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Abstract 10 

Motivation: The accurate prediction of complex phenotypes such as metabolic fluxes in living 11 

systems is a grand challenge for systems biology and central to efficiently identifying 12 

biotechnological interventions that can address pressing industrial needs. The application of gene 13 

expression data to improve the accuracy of metabolic flux predictions using mechanistic 14 

modeling methods such as Flux Balance Analysis (FBA) has not been previously demonstrated 15 

in multi-tissue systems, despite their biotechnological importance. We hypothesized that a 16 

method for generating metabolic flux predictions informed by relative expression levels between 17 

tissues would improve prediction accuracy. 18 

Results: Relative gene expression levels derived from multiple transcriptomic and proteomic 19 

datasets were integrated into Flux Balance Analysis predictions of a multi-tissue, diel model of 20 

Arabidopsis thaliana’s central metabolism. This integration dramatically improved the agreement 21 

of flux predictions with experimentally based flux maps from 13C Metabolic Flux Analysis 22 

(MFA) compared with a standard parsimonious FBA approach. Disagreement between FBA 23 

predictions and MFA flux maps, as measured by weighted averaged percent error values, 24 

dropped from between 169-180% and 94-103% in high light and low light conditions, 25 

respectively, to between 10-12% and 9-11%, depending on the gene expression dataset used. The 26 

incorporation of gene expression data into the modeling process also substantially altered the 27 

predicted carbon and energy economy of the plant.  28 

Availability: Code is available from 29 

https://github.com/Gibberella/ArabidopsisGeneExpressionWeights 30 

Contact: yairhill@msu.edu 31 

 32 

Introduction 33 

A grand challenge for systems biology is the ability to accurately predict complex phenotypes 34 

from omic datasets based on functional principles and mechanisms. Patterns of cellular 35 
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metabolism – flux maps – are one such complex phenotype (1), for which tools to predict 36 

phenotypes from basic assumptions have proven useful in exploring and designing metabolic 37 

capabilities (2–4). Methods to quantify flux maps from labeling data now allow the testing of 38 

such predictions in both simpler and multicellular systems. However, the integration of omic 39 

data to improve the accuracy of flux predictions is still at an early stage. 40 

Metabolic flux predictions are also important for real world applications since modifying 41 

an organism’s metabolic activity in order to achieve some practical aim, such as overproducing a 42 

specific metabolite, is central to many biotechnology projects. As in other areas of engineering, 43 

metabolic engineering can benefit from mathematical models that describe and predict the 44 

behavior of the relevant system(s). Researchers have developed two major modeling approaches 45 

to address this need: (i) 13C-Metabolic Flux Analysis (13C-MFA) and (ii) Flux Balance 46 

Analysis (FBA) (2, 5). With 13C-MFA, steady-state or kinetic isotopic labeling data for 47 

metabolites in a small- to medium-sized network are used to obtain estimates of the net and 48 

exchange fluxes through that network (5). These metabolic flux maps are regarded as the most 49 

reliable measures of in vivo metabolic fluxes; however, the throughput of this technique is 50 

limited by the large amounts of isotopic labeling data and other measurements needed to 51 

generate each flux map. FBA, which is based on applying conservation principles to a network 52 

of reactions using one or more assumptions about the functional objective(s) driving biological 53 

organization, requires substantially less experimental input data, and is therefore an attractive 54 

and commonly used metabolic modeling technique. 55 

FBA and related metabolic modeling methods in microbial systems, together with 56 

Genome-Scale Metabolic Models (GEMs) that represent the biochemical reactions encoded in an 57 

organism’s genome, have enabled radical modification of microbial central metabolism (e.g. 58 

Gleizer et al., 2019) and substantial improvements in bioproduct yields (e.g. Jin et al., 2007; Lee 59 

et al., 2007) These methods can, for example, allow bioengineers to predict the behavior of their 60 

system and identify interventions, such as gene knock-outs or knock-ins, that will help them 61 

modify the organism’s phenotype (4, 9). However, many metabolic engineering applications 62 

require the modification not of microorganisms, but of multicellular eukaryotes like plants. Most 63 

GEMs of plants to date (e.g. (10–13)), have treated plants, which are composed of multiple 64 

tissues with substantial functional diversity, as single-tissue aggregated metabolic networks. This 65 

has motivated the creation of “multi-tissue” GEMs to investigate source-sink dynamics and 66 

resource allocation, with the earliest efforts in this space focusing on the interplay between 67 

mesophyll and bundle-sheath cells in C4 photosynthesis  (14, 15).  68 

Re-engineering of plant metabolism on the scale seen in microbial systems has not, to-69 

date, been possible and predictive modeling has been neither validated in detail nor applied to 70 

successful plant metabolic engineering. This is in part a result of the ease and high throughput of 71 

microbial transformation relative to that of even model plants like Arabidopsis thaliana. In 72 

addition to the greater experimental difficulty, the metabolic modeling of these systems is also 73 

substantially harder. There is, consequently, a relative lack of MFA datasets with which to 74 

compare the predicted flux maps from FBA in plants. This contrasts with the availability of rich 75 

multi-omic datasets combining flux estimates with transcript and protein data for a number of 76 
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different genotypes and growth conditions in systems like E. coli (16). The substantial challenge 77 

involved in generating 13C-MFA flux maps for plants makes improvement in the quality of plant 78 

FBA flux predictions an attractive path towards replicating the biotechnological successes seen 79 

in microbes. 80 

An appealing approach to improving the quality of plant FBA predictions is the 81 

integration of additional network-wide data from transcriptomic and proteomic datasets. Gene 82 

expression data – particularly transcript data – is substantially easier to generate than 13C-MFA 83 

flux maps. Previous attempts at the integration of gene expression datasets into metabolic flux 84 

predictions have been reviewed elsewhere (17, 18). A substantial number of methods developed 85 

before 2014 were evaluated on the basis of their ability to improve upon parsimonious FBA 86 

(pFBA) (19) in terms of their predictions’ agreement with MFA-estimated fluxes in 87 

microorganisms and were found to not do so reliably (18). A key limitation of these studies was 88 

a lack of comparison of FBA-predictions against 13C-MFA derived flux estimates. This lack of 89 

comparison against 13C-MFA is shared by the plant FBA literature, in which we are aware of 90 

only a small number of evaluations under heterotrophic conditions in green algae (20), 91 

Arabidopsis cell cultures (21, 22), and Brassica napus embryos (23). Since then, several studies 92 

have developed algorithms benchmarked by their ability to make predictions in agreement with 93 

empirical flux maps derived from MFA studies (24, 25). These studies have focused on 94 

unicellular organisms (Escherichia coli and Saccharomyces cerevisiae) studied under different 95 

conditions or genetic alteration. Their applicability to FBA in more complex systems is limited 96 

by the large number of resource-intensive MFA datasets needed to calibrate them (24) or their 97 

need for a reference expression dataset paired with an assumed-correct flux map (25). 98 

In the interest of advancing the accuracy of FBA in systems with multiple cell types, 99 

particularly in plants with their complex metabolic networks, we have developed a method that 100 

allows for the integration of tissue-atlas data from multi-tissue systems into the flux-101 

minimization procedure employed in pFBA. This method incorporates evidence from gene 102 

expression datasets into FBA metabolic flux predictions by applying weights to individual 103 

reactions according to the relative transcript or protein expression of the gene(s) assigned to 104 

those reactions between different modeled tissues. The method described in this study is 105 

evaluated on the basis of its ability to produce predictions in accordance with MFA flux maps. 106 

We demonstrate substantial improvements in the agreement of our FBA predicted fluxes with 107 

flux estimates from a 13C-MFA study on Arabidopsis thaliana rosette leaf central metabolism 108 

(26). Finally, we show that multiple gene expression datasets, when used as inputs, all result in a 109 

similar improvement in agreement and that this result generalizes across multiple different MFA-110 

estimated flux maps. We believe that this approach has particular potential for plant and animal 111 

systems for which there are only a limited number of well-established experimental flux maps.  112 

Methods 113 

Overview of approach  114 

Our method makes two key assumptions: (1) First, metabolic flux maps that are predicted from 115 

parsimonious FBA (19), minimizing the sum total of flux through the network, are more likely to 116 
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reflect real flux maps than ones not subject to this constraint, and (2) A reaction present in two 117 

tissues A and B catalyzed by an enzyme encoded by a gene that is highly expressed in A and 118 

poorly expressed in B is likely to carry higher flux in tissue A. 119 

We incorporate assumption 1 by making the objective function of our FBA optimization 120 

the minimization of total flux, the same as pFBA (19). This is represented mathematically as 121 

finding the minimum value of the linear combination of all fluxes in the network, with each flux 122 

vi multiplied by a corresponding coefficient ci: 123 

𝑚𝑖𝑛 ∑ 𝑐𝑗 ∗ 𝑣𝑗
𝑗∈𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

(1) 124 

 125 

Where Reactions is the list of all reactions j in the network, vj is the flux through a 126 

reaction j, and cj is the coefficient – which we will hereafter refer to as a penalty weight since it 127 

represents a penalization on the likelihood of using a reaction j to carrying flux. When cj takes a 128 

value of 1 for all reactions, our method reduces to pFBA, which can be seen as the limiting case 129 

of gene expression having no influence in predicting network flux patterns. We incorporate 130 

assumption 2 by calculating, for each reaction in our network model, a coefficient derived from 131 

the relative expression of genes encoding enzyme(s) that catalyze that reaction between the 132 

different tissues in our gene expression dataset. This use of the coefficient vector to account for 133 

relative expression evidence is similar to the approach taken in (27), but in this case relative 134 

expression is across tissues within a single multi-tissue model. The association between reactions 135 

and genes is captured by the Gene-Protein-Reaction (GPR) terms in the model. This results in 136 

reactions mapped to relatively highly expressed genes receiving small values of cj and reactions 137 

mapped to minimally expressed genes receiving large ones. 138 

Multi-tissue diel model construction and dataset selection  139 

The Arabidopsis thaliana core metabolism model developed in (12) was used as the basis for a 140 

multi-tissue diel model. This model was chosen due to its rich GPR annotation and focus on 141 

central metabolism. The core model was duplicated six times to create leaf, stem, and root 142 

versions of the model for both day and night, which were interconnected by transporters 143 

allowing the movement of specific compounds and metabolites. Additional details on the 144 

constraints applied to the model can be found in the Supplementary Methods. The full model 145 

used in this study can be found in Supplemental Dataset 2. 146 

13C-MFA flux maps were obtained in planta in Arabidopsis thaliana by (26), and these 147 

were used as the empirical best estimates of flux distributions. The pairing of fluxes in the MFA 148 

network (26) to the FBA network are described in Supplemental Dataset 1.  149 

We searched the literature for high-quality, high-coverage RNA-seq tissue atlases and 150 

quantitative proteomic tissue atlases and found two suitable datasets meeting these criteria: 151 

Merger et al. 2019 (28) and Klepikova et al. 2016 (29). For dataset IDs and bioinformatic 152 

processing details, see Supplementary Methods.  153 
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Gene expression weight vector calculation 154 

We calculated the penalty weight  for each gene in each tissue on the basis of how the expression 155 

of a reaction in a particular tissue, as measured by transcriptomic or proteomic abundance, 156 

compared to the expression of that same gene in other modeled tissues.  157 

𝑊𝑖𝑡 = (
𝑀𝑎𝑥(𝐸𝑖 ∗ 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟)

𝐸𝑖𝑡 ∗ 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟
) (2) 158 

Where Wit is the weight for a given gene i in a tissue t, Ei is the list of expression values 159 

of gene i for each tissue, Eit is the expression of gene i in tissue t, Max() is the maximum value 160 

from a set of one or more elements, and the ScalingFactor is a coefficient that modulates the 161 

magnitude of the calculated weights. Many GPRs in the model consist of multiple genes that 162 

represent isozymes or members of protein complexes. The former are denoted by OR terms and 163 

the latter by AND terms in the GPR formulation. This results in many reactions having more 164 

than one penalty weight due to being mapped to multiple genes. We combine these multiple 165 

weights into a single value for each reaction by averaging the penalty weights of isozymes and 166 

taking the “worst” (i.e. largest, most penalizing value) when genes form subunits of a protein 167 

complex. As an example, the weight for a reaction R in the leaf subnetwork of our model with a 168 

GPR of the form (Gene1 OR Gene2) AND (Gene3), corresponding to a protein complex made of 169 

the product of Gene 3 and the product of either Gene 1 or Gene 2, would be represented by: 170 

𝑐𝑅,𝑙𝑓 = 𝑀𝑎𝑥 (
(𝑊𝑔𝑒𝑛𝑒1,𝑙𝑓 + 𝑊𝑔𝑒𝑛𝑒2,𝑙𝑓)

2
, 𝑊𝑔𝑒𝑛𝑒3,𝑙𝑓) (3) 171 

Where cR,lf represents the overall weight for a reaction and Wgene1,lf, Wgene2,lf, and Wgene3,lf 172 

are the weights for the individual genes Gene1, Gene2, and Gene3. Note that in the present 173 

implementation of this method, stoichiometric coefficients in GPR terms are ignored. When the 174 

one or more genes contained in a GPR for a reaction/tissue combination are all more highly 175 

expressed than the same genes in the other tissues, the scale for that reaction/tissue combination 176 

will be 1. For reaction/tissue combinations that have no corresponding GPR, we explored setting 177 

the weights to 1 or a value calculated from the median weight assigned to reactions in the same 178 

tissue (for details, see Supplementary Methods). 179 

Optimization 180 

The optimization done in this paper is a variation on pFBA, which finds the flux map(s) that 181 

satisfies imposed constraints with minimum total flux through the network (19). The 182 

minimization of total flux (Eq. 1) is subject to the following constraints: 183 

𝑆 ∗ 𝑣 = 0 (4) 184 

𝐿𝐵𝑗 ≤ 𝑣𝑗 ≤ 𝑈𝐵𝑗 (5) 185 

𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝑡𝑖𝑠𝑠𝑢𝑒)
= 𝑣𝑓𝑖𝑥𝑒𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑡𝑖𝑠𝑠𝑢𝑒

(6) 186 
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Where S is the stoichiometric matrix of the metabolic network being modeled, v is the 187 

vector of all fluxes, LB and UB are the vectors of all upper and lower bound constraints, and 188 

vbiomass(tissue) and vfixed biomass(tissue) are the biomass flux for a given tissue and the defined biomass 189 

constraint for that tissue, respectively. Eq. 4 represents the steady state of all internal metabolites, 190 

Eq. 5 represents the imposition of bounds and reversibility constraints, and Eq. 6 represents the 191 

definition of biomass accumulation rates. All optimizations were done in the COnstraint-Based 192 

Reconstruction and Analysis (COBRA) Toolbox in MATLAB (30) using the Gurobi™ optimizer 193 

version 8.1.1 (31). 194 

Error evaluation 195 

We make the assumption that the 13C-MFA fluxes reported in (26) are the true in vivo metabolic 196 

fluxes and therefore regard the discrepancy between FBA-predicted fluxes and these 13C-MFA 197 

fluxes as a measure of error. Biomass accumulation (i.e. the difference in dry weight between a 198 

timepoint t and another timepoint t-1 ) was not reported in (26), but is the basis for the flux 199 

through the biomass equation in FBA. To allow a comparison between our FBA-predicted fluxes 200 

and the MFA-estimated fluxes in (26), we set an arbitrary biomass flux of 0.01 g/hr through the 201 

leaf, stem, and root biomass reactions in both the day and night, similar to the approach taken in 202 

(32). We then normalized our fluxes by multiplying them by a factor A calculated as the ratio of 203 

the measured leaf CO2 uptake from (26) and the net leaf CO2 uptake in our FBA flux map. A 204 

weighted average error for each FBA-predicted flux map was then obtained using the following 205 

expression: 206 

∑ (
|(𝑣𝑗

𝑝 ∗ 𝐴) − 𝑣𝑗
𝑚|

|𝑣𝑗
𝑚|

∗
|𝑣𝑗

𝑚|

∑ |𝑣𝑗
𝑚|𝑗∈𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

)
𝑗∈𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

(7) 207 

Where vj
p and vj

m are the FBA-predicted and MFA-estimated fluxes of a flux j and A is 208 

the normalization factor previously described. We calculated weighted average errors rather than 209 

just average errors because small absolute differences between FBA-predicted and MFA-210 

estimated flux values can correspond to extremely large % error values when the MFA-estimated 211 

fluxes are small. Additional details on the error evaluation done in this study can be found in the 212 

Supplementary Methods. We quantified the maximum/minimum weighted average errors of each 213 

flux map using Flux Variability Analysis (FVA) (33). For details, see Supplementary Methods.  214 

Results 215 

The application of gene expression weight reliably reduces discrepancies between FBA-216 

predicted and MFA-estimated fluxes 217 

Predicted flux maps were generated for a multi-tissue diel model of Arabidopsis thaliana’s 218 

central metabolism using flux balance analysis in which the sum of all the metabolic and 219 

transport fluxes required for steady state growth is minimized, with each flux being multiplied by 220 

a weight coefficient that was derived from the relative expression of the gene(s) involved in 221 

conducting that flux (see methods). Weights for each reaction were calculated from RNA-seq 222 

(28, 29) and proteomic (28) datasets using the relative expression of each gene in the different 223 

tissues. The weighted average % error between these flux maps and 13C-MFA estimates from 224 
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(26) were used to quantify the accuracy of these FBA predictions, as compared to the accuracy 225 

of flux maps generated by pFBA (19) alone. The flux maps arrived at after the application of 226 

either transcriptomic or proteomic weights show greater agreement, as measured by the weighted 227 

average % error, with 13C-MFA estimates than the results from pFBA alone (Table 1). These 228 

reductions in error are substantial and statistically significant at α = 0.01. These increases in 229 

agreement are consistent across comparisons against two different flux maps (high-light and low-230 

light) and are sustained across a range of assumed ratios of starch to sucrose production and 231 

carboxylase to oxygenase fluxes through RuBisCO (vo/vc). Marked reductions in error are seen 232 

whether one uses the transcriptomic or proteomic tissue-atlas datasets from (28) or the 233 

transcriptomic dataset from (29), so that the improvement in flux predictions is not dependent on 234 

the values obtained in a specific gene expression dataset or type.  235 

Table 1. Weighted average % error values calculated from weighted vs. unweighted flux maps for 236 
transcriptomic and proteomic datasets from (28) and (29). Values represent the lowest and highest possible 237 
weighted average errors given the results of Flux Variability Analysis. Weighted average error values were 238 
calculated from flux maps generated using a scaling factor of 1. 239 

Dataset Light Level 

Weighted average error (%) 

No gene expression 

weights 

With gene expression 

weights 

Mergner et al. 

Transcriptome 

High 169 – 180 14.7 – 17.1 

Low 93.8 – 103 14.9 – 18.1 

Mergner et al. Proteome 

High 169 – 180 9.63 – 12.2 

Low 93.8 – 103 8.75 – 10.9 

Klepikova et al. 

Transcriptome 
High 169 – 180 15.3 – 17.8 

 240 

We wanted to confirm that these reductions in error are in fact dependent on weights 241 

calculated from gene expression data and not an artifact of the weighting procedure itself. 242 

Indeed, previous studies have used the application of randomized weights as a method of 243 

exploring different possible flux modes in a plant metabolic network (34). We found that 244 

substituting the leaf for the root proteomic dataset, and vice-versa, resulted in no reduction in 245 

weighted average error (Supplemental Table 1) compared to pFBA. Neither did randomization 246 

of the weight vector and subsequent optimization result in improvements in weighted average 247 

error, with the mean of the weighted average errors of 50 high-light condition flux maps 248 

generated with independent randomized weight vectors at a scaling factor of 1 being 201%, 249 

versus the unweighted error value of 169-180% for that condition. 250 

 251 

 252 
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Increases in agreement between FBA-predicted and MFA-estimated fluxes are broadly 253 

distributed across central metabolism 254 

Although there is variation among individual fluxes in the degree to which omic data integration 255 

improves agreement between predicted and experimentally derived values, the reduction in 256 

weighted error as a result of gene weight application is distributed broadly across the fluxes for 257 

which 13C-MFA estimates are available. If, for example, the improvement were due to a 258 

substantial decrease in one or a small number of high-flux reactions and a negligible decrease or 259 

even increase in error for other reactions (Fig. 1) the overall finding would be less striking and 260 

potentially less broadly applicable. The reductions in error are consistent not only across 261 

metabolic subsystems within a single FBA flux map, but also across alternative stoichiometric 262 

network structures. Initial pFBA-derived solutions for a model identical to that used to generate 263 

the other predictions except with unconstrained movement of protons show similar reductions in 264 

error (Supplemental Table 2). Upon application of gene expression weights, this model 265 

converges to a similar value of weighted average error as other model configurations. 266 

 267 

Fig. 1. Percent errors relative to 13C-MFA derived fluxes of specific reactions in central metabolism before 268 
(A) and after (B) gene expression weight application. The error values in (A) are the lowest possible given 269 
FVA results and the values in (B) are the highest possible given FVA results. We see substantial decreases in 270 
errors associated with central carbon assimilation, as well as starch and sucrose synthesis. Since the 13C-MFA 271 
estimated fluxes from (26) do not feature the flux from ADPG to Starch, this flux lacks an estimated error and 272 
is therefore shown in black. Flux values are relative to the lowest flux in the network.  273 
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Error reductions are a function of scaling factor parameter and are improved by the 274 

application of a tissue-specific median weight for reactions lacking Gene-Protein-Reaction 275 

terms 276 

The magnitude of the gene expression weights calculated and applied by the present method 277 

depend on the magnitude of the scaling factor term, (see Methods, Eq. 2). The increased 278 

agreement between the FBA- predicted and MFA-estimated flux maps only manifests in the 279 

majority of cases for scaling factors of 0.05-0.1 or greater (Fig 2). We also note that the 280 

relationship between the scaling factor value and the improved agreement is monotonic – that is, 281 

we do not see erratic increases and decreases as we increase the scaling factor value and, by 282 

extension, the strength of the assumed relationship between flux and gene expression. The 283 

necessity of a non-negligible scaling factor, the consistency of error improvement as the scaling 284 

factor is increased, and the similarity in the pattern of error improvement across multiple datasets 285 

as seen in Fig 2 all suggest that real biological signal related to the partitioning of metabolic 286 

activity across the plant’s tissues is being extracted from the gene expression datasets. Finally, 287 

we observe that the flux maps generated using weight derived from the (28) proteomic dataset 288 

have noticeably better weighted average errors than flux maps generated using transcriptomic 289 

dataset (Table 1; Fig. 2). This is consistent with the closer relationship between measured 290 

protein levels and metabolic fluxes than between transcripts and fluxes. It is also consistent with 291 

at least one other study’s attempts at integrating gene expression data into FBA in E. coli (24). 292 

In our initial formulation of the algorithm for generating gene expression weights, the 293 

weight of all reactions with no associated GPR was set to 1, since this is the implicit value of the 294 

coefficient for all reactions in a standard pFBA optimization. Since this runs the risk of 295 

introducing a systematic bias against using reactions that have associated GPRs, we attempted to 296 

counteract this effect by assigning all reactions lacking a GPR a weight corresponding to the 297 

median weight of all weighted reactions in the tissue in which those reactions are found. 298 

Comparing the results with and without the tissue-specific median weights for reactions without 299 

GPRs, we see slight improvements in the weighted average errors from a scaling factor of 1 300 

onwards when using the transcriptomic and proteomic datasets from (28)  (Fig. 2), though the 301 

effect is not substantial, indicating that our method is robust to including or omitting the tissue-302 

specific median weight correction.  303 

Changes in the carbon and energy economy upon application of gene expression weights 304 

In addition to improving quantitative agreement between the FBA-predicted and MFA-estimated 305 

flux maps, the gene expression weighting procedure also generates flux maps that present a 306 

substantially different picture of carbon and energy metabolism in Arabidopsis leaves.  307 

A consistent trend across high and low light FBA-predicted fluxes is a substantial 308 

decrease in leaf mitochondrial Electron Transport Chain (ETC) activity and overall flux in 309 

mitochondria-localized reactions in the light relative to nighttime ETC activity and overall flux 310 

(Supplemental Table 3). MFA and other recent work further supports low TCA cycle fluxes in 311 

photosynthesizing leaves (35–37). This decrease in mitochondrial activity goes hand-in-hand 312 

with a predicted decrease in the use of unusually high fluxes related to proline metabolism to 313 
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indirectly support the consumption of excess reductant produced via the light reactions of 314 

photosynthesis. Alongside this decrease in mitochondrial activity is a decrease in the ratio of 315 

cyclic electron flow (CEF) to linear electron flow (LEF) in the chloroplast (Table 2). Although 316 

reliable empirical measurements of this CEF/LEF ratio are difficult to obtain, previous studies 317 

have shown that a C3 plant like Arabidopsis relying on cyclic electron flow to bring the ratio of 318 

ATP/NADPH produced up to that needed for normal growth would have a CEF amounting to 319 

~13% of LEF (38). Due to the presence of other balancing mechanisms, such as the malate valve 320 

(39), this 13% value would represent an upper bound on stoichiometrically predicted values for 321 

CEF/LEF. Application of gene expression data see decreases the CEF/LEF ratios in all but one 322 

FBA-predicted flux map to values much closer to the expected ~13% upper bound than are 323 

predicted using conventional pFBA (Table 2).  324 

Figure 2. Weighted average errors of FBA predictions compared with MFA-estimated flux maps as a function 325 
of scaling factor value, light-level, and the presence or absence of a tissue-specific median weight correction. 326 
(A) Weighted average errors of flux maps generated using low-light constraints and with a tissue-specific 327 
median correction applied. (B) Weighted average errors of flux maps generated using low-light constraints and 328 
without a tissue-specific median correction applied. (C) Weighted average errors of flux maps generated using 329 
high-light constraints and with a tissue-specific median correction applied. (D) Weighted average errors of flux 330 
maps generated using high-light constraints and without a tissue-specific median correction applied. Upper and 331 
lower bars on each point represent the highest and lowest possible weighted average errors given FVA results, 332 
and the points themselves represent the average of these values. 333 
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From (26) we have MFA-derived estimates of %vpr, or the rate of photorespiratory CO2 334 

release via glyoxylate decarboxylation, as well as the ratio of RuBisCO carboxylation flux to net 335 

CO2 assimilation in the leaf. The unweighted flux predictions for the high and low light 336 

conditions disagree substantially with these estimates (Table 2). However, application of gene 337 

expression weights consistently brings estimates of these parameters into close agreement with 338 

MFA-derived values. The integration of gene expression also changes the predicted efficiency 339 

with which Arabidopsis converts atmospheric CO2 into biomass (Table 2). For comparison with 340 

these predicted efficiencies, we used the empirical A. thaliana biomass, leaf area, and gas 341 

exchange data reported in (40) to calculate that approximately 56% of the net CO2 assimilation 342 

in illuminated leaves ends up in incorporated into biomass, which is closer to the value in our 343 

unweighted flux predictions than our weighted flux predictions, although it should be noted that 344 

these data were gathered from a hydroponic system.  345 

Table 2. Several measures of carbon and energy utilization derived from the predicted flux maps with and 346 
without gene expression weighting applied. Reference values: a, (26); b, (38); c, (40). 347 

Dataset used 

for weighting 
Light 

RuBisCO flux ÷ 

net CO2 

assimilation 

Photorespiratory CO2 

loss / net CO2 

assimilation (%) 

Cyclic/Linear 

Electron Flow 

% of leaf daytime CO2 

assimilation going to 

biomass 

None 
High 2.86 62 24% 43 

Low 1.85 26 31% 54 

Mergner et al. 

Protein 

High 1.27 25 19% 17 

Low 1.18 14 15% 26 

Mergner et al. 

Transcripts 

High 1.19 25 21% 19 

Low 1.15 14 27% 31 

Klepikova et 

al.Transcripts 

High 1.30 28 27% 19 

Low 1.24 16 17% 31 

Reference 

values 
 1.28a 27.5a 13%b 56%c 

 348 

Discussion  349 

13C-MFA is broadly accepted as being the most reliable method for estimating metabolic flux 350 

maps in vivo due to its ability to make use of substantial amounts of isotopic labeling data to 351 

arrive at well-supported flux maps in small- to medium-scale networks (5). However, the 352 

technique’s utility is limited by the substantial experimental effort that goes into the generation 353 

of each individual flux map. FBA, with its requirement of much less experimental data, has 354 

become the method of choice for more exploratory or predictive metabolic modeling studies. The 355 

implicit assumption is usually that the predictions of FBA – or at least the range of its predictions 356 

in cases where a unique solution is not provided – agree with those we would arrive at if we were 357 

able to conduct a 13C-MFA study. This makes our optimization procedures when performing 358 
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FBA and validation of FBA models against MFA results of vital importance. The method 359 

presented here, by bringing FBA-predicted fluxes into line with MFA-estimates represents a step 360 

in the direction of higher-confidence FBA flux maps. 361 

One limitation, as well as motivation, for the present study is the lack of a large set of 362 

13C-MFA datasets in plants and other multi-tissue eukaryotic systems. Systems like E. coli have 363 

multi-omic datasets consisting of transcriptomic, proteomic, and fluxomic measurements (16) 364 

that have been utilized to empirically infer the relationship between gene expression and 365 

metabolic fluxes. This empirical training can then be used to more accurately predict fluxes in 366 

new contexts (24). The sparsity of 13C-MFA data in more complex systems makes such an 367 

approach currently impossible.  368 

An interesting theoretical aspect of the present approach is its simplicity, the only 369 

variable parameter being a single scaling factor that controls the magnitude of the penalty 370 

weights. That the assumption of a consistent value relating the relative abundances of transcripts 371 

or proteins in different tissues to the “preference” of an organism to partition flux among 372 

particular reactions can result in substantial improvement in error was of great interest. This 373 

observation is interesting to consider in light of the complexity of the relationship between 374 

measures of gene expression – transcriptomic and proteomic abundances – and flux. Particularly 375 

when making biotechnological interventions in a system to modify its metabolism, there is often 376 

an assumed strong linear relationship between transcription, translation, and, ultimately, 377 

metabolic flux, but the reality is rarely so simple. Although moderate correlations between 378 

transcript and protein abundances have been demonstrated across many systems, the degree of 379 

correlation varies across systems and experimental contexts (41, 42). The correlation between 380 

these datatypes and rates of central metabolic reactions, which carry the large majority of total 381 

metabolic flux, is weaker still (43). Some previous studies found that changes in the gene 382 

expression related to individual reactions typically do not correlate well with changes in fluxes 383 

(24, 44), with some central metabolic fluxes in particular showing a negative correlation between 384 

gene expression change and flux change. In both cases, gene expression data related to reactions 385 

were compared within the same cell type or tissue; in our study, we avoid this comparison, 386 

comparing instead inter-tissue abundances, mirroring the long-standing practice in the literature 387 

of inferring relative metabolic activity in different tissues by their transcript and protein 388 

investment in relevant pathway steps. It may be the case that it is only by considering gene 389 

expression on an inter-tissue basis in the context of the entire complex stoichiometric network 390 

underlying metabolism that predictive gains from including gene expression evidence can be 391 

properly realized. 392 

Future work should aim to expand the number of available datasets, and the experimental 393 

conditions and genotypes for which they are gathered, in order to enable more thorough 394 

evaluation of methods like the one presented in this paper.  Building on the work of Ma et al. 395 

(26), experimental improvements and refinements of the underlying network architecture of 396 

central carbon metabolism have been introduced in the context of 13C-MFA in Camelina sativa 397 

(35, 36) and Nicotiana tabacum (45). In the present study the Ma et al. 2014 flux maps are used 398 

without change and we adopted a highly curated A. thaliana genome-scale model from which to 399 
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construct the whole-plant model. This approach precluded the possibility of our reanalyzing the 400 

MFA-estimated flux map, or constructing a new purpose-built genome-scale model, making the 401 

MFA-to-FBA comparison more favorable. However, in future studies a combination of MFA 402 

network refinements, expanded datasets, and further improvements in the flux estimation 403 

procedures holds promise for improving the fidelity of the 13C-MFA comparison data. On the 404 

FBA side, the use of more detailed growth and composition measurements for FBA along with 405 

more detailed representation of different tissue types will potentially allow for more biologically 406 

accurate and representative FBA flux map predictions. These improvements in both MFA-407 

estimation and FBA-prediction of flux maps, along with an expansion in the number of available 408 

13C-MFA datasets against which to compare FBA predictions, will allow for more extensive 409 

validation of the method described in this paper as well as other methods aiming to incorporate 410 

omic datasets into flux prediction.   411 

A distinct aspect of the proposed method is its demonstrated ability to bring FBA-412 

predicted fluxes in line with MFA-estimated fluxes across multiple input datasets, model 413 

architectures, and using multiple independent gene expression datasets. Our hope is that methods 414 

for incorporating transcriptomic and proteomic data may advance this field to the point where 415 

FBA-predicted flux maps can be used with high-confidence for practical engineering goals. This, 416 

combined with the automated reconstruction of GEMs from genomic and biochemical databases 417 

(46) suggests a future with rapid turnaround from the initial identification of an organism of 418 

interest to metabolic flux predictions and rational genetic engineering to achieve 419 

biotechnological aims.  420 
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