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Abstract12
Ancient DNA has revealed multiple episodes of admixture in human prehistory 13
during geographic expansions associated with cultural innovations. One important 14
example is the expansion of Neolithic agricultural groups out of the Near East into 15
Europe, and their consequent admixture with Mesolithic hunter-gatherers. Ancient 16
genomes from this period provide an opportunity to study the role of admixture in 17
providing new genetic variation for selection to act upon, and also to identify genomic 18
regions that resisted hunter-gatherer introgression and may thus contribute to 19
agricultural adaptations. We used genome-wide DNA from 728 individuals spanning 20
Mesolithic and Neolithic Europe to infer ancestry deviations in the genomes of 21
admixed individuals, and to test for natural selection after admixture using a new 22
method based on testing for deviations from a genome-wide null distribution. We find 23
that the region around the pigmentation-associated gene SLC24A5 shows the 24
greatest overrepresentation of Neolithic ancestry in the genome (|Z| = 3.45). In 25
contrast, we find the greatest overrepresentation of Mesolithic local ancestry across 26
the key immunity locus that is the Major Histocompatibility Complex (MHC; |Z| > 4) 27
which also shows allele frequency deviations indicative of a selective sweep 28
following admixture (p =1×10-29). This could reflect negative frequency dependent 29
selection on MHC alleles common in Neolithic populations, or that Mesolithic alleles 30
were positively selected for and facilitated adaptation by Neolithic populations to 31
pathogens, new diets, or other environmental factors. Our results extend previous 32
results that highlight immune function and pigmentation as targets of adaptation in 33
more recent populations to selection processes in the Stone Age, and demonstrate 34
that admixture facilitated selection by contributing new genetic variation.35

36
Introduction37
Despite the evidence from studies of ancient DNA that admixture among Holocene 38
populations is ubiquitous, less is known about how admixture provided variation for 39
natural selection to act upon during transitional periods. Given that Holocene 40
admixture was often associated with dramatic migrations or changes in lifestyle, we 41
might expect an important role for adaptive introgression. Perhaps the best-studied 42
example of ancient admixture is in the Mesolithic-Neolithic transition in Europe. As 43
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Early Neolithic groups expanded across Europe from Anatolia in the period 10,000 to 44 
5,000 years ago1–7, they admixed with local Mesolithic hunter-gatherers, and by the 45 
later Middle Neolithic period derived 20-30% of their ancestry from these local 46 
groups1,2,8,9. The admixed Neolithic ancestry thus found itself in a new demographic, 47 
cultural, and geographic landscape. In addition to dramatic dietary changes, the 48 
Neolithic transition included an increase in population density, which together with 49 
the presence of domesticated animals has been hypothesised to lead to increased 50 
infectious disease load10. 51 
 52 
Despite the potential of introgression as a source of adaptive genetic variation, 53 
examples of adaptive admixture in humans are relatively rare. Examples include 54 
American populations experiencing selection following admixture with European and 55 
African populations at immune loci11. Within Africa, the DARC ‘Duffy-null’ allele has 56 
seen at least two adaptive admixture events, spreading from the mainland to both 57 
Madagascar and the Capo Verde islands12,13, alongside signals at other immune 58 
genes14,15. There are also several examples of adaptive alleles inherited from 59 
archaic humans such as a WARS2-TBX15 haplotype in Greenlandic Inuit16 and an 60 
allele of EPAS1 in present-day Tibetans17 both introgressed from Denisovans. 61 
Studies of adaptive admixture among present-day populations are in general 62 
confined to recent admixture in the past ten or so generations, which is too short to 63 
detect anything but the strongest selection. On the other hand, signals of adaptive 64 
archaic introgression from events thousands of generations ago may have decayed 65 
with time and be difficult to detect. 66 

Previous studies of natural selection in the European Neolithic have either compared 67 
allele frequencies or haplotype structure with other ancient and modern 68 
populations2,18–21. However, no study to date has attempted to assign signals of 69 
adaptive admixture to a particular ancestry close to the time of admixture. The 70 
admixture of Early Neolithic and hunter-gatherer ancestry represents an opportunity 71 
to study adaptive admixture, similar to recently admixed present-day populations, but 72 
over a much longer timescale; around a hundred generations (Figure 1A). A recent 73 
study identified two optimal approaches to detect adaptive admixture, based on 74 
allele frequencies and local ancestry, respectively22. Here, we adapt these two 75 
approaches to ancient populations with a new framework to obtain p-values from 76 
genome-wide null distributions, investigating adaptive admixture in 728 Mesolithic, 77 
Early and Middle Neolithic individuals.  78 

Results and Discussion 79 

We used clustering analyses to assign individuals with genome-wide ancient DNA 80 
data from Europe and Anatolia in the past ~15,000 years to one of three groups: HG 81 
for 135 Mesolithic and Upper Palaeolithic hunter-gatherer ancestry individuals, NEO 82 
for 56 early Neolithic individuals from Anatolia and the Balkans without evidence for 83 
substantial hunter-gatherer admixture, and MNEO for 537 later Middle Neolithic 84 
individuals with substantial HG admixture. In total, our analysis contains 728 ancient 85 
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individuals, spanning 7,500 years across the European continent (Figure 1A-B; 86 
Supplementary Figure 1; Supplementary Figure 2). 87 
 88 
We first used an approach to find natural selection that is admixture-unaware, 89 
searching for increased differentiation as the squared allele frequency difference 90 
between populations, the f2 statistic23. We computed the average for each SNP and 91 
25 SNPs flanking SNPs on each side (i.e. in 51 bp sliding windows), and obtain p-92 
values by fitting a gamma distribution to a null sample of 532 approximately 93 
independent loci, separated by at least 5 million basepairs (mb). We observe no 94 
statistically significant outliers in the HG-NEO or HG-MNEO contrasts 95 
(Supplementary Figure 3), but in the NEO-MNEO contrast we observe a highly 96 
significant excess differentiation across the Major Histocompatibility Complex (MHC) 97 
region on chromosome 6, centred upon HLA-DQB1 (p = 1×10-21) (Supplementary 98 
Figure 3). This suggests natural selection at the MHC in the period covered by the 99 
data from NEO and MNEO groups, although this analysis does not address whether 100 
that might be due to adaptive HG admixture. 101 
 102 
To search for adaptive admixture, we applied a statistic based on previous work2 103 
termed Fadm22, which tests for deviations from the expected allele frequencies given 104 
the genome-wide average mixture proportions of the contributing ancestries. We 105 
again observe an excess signal across the MHC, centred upon HLA-DQB1 (p = 106 
1×10-29) (Figure 1A). To confirm that our findings were not driven by ascertainment 107 
bias in the 1.2M SNP panel24, we analysed the MHC region in 156 whole-genome 108 
shotgun sequences from 67 Mesolithic (HG), 27 Early Neolithic (NEO), and 62 109 
Middle Neolithic Admixed (MNEO) individuals (Extended Methods), and observe a 110 
concordant peak stretching across the Class III MHC region (Figure 1E).  111 
 112 
We next sought to quantify the direction of admixture by searching for deviations in 113 
local ancestry across the genome (Local Ancestry Deviation; LAD, ref. 22). We 114 
inferred local ancestry in 537 admixed Middle Neolithic individuals with genome-wide 115 
SNP data using ancestryHMM25, which estimates local ancestry in low-coverage 116 
genomic data using allele frequencies from two populations. We computed standard 117 
errors and Z-scores for local ancestry deviation (LAD) using an approximately 118 
independent subsample of the genome-wide distribution consisting of 555 sites 119 
separated by at least 5Mb (Methods). 120 
 121 
The greatest excess of Neolithic ancestry centred on SLC24A5 (Figure 2C; 122 
Supplementary Figure 4; Supplementary Figure 5), with a peak of +18.6% 123 
(|Z|=3.45). The derived SLC24A5 allele, which is carried on the Neolithic ancestry 124 
background, is one of the two alleles which contributes most to light skin 125 
pigmentation in present-day European populations26. It has been previously shown 126 
to have been at relatively high frequency in the Neolithic and absent in the Mesolithic 127 
hunter-gatherers2, and our results show that the selection removed hunter-gatherer 128 
ancestry at this locus in later admixed Neolithic groups.   129 
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 130 
Meanwhile, the lowest amount of Neolithic ancestry is found at the Major 131 
Histocompatibility Complex (MHC) region on chromosome 6. Within this locus, the 132 
region of highest Mesolithic ancestry is centred on HLA-E, with a peak excess of 133 
+23.2% (|Z|=4.34). This region of elevated Mesolithic ancestry continues as a 134 
contiguous region which extends across the Class II region of the MHC, with an 135 
average of ancestry across the entire MHC (between hg19 positions 28,477,797-136 
33,448,354 of chromosome 6) of +9.16% (|Z|=1.82), and a secondary peak centred 137 
upon the class II region of +17.26% (|Z|=3.23) (Figure 1E).  138 
 139 
In the Fadm analysis, we also find a number of genome-significant peaks outside of 140 
the MHC, though these are an order of magnitude below the MHC p-value 141 
(Supplementary Figure 6). TYRP1 has been previously reported to have 142 
experienced selection in European populations27,28. TLR2 is an important gene in 143 
immunity, and may also be a target of archaic adaptive admixture29. MUC19 also 144 
plays a role in immunity, and was found to be under selection in Central Mexican 145 
indigenious populations30. OPRM1 is documented to contribute towards skin 146 
pigmentation in Native American and East Asian populations31,32, while a HRNR 147 
haplotype linked to atopic dermatitis may have seen a selective sweep in East Asia 148 
alone33 ROR1 is adjacent to PGM1 which may have undergone selection in Mexican 149 
populations34. Similarly, the LAD analysis finds some genes with previous reports of 150 
selection; HECW2 has been identified to be under selection in Khomani San35, a 151 
southern African group with recent hunter-gatherer lifestyle, while PKP2 was 152 
similarly seen to be under selection in the Yoruba in west Africa in the same 153 
study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        154 
 155 
It is also possible that adaptive admixture acted on multiple variants with small effect, 156 
spread across the genome. To test for evidence of such polygenic selection, we 157 
computed the Pearson correlation between the local ancestry deviation and the 158 
effect size for 38 traits in the UK BioBank, using genome-wide significant SNPs 159 
thinned to be approximately independent36 (Figure 3). We see significant evidence 160 
of correlation between trait scores and LAD in Skin Colour (p = 3e-4), consistent with 161 
the adaptive admixture around SLC24A5. Indeed, this signal is solely driven by two 162 
loci, with a HERC2 variant with a skew towards the Mesolithic (Z=1.7) also 163 
contributing to a lighter level of skin pigmentation alongside SLC24A5. Without these 164 
two loci, there is no significant evidence of polygenic selection (P = 0.58). We also 165 
observe a weaker but significant correlation for hip size (Figure 3, Supplementary 166 
Figure 7). 167 
 168 
The Neolithic transition brought about drastic changes in demography, culture and 169 
diet, as well exposure to novel pathogens and increased potential of zoonotic 170 
disease. In admixed middle Neolithic individuals, we found excess Neolithic farmer 171 
ancestry at the pigmentation locus SLC24A5 and excess Mesolithic hunter-gatherer 172 
ancestry at the MHC immunity locus. Previous studies also found evidence of natural 173 
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selection at SLC24A5 in European populations26,27 and showed that the allele was 174 
introduced into Europe in the Neolithic2,37,38 but our study now further demonstrates 175 
that this resulted in a removal of hunter-gatherer ancestry across the wider locus. In 176 
a similar but opposite process, the MHC locus has previously been demonstrated to 177 
have undergone selection in the ancestry of present-day Europe239 and specifically 178 
in Neolithic Europe18. Here, we obtain further robust results for selection at the MHC 179 
locus corrected for multiple testing, and demonstrate that this process specifically 180 
increased hunter-gatherer ancestry at the locus. 181 
 182 
In contrast to SLC24A5, the second high-effect pigmentation variant, in HERC, 183 
displays an excess of Mesolithic ancestry (+17.23%, |Z| = ~3.11). Together with the 184 
third high-effect pigmentation variant at SLC45A2, which arrived in Europe via later 185 
expansions from the steppe, selection on pigmentation in Europe thus targeted 186 
variants from each of the three major ancestral populations9. This highlights the 187 
prominent role of admixture in the evolution of skin pigmentation in Western Eurasia. 188 
That this signal is not found in the allele-frequency based analysis with Fadm can 189 
likely be attributed to the small absolute change in allele frequency between our 190 
Neolithic populations, confirming recent demonstrations that local ancestry can in 191 
some cases be more powerful than allele frequency analysis for detecting selection 192 
in admixed popuations22.  193 
 194 
Evidence of selection on Mesolithic ancestry across the MHC locus, highlights its 195 
role in facilitating adaptation in immunity during the Neolithic transition in Europe. 196 
One hypothesis is that this reflects the fact that Neolithic populations were expanding 197 
into environments containing pathogens to which Mesolithic populations had already 198 
adapted. This is contrary to the idea that the pathogen load in Neolithic populations 199 
was solely driven by increased population density and proximity to zoonotic vectors 200 
via animal husbandry. While examples of putative adaptive admixture involving the 201 
MHC have been previously described11,15,40, a clear link between the alleles under 202 
selection within this region and a specific pathogen has not been previously 203 
observed. 204 
 205 
Another possibility is that this adaptation reflects negative frequency-dependent 206 
selection41, for example because pathogens adapt to the host population’s immunity 207 
genes, with a bias towards more common variants. Rare alleles would thus confer a 208 
fitness advantage, until they become common enough that other, now-rarer, alleles 209 
have higher fitness. Under this model, HLA alleles unseen by a given pathogen will 210 
attain a higher fitness initially following admixture owing to their novelty for the 211 
pathogen42. Thus, the selection on the minor Mesolithic ancestry could simply reflect 212 
admixture introducing rarer variants into Neolithic populations. Future studies, 213 
including whole-genome shotgun data in tandem with improved functional 214 
annotation, may shed further light on this adaptive process. 215 
 216 
 217 
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FIGURES 230 
 231 

 232 
 233 

Figure 1. Admixture model and geographic distribution of Neolithic and 235 
Mesolithic individuals with genome-wide ancient DNA.  A) An illustration of the 236 
genetic history of the Neolithic-Mesolithic transition in Western Eurasia. B) ‘Casino-237 
plot’ of individuals included for analyses, coloured by the ancestry group for which 238 
those individuals were used in this paper. For sites with multiple samples, we stack 239 
those individuals above the reported coordinates.  240 
 241 
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 242 
Figure 2. Genome-wide significant signals of adaptive admixture. A) Manhattan 243 
plot of p-values from the Fadm scan across the genome for deviations from expected 244 
admixed allele frequencies. Inset, quantile-quantile plot of expected and observed p-245 
values. B)  Local Ancestry Deviations (LAD) in the Middle-Neolithic across the 246 
genome, with top peaks of each ancestry labelled. C) Zoomed-in region of the MHC 247 
(chromosome 6), with statistics derived from 1240k and whole-genome shotgun data 248 
across the MHC regions I,II & III on chromosome 6. 249 
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 250 

 251 
 252 
Figure 3. Test for polygenic adaptive admixture. A) Pearson correlation of 253 
polygenic traits against local ancestry. B) Correlation of LAD Z-scores with Skin 254 
Colour SNP effect size weighted by the signed allele frequency difference between 255 
the two source populations. 256 
 257 
  258 
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Experimental Procedures 259 
 260 
Data preparation 261 
We first used clustering approaches on a large set of previously published1–9,37,38,43–66 262 
individuals to identify those individuals exclusively or almost exclusively HG (Mesolithic, 263 
Western or Siberian Hunter-Gatherers [WHG, SHG]) or NEO ancestry (Early Neolithic, which 264 
we identify using Neolithic Anatolia as a baseline). We downloaded v50 of 10,391 individuals 265 
(3,589 ancient) from the Reich lab https://reich.hms.harvard.edu/downloadable-genotypes-266 
present-day-and-ancient-dna-data-compiled-published-papers, accessed July 19th 2022 for 267 
the 1240K set of SNPs. We ran a first set of clustering with ADMIXTURE from K=3 to K=11, 268 
conditioned on European individuals dated to >5kya excluding siblings, parents, and 269 
duplicates. We then further filtered on age, setting a max age for HG, NEO and MNEO of 270 
12kya, 8.5kya and 8kya respectively, retaining 728 individuals. Using PLINK, we then make 271 
a subset of files containing only individuals fitting into either Mesolithic (EHG+WHG) or 272 
admixed Neolithic ancestry, alongside a geographically and temporally conservative 273 
Neolithic cluster. 274 
 275 
Detecting selective sweeps 276 
We filtered the full set of SNPs by conditioning on observing at least 10 non-missing 277 
pseudohaploid genotypes in earch population. We utilised the Fadm statistic , i.e. (FMNEO - 278 
E(FMNEO))2  / ( 1 - E(FMNEO)2), where E(FMNEO), where F is the frequency of a given SNP and 279 
E(FMNEO) is an expectation of allele frequency derived by the contributing ancestry 280 
proportions weighted by allele frequency ( FMESOAncMESO + FNEOAncNEO). In all cases, the 281 
given statistic is calculated on a per-SNP basis before sliding-window is applied across the 282 
genome with a step size of 1. We derive the f2 analyses in an identical manner. We annotate 283 
genes using the gencode v39liftover37 annotation files. 284 
 285 
For each analysis, we then draw a null distribution from this sliding-window whole-genome 286 
distribution, ensuring that each sliding-window datum that contributes to the null distribution 287 
is sampled with SNPs that are, as a group, no less than 5Mb away from the previous 288 
sample. A gamma distribution is then fitted to this null distribution using the R package 289 
fitdistrplus v1.1-3 67 with the flags “"gamma", method = "mle", keepdata = T”. We then derive 290 
p-values for the genome-wide distribution from this null-fitted gamma distribution.. 291 
 292 
Confirmation of HLA signal in whole-genome shotgun data 293 
To confirm the presence of the HLA signal in the whole-genome shotgun data, we collected 294 
a set of 81 individuals used in the original analyses which had whole-genome shotgun 295 
genomes, and added 74 unpublished genomes available pre-publication under the Ft. 296 
Lauderdale principles (https://reich.hms.harvard.edu/ancient-genome-diversity-project). We 297 
thus only use this data for local analyses of the MHC region. Exclusion of the pre-publication 298 
data results in too few NEO source genomes for reliable inference, and so we do not report 299 
genome-wide p-values. We again partition out our target populations using appropriate 300 
populations within this dataset. We filter the region initially on sites with more than 3 allele 301 
counts seen within the whole dataset, and a minimum of 30 sites seen in the Neolithic 302 
population, resulting in 11,086,998 sites after filtering. We apply a sliding window of 593 303 
snps on the mixed-weight statistic in a similar way to the 1240k analysis, using the same 304 
weighting for ancestry contribution to SNP frequency expectation. We choose this window 305 
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size to approximate the same mean genetic distance per window as in the 1240k analysis 306 
with 51 snp windows. 307 
 308 
Detection of Local Ancestry Outliers 309 
To analyse biases in local ancestry, we progress the same panel of 728 individuals 310 
(Supplementary Table 1) to analysis with AncestryHMM 25 . We derive frequency counts for 311 
both the contributing ancestries (HG, NEO) and similarly obtain this for each individual 312 
MNEO sample via plink. We then run Ancestry HMM with a prior of 30% HG and 70% 313 
Neolithic ancestry, and an Ne of 10,000. 314 
 315 
Detection for biased inheritance of polygenic trait alleles 316 
As in ref . 36, we start with 28 quantitative traits of interest, subsetting SNPs P < 1e-8 317 
overlapping the 1240k SNP array. We then iteratively prune through subsetting the smallest 318 
p-value and removing all other associations within 250kb. Departing from Mathieson & 319 
Terhost, we weight these pruned values by the difference in allele frequency between HG 320 
and NEO and sum these across the genome for each trait. and look for correlation to the 321 
LAD derived in the local ancestry analysis via a Pearson correlation test.  322 
 323 
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Supplementary Figures 546 

 547 
 548 
 549 
 550 
Supplementary Figure 1. Metadata of individuals used in selection scan. A) 551 
Coverage in each population, as the number of 1240k sites covered in each 552 
individual per population. B) Age of individuals in the 1240k selection scan. 553 
  554 
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 555 

 556 
Supplementary Figure 2. Clustering results of 728 HG, NEO, and MNEO 557 
individuals alongside 40 individuals from the MSL 1000 genomes panel (the latter 558 
not shown) obtained using ADMIXTURE with K=3 (Methods). 559 
 560 
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 562 

 563 
Supplementary Figure 3. f2 pairwise comparisons of ancient populations. A) 564 
Manhattan plot of p-values for each pairwise comparison. B) Quantile-quantile plots 565 
for each pairwise comparison. 566 
 567 
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568 
Supplementary Figure 4.  Mesolithic ancestry per gene. Proximal genes are defined 569 
as being within 300kb from the start or end of the gene. Dotted lines represent 570 
standard deviations from the mean. 571 
 572 
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 573 
Supplementary Figure 5. Zoomed-in region of chromosome 11, with adaptive 574 
admixture statistics derived from 1240k and Shotgun data alongside local ancestry 575 
signal throughout the MHC regions I,II & III on chromosome 15. 576 
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 579 
Supplementary Figure 6. Fully annotated versions of adaptive admixture test 580 
Manhattan plots as seen in figure 2. A) Fadm B) Local Ancestry Deviation. 581 
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 583 
Supplementary Figure 7. Correlation of LAD Z-scores with hip circumference SNP 584 
effect size weighted by the signed allele frequency difference between the two 585 
source populations. 586 
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