speciation. Molecular 812 
ecology, 25(11), 2337-2360. 813 

Pierron, D., Heiske, M., Razafindrazaka, H., Pereda-loth, V., Sanchez, J., Alva, O., Arachiche, A., Boland, A., 814 
Olaso, R., Deleuze, J.-F., Ricaut, F.-X., Rakotoarisoa, J.-A., Radimilahy, C., Stoneking, M., & Letellier, 815 
T. (2018). Strong selection during the last millennium for African ancestry in the admixed population of 816 
Madagascar. Nature Communications, 9(1), 1–9. https://doi.org/10.1038/s41467-018-03342-5 817 

Price, A. L., Weale, M. E., Patterson, N., Myers, S. R., Need, A. C., Shianna, K. V., Ge, D., Rotter, J. I., Torres, 818 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2022.09.04.506532doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.04.506532
http://creativecommons.org/licenses/by/4.0/


 

24 

E., Taylor, K. D., Goldstein, D. B., & Reich, D. (2008). Long-Range LD Can Confound Genome Scans 819 
in Admixed Populations. The American Journal of Human Genetics, 83(1), 132–135. 820 
https://doi.org/10.1016/j.ajhg.2008.06.005 821 

Racimo, F., Sankararaman, S., Nielsen, R., & Huerta-Sánchez, E. (2015). Evidence for archaic adaptive 822 
introgression in humans. Nature Reviews Genetics, 16(6), 359–371. https://doi.org/10.1038/nrg3936 823 

Racimo, F., Marnetto, D., & Huerta-Sánchez, E. (2017). Signatures of archaic adaptive introgression in 824 
present-day human populations. Molecular biology and evolution, 34(2), 296-317. 825 

Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with 826 
Region Proposal Networks. ArXiv:1506.01497 [Cs]. http://arxiv.org/abs/1506.01497 827 

Rishishwar, L., Conley, A. B., Wigington, C. H., Wang, L., Valderrama-Aguirre, A., & Jordan, I. K. (2015). 828 
Ancestry, admixture and fitness in Colombian genomes. Scientific Reports, 5(1), 1–16. 829 
https://doi.org/10.1038/srep12376 830 

Sabeti, P. C., Reich, D. E., Higgins, J. M., Levine, H. Z. P., Richter, D. J., Schaffner, S. F., Gabriel, S. B., 831 
Platko, J. V., Patterson, N. J., McDonald, G. J., Ackerman, H. C., Campbell, S. J., Altshuler, D., 832 
Cooper, R., Kwiatkowski, D., Ward, R., & Lander, E. S. (2002). Detecting recent positive selection in 833 
the human genome from haplotype structure. Nature, 419(6909), 832–837. 834 
https://doi.org/10.1038/nature01140 835 

Sanchez, T., Cury, J., Charpiat, G., & Jay, F. (2021). Deep learning for population size history inference: 836 
Design, comparison and combination with approximate Bayesian computation. Molecular Ecology 837 
Resources, 21(8), 2645–2660. https://doi.org/10.1111/1755-0998.13224 838 

Schaefer, N. K., Shapiro, B., & Green, R. E. (2016). Detecting hybridization using ancient DNA. Molecular 839 
ecology, 25(11), 2398-2412.  840 

Schaefer, N. K., Shapiro, B., & Green, R. E. (2017). AD-LIBS: inferring ancestry across hybrid genomes using 841 
low-coverage sequence data. BMC bioinformatics, 18(1), 1-22. 842 

Schrider, D. R., & Kern, A. D. (2018). Supervised Machine Learning for Population Genetics: A New Paradigm. 843 
Trends in Genetics, 34(4), 301–312. https://doi.org/10.1016/j.tig.2017.12.005 844 

Schumer, M., Powell, D. L., & Corbett-Detig, R. (2020). Versatile simulations of admixture and accurate local 845 
ancestry inference with mixnmatch and ancestryinfer. Molecular Ecology Resources, 20(4), 1141–1151. 846 
https://doi.org/10.1111/1755-0998.13175 847 

Setter, D., Mousset, S., Cheng, X., Nielsen, R., DeGiorgio, M., & Hermisson, J. (2020). VolcanoFinder: 848 
genomic scans for adaptive introgression. PLoS Genetics, 16(6), e1008867.  849 

Shchur, V., Svedberg, J., Medina, P., Corbett-Detig, R., & Nielsen, R. (2020). On the distribution of tract 850 
lengths during adaptive introgression. G3: Genes, Genomes, Genetics, 10(10), 3663-3673.  851 

Sheehan, S., & Song, Y. S. (2016). Deep Learning for Population Genetic Inference. PLOS Computational 852 
Biology, 12(3), e1004845. https://doi.org/10.1371/journal.pcbi.1004845 853 

Svedberg, J., Shchur, V., Reinman, S., Nielsen, R., & Corbett-Detig, R. (2021). Inferring adaptive introgression 854 
using hidden Markov models. Molecular biology and evolution, 38(5), 2152-2165. 855 

Tang, H., Choudhry, S., Mei, R., Morgan, M., Rodriguez-Cintron, W., Burchard, E. G., & Risch, N. J. (2007). 856 
Recent Genetic Selection in the Ancestral Admixture of Puerto Ricans. The American Journal of 857 
Human Genetics, 81(3), 626–633. https://doi.org/10.1086/520769 858 

Torada, L., Lorenzon, L., Beddis, A., Isildak, U., Pattini, L., Mathieson, S., & Fumagalli, M. (2019). ImaGene: A 859 
convolutional neural network to quantify natural selection from genomic data. BMC Bioinformatics, 860 
20(9), 337. https://doi.org/10.1186/s12859-019-2927-x 861 

Triska, P., Soares, P., Patin, E., Fernandes, V., Cerny, V., & Pereira, L. (2015). Extensive Admixture and 862 
Selective Pressure Across the Sahel Belt. Genome Biology and Evolution, 7(12), 3484–3495. 863 
https://doi.org/10.1093/gbe/evv236 864 

Vicuña, L., Klimenkova, O., Norambuena, T., Martinez, F. I., Fernandez, M. I., Shchur, V., & Eyheramendy, S. 865 
(2020). Post-Admixture Selection on Chileans Targets Haplotype Involved in Pigmentation and Immune 866 
Defense Against Pathogens. Genome Biology and Evolution. https://doi.org/10.1093/gbe/evaa136 867 

Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006). A Map of Recent Positive Selection in the 868 
Human Genome. PLOS Biology, 4(3), e72. https://doi.org/10.1371/journal.pbio.0040072 869 

Wall, J. D., Schlebusch, S. A., Alberts, S. C., Cox, L. A., Snyder-Mackler, N., Nevonen, K. A., et al. (2016). 870 
Genomewide ancestry and divergence patterns from low-coverage sequencing data reveal a complex 871 
history of admixture in wild baboons. Molecular ecology, 25(14), 3469-3483. 872 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2022.09.04.506532doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.04.506532
http://creativecommons.org/licenses/by/4.0/


 

25 

Wang, Z., Wang, J., Kourakos, M., Hoang, N., Lee, H. H., Mathieson, I., & Mathieson, S. (2021). Automatic 873 
inference of demographic parameters using generative adversarial networks. Molecular Ecology 874 
Resources, 21(8), 2689–2705. https://doi.org/10.1111/1755-0998.13386 875 

Whitney, K. D., Randell, R. A., & Rieseberg, L. H. (2006). Adaptive Introgression of Herbivore Resistance 876 
Traits in the Weedy Sunflower Helianthus annuus. The American Naturalist, 167(6), 794–807. 877 
https://doi.org/10.1086/504606 878 

Williams, A. (2016). admix-simu: Admix-simu: program to simulate admixture between multiple populations. 879 
Zenodo. https://doi.org/10.5281/zenodo.45517 880 

Yelmen, B., Marnetto, D., Molinaro, L., Flores, R., Mondal, M., & Pagani, L. (2021). Improving selection 881 
detection with population branch statistic on admixed populations. Genome biology and evolution, 882 
13(4), evab039.  883 

Zhou, Q., Zhao, L., & Guan, Y. (2016). Strong Selection at MHC in Mexicans since Admixture. PLOS Genetics, 884 
12(2), e1005847. https://doi.org/10.1371/journal.pgen.1005847 885 

 886 

  887 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2022.09.04.506532doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.04.506532
http://creativecommons.org/licenses/by/4.0/


 

26 

 888 

 889 
Supplemental Figure 1. Precision-Recall curves comparing performance under demographic model 890 

misspecifications to the baseline scenario for high resolution full ancestry images; baseline is the solid black 891 

line in each plot. Panels show different categories of misspecification: A) founding admixture contribution from 892 

the population providing the beneficial allele, B) number of generations since admixture occurred, C) 893 

population size change since the founding of the admixed populations, and D) level of differentiation between 894 

the source populations for the variant under selection. Area under the curves (AUC) can be found in Table 2. 895 

The no-skill classifier is indicated by the dashed black lines in each plot. 896 
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 899 
Supplemental Figure 2. Comparison of local ancestry outlier approach and object detection method. Replot of 900 

data from Figure 3A, showing, for each genomic window, the proportion of simulations that had that region 901 

classified as “under selection” by either the object detection or local ancestry outlier methods. 902 
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A 905 

 906 
B      C 907 

 908 
Supplemental Figure 3. Alternative measure of performance of local ancestry outlier approach. We used the 909 

same simulations that were generated for Figure 3 over a range of selection coefficients. We defined the 910 

“prediction score” as the ancestry proportion, and calculated PR over the range of local ancestry proportions 911 

(~0.367 to ~1). Because the “selected variant” is at the very edge of the 100th window, we labeled both 912 

windows 100 and 101 as “positives” and everything else as negatives. (A) across selection coefficients. (B) 913 

Splitting into “weak selection” simulations (s < 0.01, n = 3800 [200 windows for 19 simulations]) and (C) “strong 914 

selection” simulations (s > 0.1), n = 162600 [ 200 windows for 813 simulations]). Evaluating performance in this 915 

way punishes the local ancestry method more than Figure 3 because the wide affected region with high 916 

ancestry proportion results in low recall over a range of outlier “thresholds.” 917 
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 919 
Supplemental Figure 4. Precision-Recall curves comparing performance under demographic model 920 

misspecifications to the baseline scenario (i.e. the scenario that the network was trained on) for low-resolution 921 

ancestry resolution images; baseline is the solid black line in each plot. Panels show different categories of 922 

misspecification: A) founding admixture contribution from the population providing the beneficial allele, B) 923 

number of generations since admixture occurred, C) population size change since the founding of the admixed 924 

populations, and D) level of differentiation between the source populations for the variant under selection. Area 925 

under the curves (AUC) can be found in Table S2. The no-skill classifier is indicated by the dashed black lines 926 

in each plot. Analogous to Figure S1 for high-resolution ancestry. 927 
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ancestry resolution bbox 
detection 
rate 

average 
width 

average 
number of 
bounding 
boxes 

precision recall 

high (full ancestry) 0.861 4.956 
(var: 0.264, 
n=8561) 

1.033 
(var: 0.160, 
n = 9000) 

0.768 0.756 

Supplemental Table 1. Performance of object detection method with a smaller 5-pixel bbox using 800 training 930 
images and 200 validation images. 931 
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Supplemental Table 2. Performance of object detection method on images generated from demographic 933 

misspecifications for low resolution ancestry. Further details of models in Materials and Methods, Figure S4.  934 

misspecification bbox 
detection 
rate 

average  
width 

average 
number of 
bounding 
boxes 

precision recall AUC 

none (baseline) 0.950 10.834 (var = 
0.580, n = 
1964) 

1.0175 (var 
= 0.064, n = 
2000) 

0.867 0.870 0.811 

m = 0.1 0.723 10.778 (var = 
0.793, n = 
824) 

0.895 (var = 
0.283, n = 
1000) 

0.786 0.675 0.649 

m = 0.25 0.857 10.819 (var = 
0.649, n = 
862) 

0.872 (var = 
0.135, n = 
1000) 

0.922 0.798 0.764 

m = 0.75 0.788 10.843 (var = 
0.638, n = 
839) 

0.841 (var = 
0.138, n = 
1000) 

0.821 0.690 0.630 

m = 0.9 0.073 10.994 (var = 
0.080, n = 
194) 

0.194 (var  = 
0.156, n = 
1000) 

0.332 0.065 0.040 

gen = 25 0.860 10.823 (var = 
0.597, n = 
946) 

0.987 (var = 
0.119, n = 
1000) 

0.793 0.768 0.711 

gen = 100 0.970 10.786 (var = 
0.805, n = 
993) 

1.012 (var = 
0.038, n = 
1000) 

0.886 0.887 0.827 

Fst = 0 0.032 10.867 (var = 
0.271, n = 
635) 

1.073 (var = 
1.080, n = 
1000) 

0.047 0.042 0.004 

bottleneck (50%) 0.947 10.857 (var = 
0.491, n = 
988) 

1.037 (var = 
0.094, n = 
1000) 

0.853 0.868 0.812 

bottleneck (10%) 0.931 10.846 (var = 
0.524, n = 
989) 

1.022 (var = 
0.062, n = 
1000) 

0.835 0.842 0.774 

expansion 0.939 10.823 (var = 
0.632, n = 
984) 

1.028 (var = 
0.081, n = 
1000) 

0.856 0.863 0.802 

contraction 0.938 10.873 (var = 
0.419, n = 
984) 

1.016 (var = 
0.068, n = 
1000) 

0.847 0.848 0.785 
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