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Abstract

The origin and evolution of operons have puzzled evolutionary biologists since
their discovery. To date, many theories have been proposed to explain their evolu-
tion, among which reduced recombination rate within clustered genes, co-expression,
simultaneous horizontal transfer and transcription/translation coupling. Most fo-
cus on the possible advantages provided by an already structured operon, while
they all fall short in explaining the accretion of scattered genes into gene clusters
and then operon. Here we argue that the way in which DNA replication and cell
division are coupled in microbial species is a key feature in determining the cluster-
ing of genes on their chromosomes. More specifically, we start from the observa-
tion that bacterial species can accumulate several active replication forks by a par-
tial decoupling of DNA replication and cytokinesis, which can lead to differences
in copy numbers of genes that are found at distant loci on the same chromosome
arm. We provide theoretical considerations suggesting that when genes belong-
ing to the same metabolic process are far away on the chromosome, changes in the
number of active replication forks result in perturbations to metabolic homeostasis,
thereby introducing a selective force that promotes gene clustering. By deriving
a formalization of the effect of active DNA replication on metabolic homeostasis
based on Metabolic Control Analysis, we show that the above situation provides a
selective force that can drive functionally related genes at nearby loci in evolution,
which we interpret as the fundamental pre-requisite for operon formation. Finally,
we confirmed that, in present-day genomes, this force is significantly stronger in
those species where the average number of active replication forks is larger.

Introduction
Operons [17] are one of the hallmarks of prokaryotic gene regulation; in their most
basic form they comprise a single promoter at the 5′ end, followed by two or more
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genes and a transcription terminator at the 3′ end, therefore they are transcribed into
polycistronic messenger RNAs. Additional regulatory sites (alternative and/or inter-
nal promoters, attenuators etc.) can be present to provide fine control over the gene
expression levels [24, 45]; genes in an operon often participate to a same functional
process. While common in Prokaryotes, they are exceptions [3, 27, 4] or peculiarities
[5] in Eukaryotes, a fact that was explained by the smaller effective population sizes of
many eukaryotes that - according to the drift model, would lead to operon disruption
[29]. The evolution of operons is debated since their discovery; early ideas were often
related to the origin of metabolic pathways, with a coupling in their evolutionary his-
tory. However, while metabolic pathways are often ancient, taxonomic variability in
operon organization of the genes implementing them suggests a more recent evolution-
ary history e.g [12]. More plausible and general hypotheses focus on the advantages
provided by operons; the Fisher model suggests that their compactness may reduce
the chances of recombination events within [41] a recently revived idea [11]. The co-
regulation model is intrinsically linked with the operon rationale: genes stay together to
facilitate their coordinated expression [35], but others have shown that the formation of
operons for the purposes of co-regulation is both unnecessary and implausible [26, 25]
because independent promoters can evolve characteristics enabling co-expression of
genes encoded at different loci. The selfish operon model [26] focuses on operons as
easily mobilizable functional units, but it does not explain how an operon formed in
the beginning, and contrasting evidences have been reported [32]. Another possible
explanation for the evolution of operons is that the coupling of transcription and trans-
lation in Prokaryotes makes so that products are released in a relatively small volume
of the cytoplasm, maximizing interactions and metabolic fluxes [10]. However, not
all proteins encoded by the same operon interact, channeling of metabolic intermedi-
ates is not so widespread, and recent estimates, withstanding the reduced mobility of
proteins in the cell with respect to pure water, suggest that two particles can find each
other in the cell in a matter of seconds [37]. By using stochastic simulations of sim-
ple biochemical systems, evidences were found for noise reduction in the abundance
of proteins encoded by operons, however this was limited to some type of interaction
established by the products [36]. It should be added that the two hypotheses mentioned
above strongly rely on the coupling of transcription and translation that might not be
as general as previously assumed [16]. Genome size and/or its proxies were also sug-
gested to be markers of the intensity of natural selection for operon organization, under
the idea that since larger genomes have more complex genetic networks thanks to the
presence of more transcription factors, they would endure weaker selection for operons
than smaller genomes, where regulation alternatives are scarce [30].

The process of operon evolution can be split into two aspects: one is operon assem-
bly, by which scattered genes become closely spaced on the genome enabling operon
formation. The second is operon maintenance in evolution, which depends on the fit-
ness differential provided by the operon with respect to the same genome with scattered
genes. Since what makes an operon advantageous once it is formed, is not necessarily
what drove the genes at nearby loci, assembly and maintenance may be consequences
of very different forces. Most of the hypotheses presented above focus on maintenance
and do not shed light about the selective forces for the assembly of operons. For in-
stance, an operon may reduce noise in protein abundances as previously suggested [36],
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but this advantage can be selected for by evolution only after the operon has formed,
not during the intermediate steps. Since the probability that an operon originates from
scattered genes in a single or only a few intermediate steps is extremely low, we pos-
tulate the existence of a selective pressure able to provide a drive to operon assembly
in evolutionary time. We will show that this pressure is naturally active with varying
intensity in many prokaryotic species. More specifically, we argue that the evolution
of metabolic operons is related to active DNA replication through the effect it has on
metabolic homeostasis.

Bacterial species can have a more or less strict coupling of DNA replication with
cell division. Species like Caulobacter crescentus and Staphylococcus aureus lies at
one extreme, because they implement a strict genetic program that determines cell di-
vision just after the chromosome has been replicated once [7, 34]. These species can
contain one or two chromosomes at most. At the opposite extreme there are species like
E. coli and B. subtilis, that normally replicate their chromosomes in excess with respect
to the rate of cell division [8, 14] and can therefore contain several genome equivalents
(up to 16 in E. coli) and active replication forks (Fig. 1a and b). The average number of
active replication forks in the population is not fixed, and while an increased number of
replication forks have been related to shorter division times in certain organisms [42],
the relationship seems to fail significance when distant taxonomic groups are analyzed
together [28]. This feature can be studied using genome sequencing data, and calcu-
lating the so-called ori/ter ratio, corresponding to the ratio of coverage around the ori
(mori in Fig.1a,b) and ter loci. Whatever relationship the ori/ter ratio has in different
taxa with respect to growth rate, it is a matter of fact that as a consequence, genes ex-
perience different copy numbers depending on their distance from the origin/terminus;
a proof of this is the well-known influence on transcript abundance [9, 18]. Recent
works indeed highlighted the well-known importance of the position of a locus on the
ori/ter axis for modulating gene expression - summarized by interpreting this axis as a
regulatory system itself [22].

Here, we provide theoretical considerations about the effect of active DNA repli-
cation on metabolic homeostasis, and show that this provides a selective force that can
drive functionally related genes at nearby loci in evolution, which we interpret as the
fundamental pre-requisite for operon formation.
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Figure 1: a) Mapping log2ori/ter on a phylogenetic tree of Bacteria from many taxo-
nomic groups. Only a few species are indicated for clarity and log2ori/ter is truncated
at 1 to highlight differences, whereas (ori/ter)max ≈ 10). b) Representation of a
circular chromosome with three active replication forks, which translates in mori = 4.
Genes x and y, are in a 4 : 1 ratio but this can change since the number of replication
forks is not constant; an E. coli cell can for instance be born with a single chromosome
(ori/ter = 1) and after some time it can contain several genome equivalents and active
replication forks. c) Explanation of the meaning of the parameter β used in the text:
given the ori/ter ratio calculated from genome sequencing data and the length of one
chromosome arm (i.e. distance of the origin from the terminus, `), β is the slope of the
line starting at x = 0, y = 1 (ter locus) and ending at x = `, y = 4 (ori locus), and en-
ables to calculate the multiplicitymx for all genes, given their position. d) Distribution
of the maximum bound of the confidence interval estimated for the log2ori/ter ratios
available for each species.
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Results

Metabolic consequences of chromosome replication
In this section we provide the theoretical foundations of our hypothesis by linking to-
gether chromosome replication and its possible effects on cellular homeostasis. We do
this by integrating, for the first time, a widely adopted metric related to the average
number of replication forks in cells from a population (hereinafter the ori/ter ratio,
also known as Peak-to-Trough ratio [28]) with Metabolic Control Theory (MCT), an
established theoretical framework focused on understanding the control of metabolic
fluxes. If the ori/ter ratio was constant (Fig.1b), the copy number of two genes x and
y located at distant loci on the genome would also be constant, but since the number
of replication forks changes in time, those genes would not only experience different
multiplicities in time but also varying relative abundance. For instance, in Fig.1b with
three replication forks, x and y are in a 4 to 1 ratio, but with one only replication fork,
they would be 2 to 1. Since the multiplicity of genes has an effect on the abundance
of the products they code for, this equates to changing the relative expression level of
genes, especially when the genes are separated by a large distance. The metabolic con-
sequences of changes in the abundance of enzymes belonging to the same metabolic
pathway is one of the fundamental results of MCT (Eq. 1) [38] providing an approxi-
mated relationship to the change in steady state flux of a linear pathway embedded in
the metabolic network:

Jri

J0
=

1

1−
m∑
i=j

CJ
0

Ei

ri − 1

ri

, (1)

Js are steady state fluxes for the reference (0) or the new steady state, induced by
changing the abundance of m− j enzymes in a pathway by different factors ri. CJ

0

Ei
is

the flux control coefficient (FCC) [19] of enzyme Ei on the pathway, defined in Eq 2.

CJEi
=

∂J

∂Ei

Ei

J
=

∂lnJ

∂lnEi
. (2)

In practice, the FCC of enzyme i tells us about the fractional change in pathway flux
elicited by a fractional change in enzyme abundance. FCCs are systemic quantities
that can be measured only in the intact system, meaning their exact values are often
unknown. Nevertheless, the so-called summation theorem [19]:

n∑
i=1

CJEi
= 1, (3)

constrains the possible values, at the same time introducing the fundamental concept
that fluxes are not usually modulated by key bottleneck or rate limiting enzymes; in-
stead, control is shared by many enzymes [19]. A consequence of Eq. 3, confirmed by
in vivo measurements since early times is that the flux control coefficient of an enzyme
with respect to a pathway is small on average [20, 38, 39]. Eq. 1 therefore shows that
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when all (i.e. the Summation theorem holds) enzymes in a pathway are changed by the
same factor ri = r the system relaxes to a new steady state where the flux is scaled
by r and metabolite concentrations stay constant (perfect homeostasis). When the ris
are different, the ensuing change in flux instead depends both on the the FCCs and the
ris. In this case however, enzyme rates are not scaled proportionally, and therefore
metabolite pools can also move to a new steady state. Eq. 8 shows the quantitative
treatment for this situation; the relationship can be summarized by the observation that
even enzymes with very low FCC on a certain pathway flux, can cause large perturba-
tions to metabolite concentrations, if not modulated coordinately to the other enzymes
[13].

Even with some limitation imposed by the FCCs (therefore by the system) cells nor-
mally manipulate fluxes as a function of the demand while keeping metabolite concen-
trations in-between acceptable limits. This can be achieved by using the same regulator
to control the rate at which functionally related genes are transcribed - as for yeast’s
amino acid biosynthetic genes, that are controlled by GCN4 [1]; alternatively a similar
achievement results from organizing those genes in an operon. However, Prokaryotes
have one major difference with respect to most Eukaryotes, and we are going to show
that for this reason, the former strategy is much less advantageous for them. To better
illustrate this, we put together the change in multiplicity of genomic loci, the position
of genes along the ori/ter axis and the number of active replication forks into Eq. 1.
We refer to a situation where there is one only ter locus and a certain number of ori
loci that were previously replicated (Fig.1b). In this view, the multiplicity of the gene
for enzyme i is:

mi = 1 + βpi, (4)

where pi is the distance of the gene from the terminus, β is obtained from sequencing
data and corresponds to the slope of the multiplicity change along the chromosome in
the population that underwent sequencing. Basically, by calculating an average cover-
age of ori and ter proximal regions using genome sequencing data, one can calculate
the ori/ter ratio and, if ` is the ori-ter distance (Fig. 1c):

β =
ori/ter − 1

`
. (5)

Eq. 4 assigns multiplicity mi = 1 to loci at the terminus (having pi = 0) and mi > 1
elsewhere, with mmax = 1 + β`, at the origin. As the multiplicity of a gene in every
single cell is an integer, we are here averaging the situation over the many cells of the
population. Considerations made here remain however valid, as each single cell will
experience different ori/ter ratios during its existence.

By considering the multiplicity of a gene as directly related to the abundance of its
product in the cell, Eq.1 can now be written as:

Jβ

J0
=

1

1−
m∑
i=j

CJ
0

Ei

βpi

1 + βpi

, (6)
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As expected, β = 0 corresponds to the situation where all genes have the same multi-
plicity in time, and correctly predicts no change in flux. On the converse, if β > 0, and
genes are distant, Jβ/J0 can fluctuate around 1 and since the multiplicity of genes is
unequal, metabolite pools will be also affected.

The operon case is when the pis of all genes with control over a certain pathway
flux (such that Eq. 3 holds) are very similar, therefore their abundances change by the
same amount when β changes (given by Eq.4), and the flux undergoes scaling by the
same factor:

Jβ

J0
=

1

1−
βp

1 + βp

=
1

1 + βp− βc
1 + βp

= 1 + βp , (7)

This effect on metabolites can be quantified by a relationship similar to Eq. 1
that focuses on the deviation of metabolite concentrations when the abundance of one
enzyme in a pathway is scaled by r [39]:

Sr

S0
=

1− (CJE − CSE) r−1r
1− r−1

r CJE
(8)

whereCSE is the concentration control coefficient (CCC) of the enzyme over metabolite
S, defined similarly to the FCCs [19] and:

n∑
i=1

CSEi
= 0, (9)

is the summation theorem for the CCC [15].We point out that when CJEi
≈ 0 (i.e.

the enzyme has negligible control on the flux) Eq. 8 gives [13]:

Sr

S0
= 1 +

r − 1

r
CSE , (10)

which shows - together with the fact that Eq. 9 does not limit the absolute value of
the coefficients - that enzymes with negligible control over the flux of a pathway can
perturb metabolite concentrations by an arbitrarily large factor when changed in iso-
lation. Since significant reduction or increase of metabolite concentrations in the cell
can break down cellular homeostasis and that this can also be caused by functionally
related genes being positioned at large distances on actively replicated chromosomes,
we hypothesize that a possible solution worked out by evolution in this scenario could
be the construction of gene clusters and therefore operons.

Gene proximity minimizes variations in metabolite homeostasis
Let us now introduce a toy pathway to discuss more thoroughly the points raised above:

Xin

E1


 S
E2


 Xout, (11)
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where Xin and Xout are external metabolites, and E1, E2 two enzymes coded for by
genes located at distances p1 and p2 from the terminus. Using mass action we write
this simple system as:

dS

dt
= E1k1Xin − E2k2S, (12)

which can be solved analytically at the steady state (when dS/dt = 0):

Sss =
E1

E2

k1

k2
Xin. (13)

Enzyme abundances (Eis) can be replaced by the relation introduced in Eq. 4 and
by derivation we can calculate the scaled sensitivity of the concentration of metabolite
S with respect to β i.e. how changes in the number of active replication forks affect
metabolite concentration in this system:

∂S

∂β

β

S
=
k1

k2

Xin

S

p1 − p2
(1 + βp2)2

β, (14)

Limit cases are: (i) if p1 = p2, genes are at the same locus, then varying β has no
effect on metabolite concentration since all genes change of the same quantity; (ii) if
p1 > p2, when β increases, the first enzyme changes more than the second, σβ > 0
and therefore S will increase, and (iii) if p1 < p2, that is when E1 abundance grows
less than E2’s if β changes, then σβ < 0 indicating that in this case metabolite S gets
depleted when β increases. This provides additional theoretical basis for an effect of
changes in the number of replication forks active in the genome (here a change in β)
on homeostasis, when genes participating to the same process are scattered over the
chromosome. It is therefore plausible that during evolution, events leading to the min-
imization of those perturbations could contribute positively to the fitness of a cell and
therefore increase its probability of fixation in the population. One of those mecha-
nism, as the above considerations suggest, is to group functionally related genes in a
compact locus. To better show this idea, we refer to our toy model, and by scanning
many positions for our two genes in a virtual 2Mbp linear chromosome, we calculate
a measure of the ensuing variation in S. Figure 2a therefore confirms our theoreti-
cal prediction that when β changes over a certain interval metabolite homeostasis is
maintained if the genes are kept close on the genome, and also shows that the induced
perturbation increases when genes are farther.

Evolving operons in silico
The study of a very simple system of two only genes provided support to the idea that
in species where the number of active replication forks is partially decoupled from cell
division, the operon might be especially important for metabolic homeostasis.

To further test our hypothesis we introduce a more realistic metabolic model that
we previously developed [2], comprising reactions collectively annotated as carbon
metabolism in E. coli i.e. Glycolysis, Pentose-phosphate pathway, Krebs cycle, Gly-
oxylate shunt and Acetate excretion/import. The model (Figure 2c ) has 34 enzymatic
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reactions, and 26 variable metabolites. It is encoded as a linear approximation called
linlog, that was introduced by [43, 44] as an alternative to classical Michaelis-Menten-
like rate functions; these are non linear, complicating parameter identification from the
data; additionally, systems of even a few non-linear equations are usually not solvable
analytically. In the linlog, each rate is modeled as a linear combination of logarithms
of normalized concentrations, providing an analytical solution for the steady state (Eq.
16); the original parameters corresponds to the elasticity coefficients from Metabolic
Control Theory. Normalization of metabolites and fluxes is performed by their refer-
ence value in the original formulation, but here we include the reference level into the
parameters to work on absolute quantities. Using this approximation, rates are modeled
as:

v = E (A+Blogx) , (15)

where Er×r is a diagonal matrix of enzyme abundances (modeled as in Eq. 4), Ar×1
and Br×m are matrices of parameters derived from elasticities and reference steady
state, and xm×1 are concentration of metabolites. Given the stoichiometry matrix
Nm×r, we can solve analytically the system for the steady state:

logx = − (NEB)
−1

NEA. (16)

and
J = E

(
A−B (NEB)

−1
NEA

)
. (17)

The model is not parameterized with respect to experimental data, but has biologically
meaningful parameters; as a consequence it is here used as a benchmark to check our
hypothesis in a more realistic situation. Since matrix E integrates the abundance of
enzymes, we can simulate how the position of genes evolves in time when metabolic
homeostasis is fixed as an evolutionary priority. Deviations from homeostasis can be
summarized by the variation in metabolite concentrations when the β changes. In brief,
we simulate a situation with a varying average number of replication forks per cell, a
chromosome containing the genes encoding the enzymes of the metabolic model and
we ask how metabolite pools are affected when we change gene order:

F =
1

m× b

m∑
i=1

b∑
j=1

σij

µij
. (18)

Here µij and σij are the mean and the standard deviation of the logarithm of the con-
centration of metabolite i for βj and F is therefore the average coefficient of variation
of metabolite concentrations in the system when β is changed. To simulate evolution,
we use an optimization tool in R (nlminb) asking for the combination of gene positions
minimizing the objective function. In Fig. 2, we show the outcome of 100 optimization
runs, with several genes consistently forming compact clusters at convergence (same
color) as expected by our theoretical considerations. Clusters formed at convergence
of different optimizations are not always exactly the same, with some of the genes end-
ing in different or no cluster, suggesting the existence of alternative, similarly optimal
solutions, or a possible effect from the starting conditions of some genes.
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Figure 2: a) Scanning of the genomic positions for the two genes in the toy model (p1
and p2, expressed as a distance from the terminus). The z-axis is the coefficient of vari-
ation (standard deviation / mean) of metabolite S at steady state for 20 values of β sam-
pled uniformly in the range [10−6, 10−4]. When the two genes are close on the genome
(along the diagonal in the plot), perturbations to the homeostasis of S consequent to the
changes in multiplicity of the genes induced by the change in β are strongly reduced.
b) The results of 100 independent optimizations (columns) as described in the text and
started from random gene positions. The chromosome is partitioned into 50 windows,
and color goes from light for terminus proximal loci, to dark for origin proximal ones.
Rows correspond to enzymes in the model, and the heatmap colormap indicates their
position at convergence of the optimization (similar color in the same column means
the two genes are close on the chromosome). The dendrogram shows the existence of
groups of genes with very similar profiles across the simulations, suggesting that gene
organization is not evolving randomly but towards the formation of similar gene clus-
ters (operons and überoperons [23]) in different optimizations when the target is the
minimization of metabolite deviations from homeostasis. Gene names are provided for
reference to the well-known metabolic network shown in c).

The above considerations would suggest that the selective pressure driving the for-
mation of compact gene clusters and operons is a function of the ori/ter ratio, therefore
species might experience different levels of selection towards the formation of operons,
depending on how they regulate genome replication.
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Degree of compaction of functionally related genes correlates to the
ori/ter ratio
One prediction of this hypothesis is that species with a larger ori/ter ratio would ex-
perience a more effective selective pressure for clustering functionally related genes.
Two major factors might confound this signal: horizontal gene transfer and the evo-
lutionary rate of the ori/ter ratio itself. Metabolic operons are easily transferable and
self-contained modules optimized for fixation in the host and this should be true even
in species that are not experiencing significant pressure toward operon formation. Ad-
ditionally, when we measure the ori/ter ratio, we record a snapshot of a present-day
organism, and even by ignoring how fast the average ori/ter ratio can change in evo-
lution, we expect it to be much faster than operon formation. Therefore, while the
degree of gene clustering in a genome reflects an old history of selection, the ori/ter
ratio might have changed recently. With these drawbacks in mind, we decided to test
our hypothesis by deriving a specific Proximity Score (PS) that summarizes the degree
of compaction of functionally related metabolic genes. For each organism and func-
tional category in KEGG , we retrieved the genes, sorted them by position and recorded
the distance separating consecutive ones. After processing of all pathways we calcu-
lated the 20th percentile; our PS is the logarithm base 2 of the inverse of this number,
such that larger values correspond to more compact configurations. The PS was then
compared to the ori/ter ratio by using both linear models and t.tests. Fig. 3a shows
the existence of possible covariation of the two traits across the phylogenetic tree in a
qualitative way; Fig. 3b confirms the presence of a significant relationship among the
PS and the log2ori/ter ratio, when using linear regression models. Regression coeffi-
cients are significant when considering all organisms, or the Proteobacteria, but not the
Firmicutes. When significant, the model explain around 10% of the total variance in the
data, which is a consistent fraction if we think about the many additional forces that
act on genome organization on the short evolutionary time. In Fig.3c we strengthen
this idea by showing that species with an ori/ter ratio significantly larger than 2 (at
p = 0.01) also have significantly larger PS. Since the Firmicutes have PS and ori/ter
ratios that are significantly larger than in the Proteobacteria, we additionally show in
Fig.3d that the difference is significant even if we limit the test to Proteobacteria.

The situation of the Firmicutes may seem in contrast with our hypothesis. How-
ever, when comparing their PS and ori/ter ratio to the Proteobacteria, we found they
are both significantly larger (p < 2.2e − 16 for PS and p < 0.00038 for ori/ter). This
suggests that the Firmicutes likely have a tendency toward high ori/ter ratio since their
common ancestor, which may give time for a thorough optimization of gene organiza-
tion. Indeed the existence of a linear relationship of PS with log2ori/ter is a strong
assumption, as it would predict that at very large ori/ter ratio the distance of genes
would reduce to nothing, which is clearly impossible. We therefore speculate that a
better relationship would be a saturable function with its asymptote at around the av-
erage size of a gene i.e. 1000nt. Once this is reached, there’s no way to additionally
improve the situation by getting genes closer, which ends up in breaking the correlation
of ori/ter and PS i.e. being both close to optimal, they randomly fluctuate around this
optimum and therefore there’s no more correlation.
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Figure 3: a) Face to face phylogenetic trees with mapped ancestral reconstructions
of Proximity Score (PS) and log2ori/ter. b) Barplot of the adjusted R2 for linear
regression models using PS as a predictor of log2ori/ter. All regression coefficients
for PS are significant except for Firmicutes (data not shown). Species correspond to
models exploiting all the organisms in the dataset and Genus means that models are
build on averaged values across species belonging to the same genus. We also built
models for Proteobacteria (N = 46) and Firmicutes (N = 29) as they cumulatively
represent 86% of the available genomes; c) boxplot showing that species having p ≤
0.01 when testing for ori/ter ≥ 2 tend to have significantly larger PS. Firmicutes have
significantly larger PS (p < 2.2e− 16) and ori/ter ratios (p = 0.0003766) with respect
to the Proteobacteria, and this may affect the above pvalue, but d) which is limited to
Proteobacteria, shows that the test is still significant without the Firmicutes.

Conclusions
In the last decades, a number of hypotheses have been formulated concerning the ori-
gin and evolution of operons. However, most of them only focus on the molecular
mechanisms that might affect the evolutionary persistence of operons once they are
formed, not the intermediate steps during their formation. Indeed, selective pressures
that might favor the intermediate steps in operon evolution, and the potential gain in
fitness provided by the very same operon once it is formed, might even be two different
things. In this paper we provide evidence that compact metabolic gene clusters may
evolve to face homeostatic perturbations introduced by DNA replication. By integrat-
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ing Metabolic Control Theory with a simple model of gene multiplicity during replica-
tion we provide the theoretical basis for our hypothesis, which turned out to be strongly
supported both by simulations with a realistic metabolic model and by comparative ge-
nomics analysis. Introducing the ori/ter bias as a controller of enzyme abundances, the
structure of a virtual genome spontaneously evolved clusters of functionally related
genes in silico when the maintenance of homeostasis was considered as an evolution-
ary objective. Strong support for our hypothesis also comes from genomic analysis: by
deriving a measure of the degree of compaction of functionally related genes for many
species, we were able to highlight the predicted association with the ori/ter bias. We
are fully aware that our hypothesis has several important repercussions on the way we
conceive metabolic operon evolution. Not only because all tests performed seems to
corroborate that the selective pressure toward gene clustering would be a consequence
of better homeostatic control, but also because this would suggest that species expe-
rience selective pressures whose intensity is a function of the number of replication
forks (summarized here by the ori/ter ratio, or the β). The ori/ter ratio might therefore
create a continuous range of selective pressures in different species with those who are
markedly operon formers, since they have a strong ori/ter bias, and species that are
instead not experiencing the very same pressures for operon formation as they don’t
replicate the genome in parallel. Nonetheless, non-operon-formers species might have
significant advantages obtaining operons by horizontal gene transfer, even if they don’t
have pressures for the intermediate steps in their construction. Additionally, not all
the cellular processes might benefit from the clustering of their genes into operons.
Indeed, in this work, we have provided compelling evidences that this likely the case
for metabolic operons but other pathways involved in different cellular processes (e.g.
signalling, transcription/translation, etc.) might behave differently.

DNA replication is since long known to have had a significant role in genome evo-
lution, but the provided mechanistic explanations were always case-specific. In this
work we show that DNA replication could provide a selective force able to select inter-
mediate steps during metabolic operon formation - when fixing a simple and plausible
evolutionary objective, represented by maintenance of homeostasis.

Methods

ori/ter calculation and optimization-based simulations
Identification of origin and terminus for each genome was done with function oriloc
from package seqinr [6]. Coverage around the two loci was obtained by first extracting
a 50kb region centered on ori (ter) locus, and then mapping publicly available genome
sequencing data from SRA using Salmon [33] in mapping mode. Only species with at
least 5 sequencing libraries available were considered. Coverage was not normalized
because we focus on the ratio at the two loci. The R function t.test was used to test
for log2(ori/ter) larger than 0 (ori/ter>1) or larger than 1 (ori/ter>2), and also provided
95% confidence intervals. The optimization-based simulation was carried out using the
R function nlminb. The two gene-system was implemented using deSolve [40].
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Gene clustering analysis and proximity score (PS) calculation
KEGG, the Kyoto Encyclopedia of Genes and Genomes [31], provides a collection of
manually drawn pathway maps representing our knowledge of the molecular interac-
tion, reaction and relation networks for a number or biologically relevant areas of re-
search, such as Metabolism or Cellular Processes. Each KEGG pathway also contains
manually defined functionally tight gene sets of different types and scopes. Metabolic
modules are assigned to the Pathway module category, on which we focus our atten-
tion in this work. For every species under analysis (181), we obtained all gene-to-gene
distances within each Pathway module and then calculated the first quartile after pro-
cessing all modules. This number represents the gene-to-gene distance such that 25%
of all distances are smaller. The logarithm base 2 of the reciprocal of this number is
the Proximity Score (PS) of a species that we contrast to the ori/ter ratio.
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