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  30 
ABSTRACT 31 
Cycling of co-substrates, whereby a metabolite is converted among alternate forms via 32 
different reactions, is ubiquitous in metabolism. Several cycled co-substrates are well known 33 
as energy and electron carriers (e.g. ATP and NAD(P)H), but there are also other metabolites 34 
that act as cycled co-substrates in different parts of central metabolism. Here, we develop a 35 
mathematical framework to analyse the effect of co-substrate cycling on metabolic flux. In 36 
the cases of a single reaction and linear pathways, we find that co-substrate cycling imposes 37 
an additional flux limit on a reaction, distinct to the limit imposed by the kinetics of the 38 
primary enzyme catalysing that reaction. Using analytical methods, we show that this 39 
additional limit is a function of the total pool size and turnover rate of the cycled co-substrate. 40 
Expanding from this insight and using simulations, we show that regulation of co-substrate 41 
pool size can allow regulation of flux dynamics in branched and coupled pathways. To 42 
support theses theoretical insights, we analysed existing flux measurements and enzyme 43 
levels from the central carbon metabolism and identified several reactions that could be 44 
limited by co-substrate cycling. We discuss how the limitations imposed by co-substrate 45 
cycling provide experimentally testable hypotheses on specific metabolic phenotypes. We 46 
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conclude that measuring and controlling co-substrate pools is crucial for understanding and 47 
engineering the dynamics of metabolism. 48 
 49 
INTRODUCTION 50 
Dynamics of cell metabolism directly influences individual and population-level cellular 51 
responses. Examples include metabolic oscillations underpinning the cell cycle (1,2) and 52 
metabolic shifts from respiration to fermentation, observed in cancer phenotypes (3-5) and 53 
cell-to-cell cross-feeding (6-8). Predicting or conceptualising these physiological responses 54 
using dynamical models, however, is difficult due to the large size and high connectivity of 55 
cellular metabolism. Despite this complexity, cellular metabolism might feature simplifying 56 
‘design principles’ that determine the overall dynamics.  57 
 58 
There is ongoing interest in finding such simplifying principles. Early studies developed a 59 
theory of metabolic pathway structure, concerning the position of ATP generating steps in a 60 
linear pathway, under the assumption of pathway flux optimisation with limited enzyme 61 
production capacity (9). This theory predicted a trade-off between pathway flux and yield 62 
(net ATP generation) (10), which is used to explain the emergence of different metabolic 63 
phenotypes (11). In related studies, several specific models pertaining to enzyme allocation 64 
and optimality have been developed to explain the structure of different metabolic pathways 65 
(12), and the metabolic shifting from respiration to fermentative pathways under increasing 66 
glycolysis rates (8, 13, 14).  67 
 68 
Another conceptual framework emphasized the importance of co-substrate cycling, rather 69 
than net production (e.g. of ATP), as a key to understanding metabolic systems (15). This 70 
framework is linked to the idea of considering the supply and demand structures around 71 
specific metabolites as regulatory blocks within metabolism (16). For example, the total pool 72 
of ATP and its derivates (the ‘energy charge’) is suggested as a key determinant of 73 
physiological cell states (17). Inspired by these ideas, early theoretical studies have shown 74 
that metabolic systems featuring metabolite cycling together with allosteric regulation can 75 
introduce switch-like and bistable dynamics (18, 19), and that metabolite cycling motifs 76 
introduce total co-substrate level as an additional control element in metabolic control 77 
analysis (20, 21).  Specific analyses of ATP cycling in the glycolysis pathway, sometimes 78 
referred to as a ‘turbo-design’, and metabolite cycling with autocatalysis, as seen for example 79 
in glyoxylate cycle, have shown that these features constrain pathway fluxes (22-27). Taken 80 
together, these studies indicate that metabolite cycling, in general, and co-substrate cycling 81 
specifically, could provide a key ‘design feature’ in cell metabolism, imposing certain 82 
constraints or dynamical properties to it. 83 
 84 
Towards better understanding the role of co-substrate cycling in cell metabolism dynamics, 85 
we undertook here an analytical and simulation-based mathematical study together with 86 
analyses of measured fluxes. We created models of enzymatic reaction systems featuring co-87 
substrate cycling, abstracted from real metabolic systems such as glycolysis, nitrogen-88 
assimilation, and central carbon metabolism. We found that co-substrate cycling introduces a 89 
fundamental constraint on reaction flux. In the case of single reaction and short linear 90 
pathways, we were able to derive a mathematical expression of the constraint, showing that it 91 
relates to the pool size and turnover rate of the co-substrate. Analysing measured fluxes, we 92 
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find that several of the co-substrate featuring reactions in central carbon metabolism carry 93 
lower fluxes than expected from the kinetics of their primary enzymes, suggesting that these 94 
reactions might be limited by co-substrate cycling. In addition to its possible constraining 95 
role, we show that co-substrate cycling can also act as a regulatory element, where control of 96 
co-substrate pool size can allow control of flux dynamics across connected or branching 97 
pathways. Together, these findings show that co-substrate cycling can act both as a constraint 98 
and a regulatory element in cellular metabolism. The resulting theory provides testable 99 
hypotheses on how to manipulate metabolic fluxes and cell physiology through the control of 100 
co-substrate pool sizes and turnover dynamics and can be expanded to explain dynamic 101 
measurements of metabolite concentrations in different perturbation experiments.  102 
 103 
RESULTS AND DISCUSSION 104 
Co-substrate cycling is a ubiquitous motif in metabolism.  Certain metabolites can be 105 
consumed and reproduced via different reactions in the cell, thereby resulting in their 106 
‘cycling’ (Fig. 1A). This cycling creates interconnections within metabolism, spanning either 107 
multiple reactions in a single, linear pathway, or multiple pathways that are independent or 108 
are branching from common metabolites. For example, in glycolysis, ATP is consumed in 109 
reactions mediated by the enzymes glucose hexokinase and phosphofructokinase, and is 110 
produced by the downstream reactions mediated by phosphoglycerate and pyruvate kinase 111 
(Fig. S1A). In the nitrogen assimilation pathway, the NAD+ / NADH pair is cycled by the 112 
enzymes glutamine oxoglutarate aminotransferase and glutamate dehydrogenase (Fig. S1B). 113 
Many other cycling motifs can be identified, involving either metabolites from the central 114 
carbon metabolism or metabolites that are usually referred to as co-substrates. Examples for 115 
the latter include NADPH, FADH2, GTP, and Acetyl-CoA and their corresponding alternate 116 
forms, while examples for the former include the tetrahydrofolate (THF) / 5,10-Methylene-117 
THF and glutamate / α-oxoglutarate (akg) pairs involved in one-carbon transfer and in amino 118 
acid biosynthesis pathways, respectively (Fig. S1C & D). For some of these metabolites, their 119 
cycling can connect many reactions in the metabolic network. Taking ATP (NADH) as an 120 
example, there are 265 (118) and 833 (601) reactions linked to the cycling of this metabolite 121 
in the genome-scale metabolic models of Escherichia coli and human respectively (models 122 
iJO1366 (28) and Recon3d (29)).  123 
 124 
Cycled co-substrates can act as ‘conserved moieties’ for metabolic flux dynamics. 125 
Cycling of co-substrate results in their turnover across their different forms e.g., NAD+ and 126 
NADH. The total pool-size involving all the different forms of a cycled metabolite, however, 127 
can approach a constant value at steady state. In other words, the total concentration of a 128 
cycled metabolite across its different forms at steady state would be given by a constant 129 
defined by the ratio of the influx and outflux rates (see Supplementary Information (SI), 130 
section 2 and 3). In other words, the cycled metabolite would become a ‘conserved moiety’ 131 
for the rest of the metabolic system and can have a constant ‘pool size’. Supporting this, 132 
temporal measurement of specific co-substrate pool sizes shows that ATP and GTP pools are 133 
constant under stable metabolic conditions, but can rapidly change in response to external 134 
perturbations, possibly through inter-conversions among pools rather than through 135 
biosynthesis (30).  136 
 137 
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Co-substrate cycling introduces a limitation on reaction flux. To explore the effect of co-138 
substrate cycling on pathway fluxes, we first consider a didactic case of a single reaction. 139 
This reaction converts an arbitrary metabolite M0 to M1 and involves co-substrate cycling 140 
(Fig. 1A). For co-substrate cycling, we consider additional ‘background’ enzymatic reactions 141 
that are independent of M0 and can also convert the co-substrate (denoted EA on Fig. 1A). We 142 
use either irreversible or reversible enzyme dynamics to build an ordinary differential 143 
equation (ODE) kinetic model for this reaction system and solve for its steady states 144 
analytically (see Methods and SI, section 3). In the case of using irreversible enzyme kinetics, 145 
we obtain that the steady state concentration of the two metabolites, M0 and M1 (denoted as 146 
m0 and m1) are given by: 147 
 148 
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   (Eq. 1) 149 

  150 
where kin and kout denote the rate of in-flux of M0, and out-flux of M1, either in-and-out of the 151 
cell or from other pathways, and Atot denotes the total pool size of the cycled metabolite (with 152 
the different forms of the cycled metabolite indicated as A0 and A1 in Fig. 1A). The term α is 153 
a positive expression comprising Atot, and the kinetic parameters of the enzymes in the model 154 
(see SI). The parameters Vmax,Ea and Vmax,E0 are the maximal rates (i.e. Vmax = kcat⋅Etot) for the 155 
enzymes catalysing the conversion of A0 and M0 into A1 and M1 (enzyme E0), and the 156 
turnover of A1 into A0 (enzyme Ea), respectively, while the parameters Km,Ea and Km,E0  are the 157 
individual or combined Michaelis-Menten coefficients for these enzymes’ substrates (i.e. for 158 
A0 and M0 and A1, respectively). The steady states for the model with all enzymatic 159 
conversions being reversible, and for a model with degradation and synthesis of A0 and A1, 160 
are given in the SI. The steady state solutions of these alternative models are structurally akin 161 
to Eq. 1, and do not alter the qualitative conclusions we make in what follows. 162 

A key property of Eq. 1 is that it contains terms in the denominator that involve a 163 
subtraction. The presence of these terms introduces a limit on the parameter values for the 164 
system to attain a positive steady state. Specifically, we obtain the following conditions for 165 
positive steady states to exist: 166 
 167 

kin < Vmax,E0  and  kin < Atot ·Vmax,Ea / (Km,Ea + Atot)  (Eq. 2) 168 
 169 
Additionally, the ‘shape’ of Eq. 1 indicates a ‘threshold effect’ on the steady state value of 170 
m0, where it would rise towards infinity as kin increases towards the lower among the limits 171 
given in Eq. 2 (see Fig. 1B).  172 

Why does Eq. 1 show this specific form, leading to these limits? We find that this is a 173 
direct consequence of the steady state condition, where metabolite production and 174 
consumption rates need to be the same at steady state. In the case of co-substrate cycling, the 175 
production rate of M0 is given by kin, while its consumption rate is a function of the 176 
concentration of A0 and the Vmax,E0. The concentration of A0 is determined by its re-generation 177 
rate (which is a function of Km,EA and Vmax,Ea) and the pool size (Atot). This explains the 178 
inequalities given in Eq. 2 and shows that a cycled co-substrate, when acting as a conserved 179 
moiety, creates the same type of limitation (mathematically speaking) on the flux of a 180 
reaction it is involved in, as that imposed by the enzyme catalysing that reaction (E0 in this 181 
example) (see Fig. 1C&D). We also show that considering the system shown in Fig. 1A as an 182 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.05.506656doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.05.506656
http://creativecommons.org/licenses/by-nc/4.0/


 5

enzymatic reaction without co-substrate cycling leads to only the constraint kin < Vmax,E0, 183 
while when considering it as a non-enzymatic reaction with co-substrate cycling only, the 184 
constraint kin < Atot ·Vmax,Ea / (Km,Ea + Atot) becomes the sole limitation on the system (see SI, 185 
section 3). In other words, the two limitations act independently.  186 

To conclude this section, we re-iterate its main result. The flux of a reaction involving 187 
co-substrate cycling is limited either by the kinetics of the primary enzyme mediating that 188 
reaction, or by the turnover rate of the co-substrate. The latter is determined by the co-189 
substrate pool size and the kinetics of the enzyme(s) mediating its turnover. 190 

 191 
Co-substrate cycling causes a flux limit on linear metabolic pathways. We next 192 
considered a generalised, linear pathway model with n+1 metabolites and arbitrary locations 193 
of reactions for co-substrate cycling, for example as seen in upper glycolysis (Fig. S1). In this 194 
model, we only consider intra-pathway metabolite cycling, i.e. the co-substrate is consumed 195 
and re-generated solely by the reactions of the pathway. Here, we show results for this model 196 
with 5 metabolites as an illustration (Fig. 2A), while the general case is presented in the SI 197 
section 4.  198 

We find the same kind of threshold dynamics as in the single reaction case. When kin 199 
is above a threshold value, the metabolite M0 accumulates towards infinity and the system 200 
does not have a steady state (Fig. 2B). A numerical analysis, as well as our analytical 201 
solution, reveals that the accumulation of metabolites applies to all metabolites upstream of 202 
the first reaction with co-substrate cycling (Fig. 2C and SI section 4). Additionally, 203 
metabolites downstream of the cycling reaction accumulate to a steady state level that does 204 
not depend on kin (Fig. 2C and Fig. S2). In other words, pathway output cannot be increased 205 
further by increasing kin beyond the threshold. Finally, as kin increases, the cycled metabolite 206 
pool shifts towards one form and the ratio of the two forms approaches zero (Fig. 2C).   207 

An analytical expression for the threshold for kin, like shown in Eq. 2, could not be 208 
derived for linear pathways with n > 3, but our analytical study indicates that (i) the threshold 209 
is always linked to Atot and enzyme kinetic parameters, and (ii) the concentration of all 210 
metabolites upstream (downstream) to the reaction coupled to metabolite cycling will 211 
accumulate towards infinity (a fixed value) as kin approaches the threshold (see SI section 4). 212 
In Figure 2, we illustrate these dynamics with simulations for a system with n=4.  213 

We also considered several variants of this generalised linear pathway model, 214 
corresponding to biologically relevant cases as shown in Fig. S1. These included (i) intra-215 
pathway cycling of two different metabolites, as seen with ATP and NADH in combined 216 
upper glycolysis and fermentation pathways (Fig. S3, SI section 5), (ii) different 217 
stoichiometries for consumption and re-generation reactions of the cycled metabolite, as seen 218 
in upper glycolysis (Fig. S4, SI section 6), and (iii) cycling of one metabolite interlinked with 219 
that of another, as seen in nitrogen assimilation (Fig. S5, SI section 7). The results in the SI 220 
confirm that all these cases display similar threshold dynamics, where the threshold point is a 221 
function of the co-substrate pool size and the enzyme kinetics. 222 
 223 
Cycled metabolite related limit could be relevant for specific reactions from central 224 
metabolism. Based on flux values that are either experimentally measured or predicted by 225 
flux balance analysis (FBA), many reactions from the central carbon metabolism are shown 226 
to have lower flux than expected from the kinetics of their immediate enzymes (31). In other 227 
words, these reactions carry fluxes below the first limit identified above in Eq. 2. While 228 
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substrate limitation and thermodynamic effects can partially explain such lower flux in some 229 
cases (31), the presented theory suggests that limitation due to co-substrate turnover could 230 
also be a contributing factor.  231 

To explore this possibility, we re-analysed the flux values compiled previously (31, 232 
32) and focussed solely on reactions that are linked to ATP, NADH, or NADPH pools (see 233 
Methods and Supplementary File 1). The resulting dataset contained fluxes, substrate 234 
concentrations, and enzyme levels for 45 different reactions determined under 7 different 235 
conditions along with turnover numbers and kinetic constants of the corresponding enzymes. 236 
In total, we gathered 49 combinations of enzyme-flux-kcat values with full experimental data 237 
and 259 combinations with only FBA-predicted flux values. We compared the flux values 238 
that would be expected from the primary enzyme limit identified above, under all conditions 239 
analysed (Fig. 3A), and in addition checked whether the saturation effect of the primary 240 
substrate could explain the difference (Fig. 3B). We found that in both cases, about 80% of 241 
these reactions carry flux lower than what is expected from enzyme kinetics (Fig. S6), 242 
suggesting that the limits imposed by co-factor dynamics might be constraining the flux 243 
further. The low number of the cases where the flux exceeds the limit might be due to 244 
uncertainties in measurement of flux, enzyme or substrate level. 245 

To further support the hypothesis that co-substrate turnover dynamics contribute to 246 
the flux limitation, we checked the relation between fluxes and co-substrate pool sizes, which 247 
change among different conditions. For both measured and FBA-predicted fluxes, we find 248 
that several reactions show significant correlation between flux and co-substrate pool size 249 
(see Table S1, SI section 8). In the case of FBA-predicted fluxes, however, we note that these 250 
results can be confounded due to additional, flux-to-flux correlations and correlations 251 
between pool sizes and growth rate. Among reactions with measured fluxes, the two reactions 252 
with high correlation to pool size are those mediated by malate dehydrogenase (mdh), linked 253 
with NADH pool, and phosphoglycerate kinase (pgk), linked with the ATP pool.  254 
 255 
Co-substrate cycling allows regulation of branch point fluxes. In addition to its possible 256 
constraining effects on fluxes, we wondered if co-substrate dynamics can offer a regulatory 257 
element in cellular metabolism. In particular, co-substrate cycling can commonly 258 
interconnect two independent pathways, or pathways branching from the same upstream 259 
metabolite, where it could influence flux distributions among those pathways. To explore this 260 
idea, we considered a model of a branching pathway, with each branch involving a different 261 
co-substrate, A and B (Fig. 4A and SI section 8). This scenario is seen in synthesis of certain 262 
amino acids that start from a common precursor but utilise NADH or NADPH, for example 263 
Serine and Threonine.  264 

We hypothesised that regulating the two co-substrate pool sizes, Atot and Btot, could 265 
allow regulation of the fluxes on the two branches. To test this hypothesis, we run numerical 266 
simulations with different co-substrate pool sizes and influx rates into the branch point. We 267 
found that the ratio of fluxes across the two branches can be regulated by changing the ratio 268 
of Atot to Btot (Fig. 4B). The regulation effect is seen with a large range of kin values, but the 269 
threshold effect is still present with high enough kin values leading to loss of steady state and 270 
metabolite build up. In that case, the resulting metabolite build-up can affect either branch 271 
depending on which co-substrate has the lower pool size (see upper corner regions on Fig. 272 
4B). There is also a regime of only the upstream, branch point metabolite building-up, but 273 
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this happens only when all reactions are considered as reversible and the extent of it depends 274 
on turnover rates of the two co-substrates (Fig S7 and SI section 8). 275 

In the no-build-up, steady state regime, changing the pool size ratio of the two co-276 
substrates causes a change in fluxes and metabolite levels, The change in flux ratio is of the 277 
same order as the change in pool size ratio (Fig. 4C & D), while the change in the ratio of 278 
metabolite levels is in general less. This relation between pool size ratio and flux ratio on 279 
each branch is unaffected by the value of kin. We also evaluated the level of regulation that 280 
can be achieved by varying the turnover rates of A and B. The flux regulation effect in this 281 
case is weaker, unless the difference in the turnover rates is large and the influx rate is close 282 
to the threshold (Fig. S8). 283 

 284 
Inter-pathway co-substrate cycling limits maximum influx difference and allows for 285 
correlating pathway outfluxes despite influx noise. We next considered a simplified model 286 
of two independent pathways interconnected by a single co-substrate pool (Fig. 5A and SI 287 
section 9). This model can represent several different processes in metabolism, for example 288 
the coupling between the TCA cycle and the respiratory electron transfer chain, through 289 
NADH generation and consumption respectively, or the coupling between the pentose 290 
phosphate pathway and some amino acid biosynthesis pathways (notably Methionine), 291 
through NADPH generation and consumption respectively (S1F). We hypothesised that such 292 
inter-pathway co-substrate cycling might cause the co-substrate related limit to relate to 293 
dfference in pathway influxes, rather than input into one pathway, and also balance the 294 
pathway output fluxes against influx fluctuations.  295 

To address the first hypothesis, we used analytical methods and explored the relation 296 
between the systems’ ability to reach steady state and system parameters. We found that, 297 
indeed, for this coupled system, the ability to reach steady state depends on the influx 298 
difference between two pathways (Fig. S9). This dependence is given by a composite 299 
function of the total pool size and the kinetic parameters relating to pathway-independent 300 
turn-over of the co-substrate (see SI, section 10).  301 

To test the second hypothesis about the output balancing, we considered the 302 
correlation of the steady-state outputs of the pathways with random fluctuations in their 303 
influx (Fig. 5B). As the pool size decreases, the system reaches a point where there is a 304 
transition from anti-correlation to high correlation in product output (blue to yellow region in 305 
Fig. 5B). At low pool sizes, pathway outputs are fully correlated despite significant 306 
fluctuation in pathway influx (Fig. 5C, D). Within this correlated regime, we identified two 307 
different sub-regimes. The first is a regime where the metabolite concentrations stay 308 
relatively constant despite the influx noise (Fig 5C). This regime arises because the influx 309 
fluctuations are occurring at a much faster rate than the pathway kinetics and the system is 310 
rather non-responsive to influx noise. In a second regime, the influx noise is at time scales 311 
comparable to pathway kinetics. Here, the metabolite concentrations can readily change with 312 
the influx changes, and the system is ‘responsive’, yet the output levels are still correlated 313 
(Fig. 5D). This regime is directly a result of co-substrate cycling dynamics. Because the 314 
turnover of co-substrate is essentially coupling the two pathways, their outputs become 315 
directly correlated. This effect does not depend on whether pathway reactions are modelled 316 
as reversible or irreversible, but on the rate of the assumed background, i.e. pathway-317 
independent turnover of the co-substrate (Fig. S10).  318 
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These results show that coupling by co-substrate cycling can introduce a limit on 319 
influxes of independent pathways or metabolic processes. Furthermore, such coupling can 320 
allow high correlation in the pathway outputs, despite significant noise in the inputs of those 321 
pathways. These effects are most readily seen where the turnover of the coupling co-substrate 322 
by other processes is low. We note that an example case for such a scenario is the coupling of 323 
respiration and oxidative phosphorylation, where transmembrane proton cycling takes the 324 
role of the cycled co-substrate (33).  325 
 326 
CONCLUSIONS 327 
We presented a mathematical analysis of metabolic systems featuring co-substrate cycling 328 
and showed that such cycling introduces a threshold effect on system dynamics. As the 329 
pathway’s influx rate, kin, approaches a threshold value, the steady state concentrations of 330 
metabolites that are upstream of a reaction linked to co-substrate cycling, increase towards 331 
infinity and the system cannot reach steady state. Specifically, for reactions involving co-332 
substrates, there are two thresholds on influx rate, one relating to the kinetics of the enzyme 333 
directly mediating that reaction, and another relating to the kinetics of the enzymes mediating 334 
the turnover of the co-substrate and the pool size of that co-substrate.  335 

This second, additional constraint arising from co-substrate cycling can be directly 336 
relevant for cell physiology. We particularly note that this threshold can be highly dynamic, 337 
and condition- and cell-dependent. When cells have a permanently or occasionally lowered 338 
total co-substrate pool size (i.e. lower Atot), or when they are placed under challenging 339 
conditions (e.g. high carbon- or nitrogen-source concentrations) causing higher kin values 340 
across various pathways, their metabolic systems can be close to the threshold presented here. 341 
While both kin and Atot can be adjusted in the long term, for example by reducing substrate 342 
transporter expression or increasing co-substrate biosynthesis, there can be short term impact 343 
on cells experiencing significant flux limitations and metabolite accumulations. 344 
 345 
These results could contribute to our understanding of two commonly observed metabolic 346 
dynamics that arise under increasing or high substrate concentrations, and that are shown to 347 
cause either ‘substrate-induced death’ (24) or ‘overflow metabolism’. The latter usually 348 
refers to a respiration-to-fermentation switch under respiratory conditions (e.g. the Warburg 349 
and Crabtree effects (3, 4, 12, 34)), but other types of overflow metabolism, involving 350 
excretion of amino acids and vitamins, has also been observed (6, 35). Several arguments 351 
have been put forward to explain these observations, including osmotic effects arising from 352 
high substrate concentrations causing cell death and limitations in respiratory pathways or 353 
cell’s protein resources causing a respiration-to-fermentation switch (4, 12, 13).  354 

Notwithstanding the possible roles of these processes, the presented theory leads to 355 
the hypothesis that both substrate-induced death and metabolite excretions could relate to 356 
increasing substrate influx rate reaching close to the limits imposed by co-substrate 357 
dynamics. There is experimental support for this hypothesis in the case of both observations. 358 
Substrate-induced death and associated mutant phenotypes are linked to the dynamics 359 
associated with ATP regeneration in glycolysis (22-24). Based on that finding, it has been 360 
argued that cells aim to avoid the threshold dynamics through allosteric regulation of those 361 
steps of the glycolysis that involve ATP consumption (23). In the case of respiration-to-362 
fermentation switch, it has been shown that the glucose influx threshold, at which 363 
fermentative overflow starts, changes upon introducing additional NADH conversion 364 
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reactions in both yeast and E. coli populations (36, 37). In another supportive case, sulfur-365 
compound excretions are linked to alterations in NAD(P)H pool through changes in the 366 
amino acid metabolism (38, 39).  367 

Dynamical thresholds relating to co-substrate pools would be relevant for all co-368 
substrates, and not just for ATP or NADH, which have been the focus of most experimental 369 
studies to date. We would expect that altering kinetics of enzymes involved in co-substrate 370 
cycling can have direct impact on cell physiology, and in particular on metabolic excretions. 371 
This prediction can be tested by exploring the effect of mutations on enzymes linked to co-372 
substrate consumption and production, or by altering co-substrate pool sizes and assessing 373 
effects of such perturbations on the dynamics of metabolic excretions. These tests can be 374 
experimentally implemented by introducing additional enzymes specialising in co-substrate 375 
consumption or production (e.g. ATPases, oxidases, or other) and controlling their 376 
expression. It would also be possible to monitor co-substrate pool sizes in cells in real time 377 
by using fluorescent sensors on key metabolites such as ATP or glutamate, or by measuring 378 
autofluorescence of certain pool metabolites, such as NAD(P)H, under alterations to influx 379 
rate of glucose or ammonium.  380 
 381 
Besides acting as a flux constraint, we find that co-substrate pools can also allow for 382 
regulation of pathway fluxes through regulation of pool size or turnover dynamics. We find 383 
that such regulation can take the form of balancing inter-connected pathways, thereby 384 
ensuring correlation between outputs of different metabolic processes, or regulating flux 385 
across branch points. Regulation of fluxes through co-substrate pools can act to adjust 386 
metabolic fluxes at time scales shorter than possible via gene regulation, and possibly at 387 
similar time scales as with allosteric regulation – especially when considering pool size 388 
alterations through exchange among connected pools. Possibility of such a regulatory role has 389 
been indicated experimentally, where total ATP pool size is found to change when yeast cells 390 
are confronted with a sudden increase in glucose influx rate (30). In that study, the change in 391 
the ATP pool is found to link to the purine metabolism pathways, which are linked to several 392 
conserved moieties; GTP, ATP, NAD, NADP, S-adenosylmethionine, and Coenzyme A. 393 
These findings suggest that cells could dynamically alter pool sizes associated with different 394 
parts of metabolism, limiting flux through some pathways, while allowing higher flux in 395 
others, and thereby shifting the metabolites from the latter to the former. This could provide a 396 
dynamic self-regulation and the pool sizes of key co-substrates could be seen as ‘tuning 397 
points’ controlling a more complex metabolic system. We thus propose further experimental 398 
analyses focusing on co-substrate pool sizes and turnover dynamics to understand and 399 
manipulate cell physiology.  400 
 401 
METHODS  402 
Model of a single reaction with co-substrate cycling. The metabolic system shown in Fig. 403 
1A, comprises the following biochemical reactions:  404 
 405 

���
�� �� 

 406 

��
�
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 407 
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� 
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 408 

� � 
�    (Eq. 4) 409 

 410 
where metabolites are denoted by Mi and the different forms of the co-substrate are denoted 411 
by Ai. We assume additional conversion between A1 and A0, mediated through other 412 
enzymatic reactions. The parameters kin, and kout denote the in- and out- flux of M0 and M1 413 
respectively, from and to other pathways or across cell boundary. The ordinary differential 414 
equations (ODEs) for the system shown in Eq. 4 (and Fig. 1A), using irreversible Michaelis-415 
Menten enzyme kinetics would be: 416 

 417 
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   (Eq. 5) 424 

 425 
where m0 and a0 denote the concentrations of M0 and A0 respectively, Km denotes a composite 426 
parameter of the Michaelis-Menten coefficients of the enzyme for its substrates, and Vmax is 427 
the total enzyme concentration times its catalytic rate (i.e. E = kcat⋅Etot). We further have the 428 
conservation relation a0 + a1 = Atot, where Atot is a constant. This assumption would be 429 
justified when influx of any form of the cycled metabolite into the system is independent of 430 
the rest of the metabolic system (see further discussion and analysis in SI section 2). The 431 
steady states of Eq. 5 can be found by setting the left side equal to zero and performing 432 
algebraic re-arrangements to isolate each of the variables (see SI). The resulting analytical 433 
expressions for steady state metabolite concentration are shown in Eq. 1, and in the SI for this 434 
model with reversible enzyme kinetics, as well as for other models.  435 
 436 
Symbolic and numerical computations. For all symbolic computations, utilised in finding 437 
steady state solutions and deriving mathematical conditions on rate parameters, we used the 438 
software Maple 2021, as well as theoretical results presented in (40). To run numerical 439 
simulations of select systems, we used Python packages with the standard solver functions. 440 
All numerical simulations were performed in the Python environment. The main model 441 
simulation files relating to Figures 4 and 5 are provided as Supplementary Files 2 and 3, 442 
while all remaining simulation and analysis scripts are made available at a dedicated Github 443 
page: https://github.com/OSS-Lab/CoSubstrateDynamics. 444 
 445 
Reaction fluxes and enzyme kinetic parameters. To support the model findings on co-446 
substrate pools acting as a possible limitation on reaction fluxes, we analysed measured and 447 
FBA-derived flux data collated previously (31, 32). We focussed our analyses on reactions 448 
involving co-substrates only. We compared measured (or FBA-derived) fluxes to flux 449 
thresholds based on enzyme kinetics (i.e., first condition in Eq. 2). To calculate the latter, we 450 
used data on enzyme kinetics and levels as collated in (31), which is based on the BRENDA 451 
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database (41) and proteomics-based measurements (42). We note that most available kinetic 452 
constants for enzymes have been obtained under in vitro conditions, which can be very 453 
different from those of the cytosol (43). When comparing flux levels against co-substrate 454 
pool sizes, we used the matching, measured pool-sizes from (32). All the data used in this 455 
analysis is provided in the Supplementary File 1, and through a dedicated Github page, which 456 
contains additional analysis scripts: https://github.com/OSS-Lab/CoSubstrateDynamics. 457 
 458 
SUPPLEMENTARY FILES 459 
Supplementary Information. This file contains all of the supplementary figures, the 460 
mathematical analyses of the reaction systems and corresponding analytical solutions, and the 461 
descriptions of the simulated models. 462 
 463 
Supplementary File 1. Enzyme kinetics, flux, metabolite concentration, and enzyme 464 
abundance data associated with flux analyses. 465 
 466 
Supplementary File 2. Python implementation of branched pathway model, presented in 467 
Figure 4. 468 
 469 
Supplementary File 3. Python implementation of connected pathway model, presented in 470 
Figure 5. 471 
 472 
FIGURES 473 
 474 

 475 
Figure 1. (A) Cartoon representation of a single irreversible reaction with co-substrate 476 
cycling (see SI for other reaction schemes). The co-substrate is considered to have two forms 477 
A0 and A1. (B) Concentrations of M0 (red) and M1 (green) and A0/A1 ratio (blue) as a function 478 
of time. At t = 500, the parameters are switched from the white dot in panel (C) (where a 479 
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steady state exists) to the black dot (where we see continual build-up of M0 and decline of A0 480 
without steady state). (C & D) Heatmap of the steady state concentration of M0 as a function 481 
of the total co-substrate pool size (Atot) and inflow flux (kin). White area shows the region 482 
where there is no steady state. On both panels, the dashed line indicates the limitation from 483 
the primary enzyme, kin < Vmax,E0, and the solid line indicates the limitation from co-substrate 484 
cycling, kin < Atot ·Vmax,EA / (Km,EA + Atot). In panel (C), there is a range of Atot values for which 485 
the first limitation is more severe than the second. In contrast, in panel (D), the second 486 
limitation is always more severe than the first. In (B & C) the parameters used for the 487 
primary enzyme (for the reaction converting M0 into M1) are picked from within a 488 
physiological range (see Supplementary File 1) and are set to: Etot = 0.01mM, kcat = 100 s-1, 489 
Km,E0 = Km,EA =50μM, while kout is set to 0.1s-1. The Etot and kcat for the co-substrate cycling 490 
enzyme are 1.2 times those for the primary enzyme. In panel (D) the parameters are the same 491 
except for and Etot and kcat for the co-substrate cycling enzyme, which are set to 0.7 times 492 
those for the primary enzyme. 493 
 494 

 495 
Figure 2. (A) Cartoon representation of a chain of reversible reactions with co-substrate 496 
cycling occurring solely inter-pathway. The co-substrate is considered to have two forms A0 497 
and A1. (B) Heatmap of the steady state concentration of M0 as a function of the total 498 
metabolite pool size (Atot) and inflow rate constant (kin). White area shows the region where 499 
there is no steady state. The dashed and solid lines indicate the limitations arising from 500 
primary enzyme (E1 in this case) and co-substrate cycling, respectively, as in Fig. 1. (C) 501 
Concentrations of M0-4, and A0/A1 ratio as a function of time (with colors as indicated in the 502 
inset). At t = 1000, the parameters are switched from the white dot in panel (B) (where a 503 
steady state exists) to the black dot (where we see build-up of all substrates that are produced 504 
before the first co-substrate cycling reaction, and continued decline of A0). The parameters 505 
used are picked from within a physiological range (see Supplementary File 1) and are set to: 506 
Etot = 0.01mM, kcat = 100 s-1, Km =50μM, for all reactions, and kout = 0.1s-1. 507 
 508 
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 509 
Figure 3. (A) Measured and FBA-predicted flux values (from (31, 32)) plotted against the 510 
calculated primary enzyme kinetic threshold (first part of Eq. 1). Notice that there are 7 511 
points for each reaction, corresponding to the different experimental conditions under which 512 
measurements or FBA modelling was done (see Supplementary File S1 for data, along with 513 
reaction names and metabolites involved). (B) Measured flux values (from (31, 32)) plotted 514 
against the calculated primary enzyme kinetic threshold (first part of Eq. 1) adjusted by 515 
substrate affinity of the enzyme. Note that the flux data shown here is a subset of the flux 516 
data presented in (A), focusing only on those where the main substrate concentration was 517 
experimentally measured and the relevant Km is known. For both panels, the solid line 518 
indicates the equivalence of the two values and the dashed lines indicate 10% interval on this, 519 
as a guide to the eye. Point color indicates the nature of co-substrate involved and fill state 520 
indicates the data source (as shown on the inset).   521 
 522 

 523 
Figure 4: (A) Cartoon representation of two branching pathways from the same upstream 524 
metabolite. The two branches are linked to separate co-substrate pools, A and B. Note that 525 
pathway independent turnover of the co-substrates is included in the model (see 526 
Supplementary File 2). (B) The pathways’ flux ratio (i.e. flux into M2,2 divided by flux into 527 
M2,1) shown in colour mapping, against the ratio of co-substrate pool sizes, Atot and Btot, and 528 
the influx rate, kin, into the upstream metabolite. In the block colour areas, the system has no 529 
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steady state and the indicated metabolite(s) M0 and one of the metabolites M1,2 or M1,1 530 
accumulate towards infinity. (C) Concentrations of upstream and branch-endpoint 531 
metabolites over time, coloured as shown in the inset of the panel. The solid lines show 532 
results using parameters indicated by the white dot in panel (B), where Btot > Atot, while the 533 
dashed lines show results using parameters indicated by the black dot in panel (B), where Atot 534 
> Btot. For both simulations, all kinetic parameters are arbitrarily set to 1, apart from the 535 
pathway-independent co-substrate recycling (Vmax,Ea) that is set to 10 (see Supplementary File 536 
2).   537 
 538 

 539 
Figure 5: (A) Cartoon representation of two pathways coupled via the same co-substrate 540 
cycling. The two forms of the co-substrate are indicated as A0 and A1. It is converted from A0 541 
to A1 on the lower pathway, and from A1 to A0 in the upper pathway. The presented results are 542 
for a model with reversible enzyme kinetics, while the results from a model with irreversible 543 
enzyme kinetics are shown in Fig. S9. (B) Correlation coefficient of the two pathway product 544 
metabolites, M1,2 and M1,1, as a function of the total amount of co-substrate (Atot) and the 545 
extent of fluctuations in the two pathway influxes, kin,1 and kin,2. The influx fluctuation is 546 
characterised by a waiting time that is exponentially distributed with mean τ, after which the 547 
log ratio of the kin values is drawn from a standard normal distribution. The mean of the kin 548 
values is set to be 0.1 and the pathway-independent cycling occurs at a much lower rate 549 
compared to the other reactions (see Supplementary File 3).  (C) Concentrations of 550 
metabolites M1,2 (green) and M1,1 (magenta), pathway influx ratio (pink), and A0/A1 ratio 551 
(blue) as a function of time. The simulation is run with parameters corresponding to the grey 552 
dot in (B) where the products are correlated, and the rate of kin fluctuations is on a similar 553 
timescale to the other reactions. The system is largely unresponsive to the noise.  (D) 554 
Concentrations of metabolites M1,2 (green) and M1,1 (magenta), pathway influx ratio (pink), 555 
and A0/A1 ratio (blue) as a function of time. The simulation is run with parameters 556 
corresponding to the black dot in (B) where the products are correlated, but the fluctuations 557 
in kin values occur at a much lower rate than the other reactions. For both simulations, all 558 
kinetic parameters are arbitrarily set to 1, apart from the pathway-independent co-substrate 559 
recycling (Vmax,Ea) that is set to 0.01 (see Supplementary File 3).   560 
 561 
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