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A Multithreaded Model for Cancer Tissue
Heterogeneity: An Application
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Abstract—Studying the heterogeneity in cancerous tissue is
challenging in cancer research. It is vital to process the real-
world data efficiently to understand the heterogeneous nature of
cancer tissue. GPU compatible models, which can estimate the
subpopulation of cancerous tissue, are fast if the size of input
data, i.e., the number of qPCR (quantitative polymerase chain
reaction) gene expression reading is extensive. In the real world,
we rarely get that much data to reap the benefits of a GPU’s
parallelism. Real experimental data from fibroblasts are much
less, and models using those data on a GPU are slower than the
CPU multithreaded application. This paper will show a method
to run GPU-compatible models for cancer tissue heterogeneity
on a multithreaded CPU. Further, we also show that the model
running on a multithreaded CPU is faster than the model running
on a GPU with real experimental data.

Index Terms—Bayesian methods,hierarchical model, Markov
chain Monte Carlo, Metropolis-Hastings algorithm, Graphics
processing unit, OpenMP

I. INTRODUCTION

TUMOR cells are heterogeneous [1] and [2]. The clonal
evolution models suggest that tumor cells accumulate

mutation as it progresses. This stepwise accumulation re-
sults in various sub-population in a tumor cell and makes
it heterogeneous. Another dominant theory called the stem
cell suggests that only a small portion of the tumor cell are
dominant [3], [4], [5] and [6]. These theories suggest that
cancer tissues are heterogeneous and pose specific challenges
in cancer treatment. The sub-population reacts differently to a
given therapy. It may also happen that a particular combination
of drugs works for a patient but may not work for another
patient with a different combination of sub-population. It is
essential to know the proportion of these sub-populations to
make appropriate decisions about therapy. A mathematical
model that can account for the heterogeneous behavior of
cancer tissue can provide better insight into cancer treatment.
Therefore, it is imperative to model the heterogeneity of cancer
tissue mathematically.

Authors in [7] discussed a hierarchical model to analyze
cancer tissue heterogeneity. The authors in [7], used a Boolean
network collection to model cancer, and the weights of each
of those networks represented the proportion of each hetero-
geneous sub-population. A hierarchical model was used to
demonstrate the relationship between gene expression mea-
surements and the unknown parameters. In [8], the authors
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presented a parallelizable model to analyze cancer tissue
heterogeneity. Unfortunately, this parallelizable model, which
is compatible with a GPU’s SIMD (single instruction multiple
data) architecture, does not perform well for a small dataset.
The parallelizable model running on a GPU is suitable with
large synthetic data but not for real experimental data because
the amount of real experimental data is significantly less. So, a
GPU is not an ideal choice for such cases. This paper describes
a method to run parallelizable models on a multithreaded CPU.
We shall show that a multithreaded CPU’s run time is less than
the GPU for real experimental data.

II. MOTIVATION

Relations between proteins and DNA is responsible for
cellular interaction [2] and [9]. Using gene regulatory networks
is an excellent way to model cell behavior and develop better
therapy. Gene regulatory networks have been modeled by dif-
ferential equation [10], deterministic and probabilistic Boolean
network [9], [11] and Bayesian and Dynamic networks [12]
and [13]. It is difficult to use probabilistic Bayesian networks
to learn parameters from real data due to the huge search space
of the parameters.

Authors in [14] and [15] modeled cancer as a ”stuck-at”
fault in the Boolean network. Faulty logic gates represented the
faulty molecules in the transduction network. Much informa-
tion about cellular interaction is available in the literature; au-
thors in [14] used this prior knowledge to generate a Boolean
network from pathway knowledge using the Karnaugh map.
The authors produced a Boolean network for the Mitogen-
Activated Protein Kinase (MAPK) transduction pathway with
this method.

In [7], and [8], authors used a combination of these Boolean
networks to estimate the proportion of each subpopulation. The
weights of the Boolean network,i.e., the subpopulations, were
evaluated by Markov Chain Monte Carlo (MCMC) methods.
The model in [7] is not parallelizable, so its computation
time increases with an increase in data. The model in [8]
is parallelizable, and its computation time does not increase
with an increase in data as long as hardware resources are
not exhausted. Still, this model on a GPU is slow if the data
set size is very small. Real-world experimental data is very
small, so running the parallelizable on a GPU is not the best
solution. Models running on a CPU are faster than a GPU with
a small dataset. In this paper, we shall show a way to run a
parallelizable model on a multithreaded CPU to overcome the
problem faced by a GPU with a small dataset.
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III. METHOD

The goal is to estimate the proportion of the subpopulations
from gene expression data. The Boolean networks are used to
model each subpopulation, and the weight exerted on each
subpopulation on the observables is estimated. A reasonable
way to model gene expression is modelling it with a Normal
distribution [7]. In [7] and [8], the probability distribution of
the gene expression ration depends on the weight of each
Boolean network αi, a coefficient of variation c and expression
profile di. di is a vector of length N , where N is the number of
subpopulations, i.e., the number of Boolean networks. Here,
i represents the ith gene. The expression profile represents
the transcription of the observed gene. A value of 1 in the
expression profile vector represents an upregulated gene and a
value of 0 represents a downregulated gene for a given stimuli.

K

α1 α2 α3 αV

rVr2r1 r3

c

Fig. 1: The Bayesian network used in [8].

A. GPU compatible model on a multithreaded CPU

Figure 1 shows the Bayesian network of our probability
model. In this model, there are V genes ,i.e, i ranges from 1
to V . Each weight vector αi is associated with with one gene
expression reading ri for the ith gene. Here, αis depend on the
vector K, and the gene expression measurement ri depends
on αi and the coefficient of variation c. Each αi is a vector of
N elements, here, N represents the number of subpopulation
or the number of Boolean networks. All the elements of αi

should sum up to one.

N∑
q=1

αi,q = 1 (1)

Since, ri ranges from r1 to rV , so αi ranges from α1 to
αV .

The probability distribution of the normalized gene expres-
sion ratio ri for the ith gene from [8] is

P (ri/αi, di, c) =
mi(ri +mi)√
2πc(r2i +m2

i )
3
2

× exp

(
− 1

2c2
(ri −mi)

2

r2i +m2
i

)
.

(2)

Here, mi = dTi αi, c is the coefficient of variation, ri is the
gene expression ratio. The αi for the ith gene is

P (αi/K) =

N∏
q=1

α
Kq−1
i,q

Beta(K)

(3)

where Beta(K) is

Beta(K) =

N∏
q=1

Γ(Kq)

Γ

(
N∑
q=1

Kq

) . (4)

Here, Γ is a Gamma function. K and c are the unknown pa-
rameters which is estimated by using a MCMC (Markov Chain
Monte Carlo) algorithm called M-H (Metropolis-Hastings). M-
H is an algorithm to sample from an unknown distribution
[16], here the posterior distribution of k and αi is unknown,
so the M-H algorithm is used.

To calculate the posterior of the unknown ,i.e., K and c,
prior distributions are set. The prior over 1

c2 is a Gamma
distribution

1

c2
∼ Γ

(
ν0
2
,
ν0c

2
0

2

)
. (5)

Here, Γ is a Gamma distribution. The prior over K is an
exponential distribution. The means of this distribution are
well separated.

The full conditional of αi is

P (αi/K, c, r, d) ∝ P (ri/αi, di, c)P (αi/K)

∝

(
mi(ri +mi)

(r2i +m2
i )

3
2

exp

(
− 1

2c2
(ri −mi)

2

r2i +m2
i

))

×
N∏
q=1

α
Kq−1
i,q .

(6)

Considering P (K) as the prior distribution over K.

P (K/α, c, r, d) ∝ P (K)P (αi/K)

∝ P (K)× 1

Beta(K)V

N∏
q=1

(
V∏
i=1

αi,q

)Kq−1

. (7)

The full conditional of c is:

1

c2
∼ Γ

((
ν0 + V

)
2

,

(
ν0c

2
0 +

∑
i
(ri−mi)

2

r2i+m2
i

)
2

)
. (8)

Since the distribution of K and αi are unknown so, Random
Walk Metropolis Hastings will be used to sample from these
distributions. Figure 2 explains the sampling from the full
conditional of αi and K on a multithreaded CPU.

Considering each αi has three subpopulation,i.e., N = 3.
Letting V be the number of genes. The proposal distribution
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Fig. 2: Sampling of equation 6 and 7 on a multithreaded CPU.

for 6 is a Dirichlet distribution with parameter αi

Uαi
. The

acceptance ratio is

Rαi
=

P (α∗
i /K, c, r, αi, d)D(αi/

α∗
i

Uαi
)

P (αi/K, c, r, αi, d)D(α∗
i /

αi

Uαi
)

(9)

M-H algorithm is used to accept new proposals α∗
i .

The proposals K∗
q are sampled from a uniform distribution.

The acceptance ratio is

RK =
P (K∗/α, c, r, d)

P (K/α, c, r, d)
(10)

B. Experiments with synthetic data

The algorithm was written in OpenMP and run until con-
vergence was achieved. The synthetic data was generated by
considering

αi ∼ D(10, 6, 3)

di ∼ Uniform(0, 1)

ri ∼ N (dTi αi, c ∗ dTi αi)

(11)

Here, αi is Dirichlet distributed with parameter K, which
has been fixed to (10 6 3). ri is Normally distributed and di
is uniform distributed.

The unknown parameters are sampled on a multithreaded
CPU as shown in figure 2. Metropolis-Hastings algorithm
was used to sample from the unknown distributions. The
Markov chain was reached stationary at 3000 iterations, but
it was run for 10000 iterations to be sure. The estimates
of K came out to be (10.6 6.1 2.8)T , these results are
very close to the actual value (10 6 3)T . The αis are
sampled from a Dirichlet distribution by considering the Ks
as the parameters of the distribution, the modes of the αi are
(0.5145 0.3743 0.1112)T which is very close to the actual
values (0.5165 0.3746 0.1089)T .

Figure 3 shows the CPU and GPU runtime. The figure
shows that for multithreaded CPU code is faster than the single
threaded CPU code and the GPU code for data size less than
300.
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Fig. 3: Comparision of CPU and GPU Run Time for 10,000
Monte Carlo iterations

IV. EXPERIMENTS WITH REAL DATA

To check the correctness of the model, the algorithm was run
with real world experimental data collected from [7]. Samples
are drawn from the posterior distribution of K using the
M-H algorithm; the previous section discussed the sampling
procedure. The marginal distribution of the three components
of α are estimated as described before. The modes of the
distribution is (0.6161 0.3236 0.0603)T , which is very close
to the results obtained in [7], i.e., (0.64530 .22550 .1292)T .
The faultless network has the maximum influence on the
observables.

V. CONCLUSION

This paper addresses an important problem of designing
an algorithm that can be parallelized to study cancer tissue
heterogeneity. This algorithm uses prior pathway knowledge
to estimate the proportion of each subpopulation. The gene
expression was modeled as ratios of normally distributed
random variables whose means are affected by the networks
included. We also demonstrated how to use M-H MCMC
algorithm on a multithreaded CPU to estimate the unknown
parameters. This estimate is useful to find out the dominant
subpopulation among all the subpopulations. We used the
algorithm in [18] to sample from a Gamma distribution on
a GPU. This helped us to parallelize the algorithm and reduce
the computation time.
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