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Abstract

Complex diseases are generally caused by disorders of biological networks and/or 

mutations in multiple genes. Network theory provides useful tools to study the 

underlying laws governing complex diseases. Within this framework, comparisons of 

network topologies, including the node, edge, and community, between different 

disease states can highlight key factors within these dynamic processes. Here, we 

propose a differential modular analysis approach that integrates protein-protein 

interactions with gene expression profiles for modular analysis, and introduces 

inter-modular edges and date hubs to identify the “core network module” that 

quantifies the significant phenotypic variation. Then, based on this core network 

module, key factors including functional protein-protein interactions, pathways, and 

drive mutations are predicted by the topological-functional connection score and 

structural modeling. We applied the approach to analyze the lymph node metastasis 

(LNM) process in breast cancer. The functional enrichment analysis showed that both 

inter-modular edges and date hubs play important roles in cancer metastasis and 

invasion, and in metastasis hallmarks. The structural mutation analysis suggested that 

the LNM of breast cancer may be the outcome of the dysfunction of rearranged during 

transfection (RET) proto-oncogene-related interactions and the non-canonical calcium 

signaling pathway via an allosteric mutation of RET. We believe that the proposed 

method can provide new insights into disease progression such as cancer metastasis.

Author summary

Metastasis is the hallmark of cancer that is responsible for the greatest number of 

cancer-related deaths. However, it remains poorly understood. PPI networks not only 

provide a static picture of cellular function and biological processes, but also have 

emerged as new paradigms in the study of the dynamic process of disease progression, 

including cancer metastasis. Herein, a network-based strategy was proposed based on 
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the integration of expression profiles with protein interactions, by filtering with “date 

hubs” and “inter-modular edges”, demonstrating that different network modules may 

provide robust predictors to represent the dynamic mechanisms involved in metastasis 

formation. Furthermore, the mapping of protein structure and mutation data on the 

network module level provides insight into signaling mechanisms; helps understand 

the mechanism of disease-related mutations; and helps in drug discovery. The 

application of our method to study the LNM in breast cancer highlights network 

modules defining protein communities that respond to therapeutics, and the 

implications of detailed structural and mechanistic insight into oncogenic activation 

and how it can advance allosteric precision oncology.

Introduction

Complex diseases, especially cancers, occur under the combined effects of many 

factors, and are generally considered to be caused by the disorder of molecular 

networks or biological systems.[1] Metastasis is the hallmark of cancer and it is 

responsible for the greatest number of cancer-related deaths,[2, 3] constituting the 

primary cause of death for >90% of patients with cancer. The activation of cancer 

metastasis has three distinguishing features: location-dependence, environmental 

interaction, and a dynamic selection process. Regional lymph nodes (LNs) are often 

the first sites of breast cancer metastasis and the first to encounter the host immune 

surveillance mechanisms intended to destroy foreign invaders. Lymph node 

metastases (LNMs) in cancer patients are associated with tumor aggressiveness, 

poorer prognoses, and the recommendation for systemic therapy.[4] For example, 

LNM is one of the most important independent risk factors that can negatively affect 

the prognosis of breast cancer.[5] Due to the dynamic nature of LNMs,[6] systems 

biology-based approaches may provide useful tools for understanding their molecular 

mechanisms and guiding treatment.

Benefiting from the advances of network science and high-throughput biomedical 

technologies, studying biological systems from network biology has attracted much 
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attention in recent years. Networks have long been central to our understanding of 

biological systems, in the form of linkage maps among genotypes, phenotypes, and 

the corresponding environmental factors.[7] With the tremendous increase in human 

protein interaction data, the protein-protein interaction network (PPIN) approach 

commonly used to understand the molecular mechanisms of disease, and in particular 

to analyze cancers.[8] However, PPINs merely provide a static snapshot of the 

molecular interactions within a tissue, whereas biological systems are highly dynamic. 

Thus, differential network analysis can be used to study the dynamic properties of 

networks related to cancer metastasis and to highlight network changes between 

conditions.[9] Differential network methods developed to date differ in the entities 

and measures that they compare.[10] Node-based methods focus on differences in 

node-related measures, such as node connectivity.[11] Interaction-based methods 

focus on differences in the context-specific weights associated with each 

interaction.[12] Furthermore, integrating co-expression data with differential network 

analysis can reveal the dynamic context of gene expression profiles.[13, 14] Such 

differential co-expression networks are useful tools to identify changes in response to 

an external perturbation, such as mutations predisposed to cancer progression, and to 

identify changes in the activity of gene expression regulators or signaling.

Three-dimensional protein structural data at the molecular level are pivotal for 

successful precision medicine. Such data are crucial not only for discovering drugs 

that act to block the active site of the target mutant protein but also for clarifying to 

the patient and the clinician how the mutations harbored by the patient work.[15] In 

oncological research, structure-based methods including driver prediction, 

computational mutagenesis, (off)-target prediction, binding site prediction, virtual 

screening, and allosteric modulation analysis, can be highly beneficial for addressing 

the diversity of cancer hallmarks.[16] Recently, a structure-function-based approach 

was shown to improve the prediction of drug sensitivity in Epidermal growth factor 

receptor (EGFR)-mutant non-small cell lung cancer.[17] Actually, linking structural 

information with PPI network or biological pathway information is useful for 

predicting the genotype-phenotype relationship, providing insight into signaling 
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mechanisms, helping to understand the mechanism of disease-related mutations, and 

helping in drug discovery. Such an approach has been used for the detailed analysis of 

cancer and the cancer metastasis-related PPI binding interface,[18, 19] and to 

delineate the mechanism of oncogenic mutations and single nucleotide polymorphism 

mutations in inflammation and cancer.[20]

Worldwide, breast cancer is the leading cause of cancer-related deaths in 

women.[21] Despite the decline in breast cancer mortality and recent advances in 

targeted therapies and combinations for the treatment of metastatic diseases, 

metastatic breast cancer remains the second leading cause of cancer-related death 

among women in the United States.[22] The metastasis of breast cancer mainly occurs 

through the lymphatic system. Therefore, understanding the biological process and 

mechanism of LNM in breast cancer will help guide the treatment of breast cancer 

and improve the prognosis of patients.[23] Although several studies have focused on 

the identification of disease markers in metastatic breast cancer from the perspective 

of genome-wide expression profiles[24] and comparative analysis of PPI 

networks,[25] the molecular understanding of LNM in breast cancer is still very poor.

In this paper, based on the idea that network modules serve as a more robust 

indicator of cancer prognosis,[26, 27] we propose a differential modular analysis 

approach to identify key network modules correlated with LNM in breast cancer. 

Firstly, weighted PPI networks for non-LNM and LNM were constructed by 

incorporating human interactome and gene expression data. Then, based on network 

modular analysis, “inter-modular edges” and “date hubs” were introduced to detect 

the altered modularity of PPI networks, which may correspond to the key dynamic 

region in LNM. Finally, we evaluated the importance and potential application of the 

core network module by mutational structural analysis at both the edge and node 

levels. We hope that this study provided a novel perspective for the analysis of 

mutation effects to facilitate network-guided precision medicine. An overview of our 

approach is shown in Fig 1, and the source code used in this paper can be found at  

https://github.com/CSB-SUDA/DMA. 
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Fig 1. Overview of our approach. First, two weighted PPI networks for both LNM 

and non-LNM in breast cancer were constructed, whose topology is based on the 

STRING database and DEGs of LNM and non-LNM, weighted by the r-z 

transformation of co-expression data. Second, module analysis was performed for the 

two weighted PPI networks, and inter/intra-modular edges and date/party hubs, as 

well as KEGG, Reactome, and cancer hallmark enrichment analysis were introduced 

to compare the topology and biological functions of different modules. Third, the core 

network module for breast LNM was further characterized by assessing TFC scores 

for edges, structural modeling and mutation mapping, and GSEA enrichment analysis. 

Fourth, three key factors were predicted: allosteric mutations, key PPIs, and key 

pathways for LNM in breast cancer.
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Materials and Methods

Data collection and pre-processing
RNA-seq data on breast cancer (BRCA) from The Cancer Genome Atlas (TCGA) 

with clinical information were retrieved from UCSC XENA (https://xena.ucsc.edu/). 

According to the extent of the lymph node metastases (LNM) of the clinical 

information, BRCA patients were divided into N0 (non-LNM) and N+ (LNM) groups 

and missing information was discarded. Complete classification information is 

provided in Table 1. The value of expression was converted to log2(TPM+1). We 

selected the genes with the highest median absolute deviation of 75% in the 

expression profile screening mean, at least larger than 0.01. Data analysis was 

performed to analyze the differences between the N+ and N0 groups using the package 

“limma” in R, and P-value < 0.01 was set as the cut-off to screen for differentially 

expressed genes (DEGs).

Table 1. Group of BRCA samples for regional lymph node metastasis.

Extent of LNM The number of samples Group
null 2 discarded
N0 333 N0

N0(i-) 154 N0

N0(i+) 28 N0

N0(mol+) 1 N0

N1 126 N+

N1a 170 N+

N1b 33 N+

N1c 2 N+

N1mi 36 N+

N2 56 N+

N2a 64 N+

N3 26 N+

N3a 49 N+

N3b 3 N+

N3c 1 N+

NX 20 discarded
Footnote: TNM Classification of Malignant Tumors: N0, N0(i-), N0(i+), N0(mol+), N1, N1a, N1b, 
N1c, N1mi, N2, N2a, N3, N3a, N3b, N3c, and NX; N0 denotes the non-LNM group, and N+ 
denotes the LNM group. We discarded the means not participating in the group.
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To verify the prognostic prediction performance of LNM, Kaplan-Meier survival 

analysis and the log-rank test were performed to identify the prognostic significance 

of LNM between the N0 and N+ samples. Kaplan-Meier survival curves and log-rank 

tests were executed using the R packages “survival” and “survminer”. The mutation 

data of the corresponding sample using the MuTect2 pipeline were downloaded to 

compare the tumors to a pool of normal samples to find somatic variations. Somatic 

mutations were analyzed with the R package “maftools” and visualized in a waterfall 

plot.[28] 

Differential interaction networks construction
The two differential weighted PPI networks under specific conditions (non-LNM and 

LNM) were built with the following steps. First, the protein-protein interaction 

network for Homo sapiens was retrieved from the STRING database,[29] filtering 

interactions by a combined score > 0.4. Second, DEGs between N0 and N+ were used 

to screen the interactions to form the topological structures of the two target networks. 

Finally, the Pearson’s correlation coefficients (PCCs) between the gene expressions 

were transformed by Fisher r-z transformation,[30] and its absolute value as the 

weights of the two networks, defined as:

r =
∑𝐍

𝐢 =𝟏(𝐗𝐢 ― 𝐗)(𝐘𝐢 ― 𝐘)

∑𝐍
𝐢 =𝟏(𝐗𝐢 ― 𝐗) ∑𝐍

𝐢 =𝟏(𝐘𝐣 ― 𝐘)                           (1)

z = 𝟏
𝟐ln ( 

𝟏 + 𝐫
𝟏 ― 𝐫  )                             (2)

where Xi denotes the sample gene expressed value indexed i, and analogously for Yi, 

and X =  1n∑n
i=1 Xi (the gene expression mean value), and analogously for Y. The 

absolute value of z is the weight of interaction between i and j genes.

Differential modular analysis

Module detection

Integrated co-expression networks were then clustered using the multi-level 

modularity optimization algorithm.[31] The method is based on the modularity 

measure and a hierarchical approach, and the resolution parameter is set to 1. Here, 
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only modules larger 10 nodes were considered. Module detection was performed with 

the R package “igraph” and represented using Cytoscape.[32] Next, we calculated the 

similarity between two modules using the Jaccard similarity coefficient, defined as

𝐽(A,B) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| =  

|𝐴 ∩ 𝐵|
|𝐴| + |𝐵| ― |𝐴 ∩ 𝐵|                     (3)

where A and B are the node sets of two different modules.

Edge knockout experiment

In the edge knockout experiment, two commonly topological measures were 

calculated:[33] betweenness, which measures the information flow through networks; 

and the characteristic path length (CPL), which is the average of the shortest path 

between all nodes in a network. The change of the two topological measures was 

applied to systematically access the robustness of the network by removing the 

equivalent number of different edges.

Date and party hubs

The average Pearson’s correlation coefficient (aPCC) was calculated for each 

interaction in the PPI network based on the co-expression of two interacting genes. 

Then, two types of hub genes were defined as date hubs and party hubs with low and 

high aPCC values, respectively.[26, 34] Random sampling of the PCC was used to 

ascertain that the observed edges were nonrandom.

Topological-functional connection 

The topological-functional connection (TFC) was used for the prioritization of PPIs. 

The TFC is the integration of the edge betweenness and the gene ontology (GO) 

semantic similarity,[35] as a new edge measure:

𝑇𝐹𝐶 = ∑𝑁
𝑛=1

𝑇∗
𝑛 +  𝐹𝑛

𝑇∗
𝑛 +  𝐹𝑛 ― 2

∗ 100                   (4)

𝑇∗
𝑛 =

𝑇𝑛 ―  𝑀𝑖𝑛𝑇

𝑀𝑎𝑥𝑇 ― 𝑀𝑖𝑛𝑇
                        (5)

where N represents the number of interactions, and Tn and Fn represent the edge 
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betweenness and GO semantic similarity, respectively, of interaction n. Thus, the TFC 

score is proposed to identify key protein interactions by integrating network topology 

and biological characteristics.

Enrichment analysis
Four types of functional enrichment analysis were used in our work. To identify the 

significant biological pathways of each module, we used the R package 

“clusterProfiler”[36] to perform Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway enrichment.[37] Terms with an adjusted P-value < 0.01 were considered 

significant. Gene set enrichment analysis (GSEA) was performed to investigate the 

particular pathway across the whole expression profile, using the MSigDB 

database[38] and the R package “GSVA”.[39] Genes were sorted according to the 

logFC in the results of the N0 and N+ group difference analysis.

Unlike common Reactome enrichment analysis based on gene set, we performed 

another pathway enrichment based on interaction (or edge) annotations from the 

Reactome database.[40] The annotations are inferred between all protein components 

of a complex. To determine whether the gene set corresponded to cancer hallmarks, 

the hallmark annotations from the Catalogue of Somatic Mutations in Cancer 

(COSMIC) data resource were used.[41] Both of these enrichments were performed 

by using the R package “clusterProfiler.” Terms with a P-value < 0.05 were 

considered significant.

Structural modeling of protein-protein interactions
Protein structures were obtained from the Protein Data Bank (PDB). We used 

PRISM[42, 43] (Protein Interactions by Structural Matching) to predict the structures 

of protein-protein interactions (PPIs) and the effect of the mutations on interactions. 

Predicted protein complexes were ranked by FiberDock[44] according to their 

energies, and complexes with the lowest binding energy were selected to evaluate the 

effects of mutations on PPIs. Thus, the effect of a mutation on PPI is defined as:
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∆∆G = ∆∆Gmt ― ∆∆Gwt                       (6)

where ∆∆Gmt and ∆∆Gwt are the lowest binding energies of the mutant and 

wild-type complexes, respectively; and ∆∆G is the binding energy change caused by 

a single mutation.

Allosteric effects of mutations
The structure-based statistical mechanical model of allostery was used to obtain a 

direct estimate of the allosteric effects caused by the single mutation, by using 

AlloSigMA.[45] In the approach, two types of mutations were defined: UP-mutation, 

which models the situation of an actual mutation to a bulky residue with 

over-stabilizing effects on the local contact network; conversely, DOWN-mutation 

models the destabilization of the residue’s contact network similarly to Ala/Gly-like 

mutations. The allosteric free energy of the residue quantifies the strength and sign of 

allosteric communication associated with the mutation, where positive and negative 

signs correspond to a kinetic increase (local destabilization) and decrease (local 

stabilization), respectively. 

Results 

N0 and N+ PPI networks present different modular 

structures

According to the data in Table 1, 1579 differentially expressed genes (DEGs) were 

obtained, including 1,299 up-regulated and 280 down-regulated genes in N+ compared 

with N0. A volcano plot of the DEGs is shown in S1a Fig, in which MISP, BLVRA, 

RNF223, KRT8, PTK6, PQLC3, KRT18, BCL2L14, ETV6, and LMO4 were the 10 

most significantly differentially expressed genes. In addition, a Kaplan-Meier model 

for N0 and N+ was constructed, and we observed that the survival status of the lymph 

node metastasis group was significantly worse than that of the non-lymph node 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506724doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506724
http://creativecommons.org/licenses/by/4.0/


metastasis group, with a log rank test P-value < 0.0001 (S1b Fig). This result also 

confirmed that lymph node metastasis could be an independent predictor of survival 

in breast cancer.

Fig 2. Overview of modular structures and functions of LNM-related PPI 

networks. (a) Modular structure of the N0 network, where nodes are colored 

according to different modules. (b) Assignment flow to KEGG pathways from 

modules in the N0 to N+ networks, shown in a Sankey diagram. Each module is 

annotated by the three most significant pathways with colored beads, or by all related 

pathways if the enriched pathways number fewer than three. Shared pathways by the 

N0 and N+ modular networks are marked by green asterisks, and pathways colored by 

red and blue indicate cancer metastasis-related biological pathways. (c) Example of 
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ERBB2-related interactions in the modular structures between the N0 and N+ 

networks. Dashed red lines correspond to the observed interactions that locate 

between different modules of the N+ network and inside a module of the N0 network.

Based on these DEGs, the corresponding topological topology of the 

LNM-related PPI network was generated, with 1,516 nodes and 8,286 edges. The 

absolute value of the Pearson coefficient between the expressions in the N0 and N+ 

groups was introduced as network weights, and then two different weighted PPI 

networks for LNM-related PPI networks were finally constructed, defined as the N0 

and N+ PPI networks. As such, these two networks could preliminarily reflect the 

dynamic nature of the LNM process. Next, the modular detection algorithm was used 

to discover the sub-network structures and functions of the PPI networks. From a 

global perspective, the N0 and N+ PPI networks can be separated into 15 and 17 

modules (Fig 2a and S1c Fig), respectively. Almost all modules tend to rewire, and 

smaller modules can be obtained in the N+ PPI network. A heat map of module 

similarity further quantifies this result; that is, the topological properties of only three 

modules are preserved (Jaccard similarity > 0.6), but the remaining modules have 

been changed (S1d Fig).

The Sankey diagram in Fig 2b shows the assignment flow from N0 modules to N+ 

modules. To further compare the biology underlying the modular change, we 

examined their related biological pathways. We found that most cancer-occurrence 

and progression-related basic pathways were preserved (green asterisks), including 

purine metabolism, nucleotide excision repair, and spliceosome, as highlighted in blue 

font. Furthermore, some statistically significant pathways in the N0 modular network 

were not significant in the N+ state (highlighted in red font). Among these pathways, 

we found that most corresponded to signaling transformation and cancer metastasis. 

In particular, the imbalance of the calcium signaling pathway in breast cancer will 

lead to the migration, invasion, proliferation, tumorigenicity, or metastasis of cancer 

cells. The expression of some key proteins in breast cancer is closely related to its 

progression. For example, oncogenic receptor tyrosine kinase ERBB2 (also called 
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HER2) is overexpressed in approximately 20% of breast cancers, resulting in 

ligand-independent dimerization and activation. The preliminary modular analysis 

shows that ERBB2-ERBB3, ERBB2-RET, and ERBB2-RTK6 interactions are 

involved in the same module of the N0 network, but between different modules of the 

N+ network (Fig 2d). Due to the importance of ERBB2 in breast cancer, the change in 

ERBB2-related interactions during LNM may be useful as an indicator of breast 

cancer metastasis.

The comparison of the network modules of N0 and N+ PPI networks 

demonstrated that most biological functions are conserved during LNM, although 

some module evaluation was also detected. Accordingly, further study of these 

different modules will help us understand the LNM mechanism and facilitate the 

prediction of key modules, interactions, and genes involved in cancer metastasis.

Intermodular edges correspond to network signaling and 

cancer metastasis

To further characterize how modular structures change during LNM, we classified the 

edges or PPIs involved in dynamic changes into two types: 1) inter-modular edges, 

whose interacting nodes are located within the same module in the N0 PPI network, 

but within different modules in the N+ PPI network, or vice versa; and 2) 

intra-modular edges, in which the two interacting nodes are always located within the 

same module or between different modules. In all, 1,546 inter-modular edges and 

6,740 intra-modular edges were identified in the LNM-related network dynamic 

process. Topological and functional analyses of these edges were then performed in 

terms of edge knockout experiments, as well as Reactome pathway enrichment 

analysis based on edge annotation.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506724doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506724
http://creativecommons.org/licenses/by/4.0/


Fig 3. Topological and functional analysis of inter/intra-modular edges. (a) 

Network betweenness as a function of removing equivalent numbers of inter-modular 

and intra-modular edges. (b) The characteristic path length of the network as a 

function of removing equivalent numbers of inter-modular and intra-modular edges. 

Significantly enriched Reactome pathways of edges in the (c) inter-modular and (d) 

intra-modular groups. 

In the edge knockout experiment, we calculated the average betweenness and 

average shortest path of each remaining network by systematically removing two 

types of edges randomly based on the N0 network, with a gradient of 20 and 200 

repetitions. The average betweenness of the interaction network decreased more 

quickly by removing inter- rather than intra-modular edges (Fig 3a), while the average 

shortest path increased more quickly by removing inter- rather than intra-modular 
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edges (Fig 3b). Betweenness measures the information flow through networks, with 

high betweenness indicating high biological signaling ability. The characteristic path 

length (CPL) indicates the network entropy, meaning that a biological network system 

with a higher CPL is more chaotic. Both topological measures showed that their 

values were more sensitive to intermodular edges, indicating that inter-modular edges 

contributed more to maintaining the global connectivity of the network, and played 

key roles in network signaling.

  To identify specific biological functions, pathway enrichment of these two types 

of edges was performed based on “edge annotation” in the Reactome database. As 

shown in Fig 3c, inter-modular edges were significantly enriched with several cancer 

emergence- and development-related pathways, including the most significant 

VEGFA-VEGFR2 pathway, related to angiogenesis, followed by RET signaling, 

ERBB2 Activates PTK6 Signaling and Signaling by PDGF. On the other hand, 

significant Reactome pathways of the intra-modular edges are mainly involved in 

transport, metabolism, protein modification, growth and development, and signal 

communication, such as Endosomal Sorting Complex Required For Transport 

(ESCRT), Translocation of SLC2A4 (GLUT4) to the plasma membrane, 

VEGFR2-mediated vascular permeability, collagen biosynthesis, and modifying 

enzymes (Fig 3d). Together, the intermodular edges contributed to the major events 

implicated in the network signaling pathway and served as attractive targets for 

inhibiting LNM.[46]

Date hubs reveal the invasion and metastasis hallmarks

Topological analysis of the PPI networks revealed that most of the proteins were 

connected to relatively few, highly connected proteins, termed hub proteins. Hubs in 

PPI networks have been classified into party and date hubs based on the co-expression 

of the interacting proteins.[2] Whereas date hubs display low co-expression with their 

partners, party hubs have high co-expression. It has been proposed that date hubs 

were global connectors, whereas party hubs were local coordinators. Date hubs tended 
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to have transient interactions due to their low average co-expression correlation with 

their interaction partners, which not only played a role in connecting biological 

modules to each other but also show more dynamic properties. 

Here, we defined nodes with a degree > 20 in PPI networks as hub nodes. The 

average Pearson’s correlation coefficients (PCCs) of the edges related to these hub 

nodes in the N0 network and the N+ network were calculated. Then, the date hubs and 

party hubs were defined as having lower PCCs and higher PCCs by the median of 

these values. To investigate the functions of these types of hubs, we first compared 

the relationship between hub proteins and inter/intra-modular edges. A boxplot 

showed that date hubs were significantly more involved in inter-modular interactions 

than party hubs (Fig 4a). In robustness tests of the N0 and N+ networks (Fig 4b and c), 

the average PCC of inter-modular edges interacting with date hubs was significantly 

lower than the average PCC of interactions generated in random sampling (658 

samples with 100,000 random times). In addition, compared with party hubs, date 

hubs showed obviously higher degrees and betweenness, such as HSP90AA1, ERBB2, 

and VEGFA in the top 10 intermodular edge-enriched pathways (S2a Fig), and 

MAPK3 and HSP90AA1 in top 10 intramodular edge-enriched pathways (S2b Fig).

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506724doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506724
http://creativecommons.org/licenses/by/4.0/


Fig 4. Distribution of date and party hubs and their corresponding KEGG 

pathways. (a) Statistical comparison of the numbers of intermodular edges consisting 

of date hubs and party hubs. Sampling tests of intermodular edges in the (b) N0 

network and (c) N+ network. Dashed red lines correspond to the average weight 

values of inter-modular edges. (d) Cancer hallmark enrichment analysis for date hubs 

and party hubs. The blue and red dotted lines represent the threshold of -log10 (0.05) 

calculated by the hypergeometric distribution. The number of genes is marked on the 

histogram.

Gene expression changes in cancer cells are related to a limited set of special 

characteristics, often termed cancer hallmarks.[47] We further assessed whether date 

hubs and party hubs inferred different clinical outcomes. Cancer hallmark enrichment 

analysis of these hub genes was performed, based on the COSMIC manual annotation 

of hallmark identification. The hypergeometric distribution was used to infer the 

significance of the hub genes in cancer hallmarks, with all genes as the background to 

compute the P-value. Overall, date hubs were more highly enriched cancer hallmarks 

than party hubs, suggesting that date hubs may play a more important role in driving 

the occurrence and progression of cancer (Fig 4d). Among the 10 cancer hallmarks, 

only cell-replicative immortality was not enriched for date hubs. The most significant 

cancer hallmark for date hubs was invasion and metastasis, followed by proliferative 

signaling and escaping programmed cell death. In contrast, the party hubs showed that 

“genome instability and mutations” is the most significant cancer hallmark. 

Specifically, there are nine date hubs enriched in the “invasion and metastasis” 

hallmark: GATA3, DDB2, FGFR1, RAC1, ERBB3, ERBB2, GATA2, RET, CDH1, 

NF2, and FGFR2. However, there are only four party hubs enriched in the “invasion 

and metastasis” hallmark: FOXA1, CUX1, PDGFRA, and PRKARIA. The above 

analysis recapitulated the roles of date hubs and party hubs in terms of hallmark 

enrichments. This suggests that date hubs are more relevant in the cancer context, 

especially with regard to invasion and metastasis.
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Core network module of lymph node metastasis in breast 

cancer

Both date hubs and inter-modular edges describe how protein-protein interaction (PPI) 

networks change, but date hubs introduce invariance in the dynamic evolution of the 

network and drive cooperative intermodular interactions. Accordingly, the “core 

network module” was constructed by connecting date hubs with intermodular edges. 

We suggest that this core network module contains highly dynamic regions that 

reorganize to drive or respond to lymph node metastasis in breast cancer (Fig 5a). To 

evaluate the correlation between this core module and the LNM process, four types of 

analysis were performed: i) we determined the number of nodes in the core network 

related to breast cancer progression or metastasis, ii) we calculated the TFC score to 

detect key interactions, iii) we performed pathway enrichment analysis, and iv) we 

performed mutation analysis.

For the breast cancer LNM-related core module, most genes (68 of 76) are 

reported to be associated with breast cancer-related genes, while almost half of the 

genes (36/76) are related to lymph node metastasis in breast cancer, according to the 

PubMed database. Additionally, a new score, named TFC, was defined as an edge 

parameter that was obtained by integrating edge betweenness and the GO semantic 

similarity of interactions. Here, we ranked the importance of each interaction 

according to the TFC score. As listed in Table 2, among the top six interactions 

(FGFR2-RET, RET-VEGFA, AP2A1-SYT1, AP2A1-SYT1, ERBB3-RET, and 

ERBB2-RET), four are rearranged during transfection (RET)-related, including 

interactions with two metastatic breast cancer hallmark genes (ERBB2 and ERBB3) 

(Fig 5b). This interesting finding suggested a key role of RET, as it may be involved 

in key interactions that need further investigation.

Table 2. The 20 interactions with the highest TFC scores in the core network 

module.
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Proteins Proteins TFCs

FGFR2 RET 173.0058

RET VEGFA 157.5393

AP2A1 SYT1 149.0898

AP2A1 AREG 143.0134

ERBB3 RET 134.7705

ERBB2 RET 117.165

AREG ERBB3 101.4081

AREG FGFR2 100.4558

CDKN1A DDB2 90.53797

PSMA7 UBD 87.06091

HSP90AA1 PSMA7 82.14306

MAPK3 RET 82.12968

NCAM1 RET 69.61411

MMP9 VEGFA 68.23644

CDH1 RET 65.6743

SYT1 VAMP2 65.67153

HSP90AA1 RET 63.11788

AREG GATA3 62.60333

PXN RET 58.36475

STXBP1 SYT1 56.96024

Furthermore, KEGG pathway enrichment analysis was performed on the core 

network module. We found that five genes (VEGFA, FGFR2, RET, ERBB3, and 

ERBB2) involved in RET-related interactions were enriched in the calcium signaling 

pathway (P = 0.0109). To verify whether these genes could affect breast LNM 

through the calcium signaling pathway, we used the GSEA algorithm to evaluate the 

status of the calcium signaling pathway in the whole expression profile. The results 

showed that these genes tended to be up-regulated in the calcium signaling pathway, 

with a P-value of 0.0089 (Fig 5c). 
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Fig 5. Molecular characteristics of the “ core network module ” . (a) The core 

network module consists of 76 date hubs and 147 inter-molecular edges. Edges are 

weighted by TFC scores, and the top 20 edges with the highest TFC scores are 

denoted in purple. Date hubs with the highest mutation frequency are denoted as 

yellow nodes. (b) Polar area diagram of network edge prioritization by the TFC scores 

in the core network module. Asterisks indicate RET-involved interactions. (c) GSEA 

analysis revealed that the genes of the calcium signaling pathway were enriched 

across the whole expression profile, and the enrichment status of the calcium 

signaling pathway was not affected by supervisor selection of differential genes. (d) 

Mutated date hubs (rows, top 30) are ordered by mutation rate; samples (columns) are 

arranged to emphasize mutual exclusivity among mutations. The row on the right 

shows the mutation percentage, and the top histogram shows the overall number of 

mutations. The color coding indicates the mutation type.
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Next, we investigated the genomic mutational signatures, which provided clues 

for the TNM of breast cancer. The somatic mutations in all samples were compared 

between date hubs and party hubs. Fig 5c and S3a Fig show the mutation spectrums of 

highly mutated date-hub and party-hub genes in breast tumor samples. Overall, the 

mutation frequency of date hubs (39.3%) was higher than that of party hubs (23%). 

Except for the two most highly mutated genes (CDH1 and GATA3; > 10%), among 

the date hubs, three more genes (ERBB2, ERBB3, and CTCF) had relatively high 

mutation frequencies. In addition, FGFR2 was a low frequency mutated gene, but the 

important role of its mutations in breast cancer has been reported.[48]

Accordingly, the above analysis suggested the importance of the sub-network, 

consisting of RET and its connected genes, as shown in S3b Fig. First, the 

sub-network contained four of the six most important interactions with highest the 

TFC scores. Second, the sub-network contained all five calcium signaling 

pathway-related genes. Third, seven of ten genes in the sub-network had important 

mutation information, including the core gene of RET. By focusing on the 

sub-network, we further suggested that RET-ERBB2, RET-ERBB2, and RET-FGFR2 

interactions are three key interactions for breast cancer LNM.

Structure-based assessment of the effect of mutations in 

RET interactions

The occurrence and development of cancer is not only related to changes in 

expression levels but also to somatic mutations in the coding regions of key genes and 

their interaction partners. The dynamic assembly of protein complexes is a central 

mechanism of many cell signaling pathways, which may be regulated by their 

mutations. To characterize the effect of mutations in the RET interactions, structure 

models of RET-ERBB2, RET-ERBB3, and RET-FGFR2 complexes were first 

constructed. The experimental structural data of each protein were collected from the 

PDB database (PDB id: 6NEC for RET, PDB id: 3PP0 for ERBB2, PDB id: 6OP9 for 

ERBB2, and PDB id: 2PSQ for FGFR2). Using PRISM, we found that all three 
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interactions can form stable protein complexes, with binding energies of -44.88, 

-51.97, and -46.33 kcal/mol for the RET-FGFR2, RET-ERBB2, and RET-ERBB3 

protein complexes, respectively (Table 3). The structural models for the three protein 

complexes and their key interfacial residues are shown in S4 Fig. We then mapped 

missense mutations to the obtained structural models. It can be observed that only the 

mutation of the D769 in ERBB2 is located at the RET-ERBB2 interface. The 

distribution of other mutations is relatively scattered over the whole structure.

Table 3. Effects of RET mutations on the stability of protein-protein interactions.

Complex Gwt (kcal/mol) RET Mutation Gmt (kcal/mol) G (kcal/mol)

L846I -45.18 -0.3

L963V -44.44 0.44RET-FGFR2 -44.88

V778I -44.25 0.63

L846I -60.36 -8.39

L963V -55.49 -3.52RET-ERBB2 -51.97

V778I -51.97 0

L846I -55.8 -9.47

L963V -41.3 5.03RET-ERBB3 -46.33

V778I -55.81 -9.48

Footnote: wt represents the wild-type protein complex, and mt represents the mutant 

protein complex.

Next, we analyzed the effects of mutations on the stability of protein–protein 

interactions by calculating the binding affinity. From the TCGA sample, we found 

three mutations in RET: the tyrosine domain V778I mutation; and two kinase domain 

mutations, L846I and L963V. As shown in Table 3, the change in the binding energy 

(∆∆G) of the three mutations (V778I, L846I, and L963V) on the RET-ERBB2, 

RET-ERBB3, and RET-FGFR2 complexes shows that their binding energy may 

become more stable or reduce slightly. Similar results were also found for mutations 
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of ERBB2, ERBB3, and FGFR2 (S1 Table), and even for the D769H(Y) mutation 

located at the RET-ERBB2 interface. In conclusion, the structural modeling, in 

silico mutagenesis, and comparison of the predicted binding energies revealed that the 

mutations did not disturb protein-protein interactions, suggesting other kinds of 

mechanisms.

Fig 6: Allosteric effects caused by V778I in RET. (a) Allosteric energy profiles for 

V778I in RET in three protein complexes, predicted by AlloSigMA. Mapping of 

allosteric energy on 3D structures of the (b) RET-FGFR2, (c) RET-ERBB2, and (d) 

RET-ERBB3 interactions. 

In addition, we used a structure-based statistical mechanical model implemented 

in AlloSigMA[45] to obtain a direct estimate of the allosteric effects across 

protein-protein interactions caused by these missense mutations. As shown in S5-S8 

Fig, except for V778I in RET, almost all other mutations have no allosteric effects on 

their protein partners. We observed that V778I in RET showed allosteric effects on all 

its partners, including ERBB2, ERBB3, and FGFR2 (Fig 6a). The V778I mutation is a 
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large amino acid, while in AlloSigMA, it is defined as an UP mutation. The allosteric 

energy profile showed that the energy of residues near V778 was negative and 

relatively low, which demonstrated the greater local stability of this region. However, 

for the interaction partners of RET, the allosteric free energy of residues was 

generally positive and relatively high, indicating that the interaction partners became 

unstable above the V778I mutation in RET. In detail, we predicted that FGFR2 had an 

obvious peak (0.99kcal/mol) at residue P582 (Fig 6b), and ERBB2 had a local 

increase in kinetics at residues E719, I740 to V746, D873, E874, H878, I886, L891 to 

L895, I926, E930 to R940, and I961(Fig 6c). In addition, we observed a distal effect 

on the ERBB3 activation loop (P842-K853) and residues G713 to S715, where the 

contact network became unstable (Fig 6d). Overall, our results showed that the V778I 

mutation in the RET protein had an unstable effect on the contact network in its 

interacting partners. This may affect the interaction through allosteric communication 

between RET and its interacting partners.

Discussion and Conclusion
Cancer metastasis is therefore an evolving disease and the combined outcome of cells 

that metastasize and a series of microenvironmental factors that they interact with, 

collude, or surmount. Although each instance of metastasis could be unique, the quest 

is to find commonalities that could be targeted therapeutically. The complexity of 

metastasis through its chronological progression, and its manifestation in various 

biological scales, calls for a systems approach to understand metastasis 

mechanistically. In this work, we proposed a method that combines differential 

modular analysis with mutational structural analysis to study the dynamic process and 

molecular mechanism of cancer metastasis. By applying this method to study the 

LNM of breast cancer, we identified some key factors, including the core network 

module, key PPIs, and a potential allosteric mutation.

From the methodology, we combined gene co-expression data, PPI networks and 

structures, and genetic variation together to understand disease progression at both the 

systems and molecular levels. First, we constructed two PPI networks with the same 
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topology but weighted with different gene co-expression data. Then, different 

modular structures were obtained by modular analysis and the two PPI networks 

associated with different disease states were compared. The third and fourth steps 

represent the main idea of our method, that inter-modular edges and date hubs 

obtained from different modular analysis afforded more functional contexts for 

disease progression. The network module associated with disease progression was 

constructed by connecting date hubs with inter-modular edges. Based on the core 

network module, subsequent analysis included ranking all the interactions by TFC 

scores and mutation analysis. Lastly, the structures of PPIs were modeled and 

mutations with important functions were predicted. 

In summary, the novelty of our method was two-fold. First, differential network 

analysis methods were normally node- and edge-based, or they involved a comparison 

of the global topology. Our method here was module-based, which could help in 

discovering shared or changed functional patterns. The differential modular analysis 

lies somewhere between node/edge analysis and global topological differential 

network analysis, shedding more light on the underlying mechanisms of biological 

systems. Second, the proposed method was novel insofar as it linked allosteric 

mutation with PPI network analysis to characterize the differentially interacting 

modules. As such, it could identify key PPIs and active mutations during LNM. This 

idea has been used previously to study the role of Bcl-2 proteins in breast cancer.[49]

In breast cancer, the activation mutation in the ERBB2 is a well-known 

oncogenic driver. The interaction of ERBB2 with other protein partners (or 

dimerization) activates various oncogenic signaling pathways related to breast cancer 

metastasis, including the Smad2/3, RAS/RAF/MAPK, PKC, and PI3K-Akt signaling 

pathways.[50] Recent computational structural modeling with biochemical and cell 

biological analyses suggests that ERBB2 mutations need to mutate ERBB3, and then 

promote oncogenesis and invasion of breast cancer via PI3K pathway activation.[51] 

However, we identified that calcium signaling pathways could be considered an 

ERBB2 participation noncanonical pathway related to LNM in breast cancer. As a 

second messenger, the intracellular calcium ion (Ca2+) plays direct and robust roles in 
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many biological processes. Several studies have reported that calcium signaling 

pathways are essential to cancer progression. In particular, calcium signaling 

pathways regulate key processes, from inflammation to apoptosis, that are involved in 

breast cancer tumorigenesis,[52] metastasis,[53] and resistance to chemotherapy.

The current standard of care for the treatment of metastatic ERBB2 breast cancer 

is the combination of seven inhibitors: trastuzumab, pertuzumab, trastuzumab 

emtansine, trastuzumab deruxtecan, lapatinib, neratinib, and tucatinib.[54] However, 

drug resistance is common and remains a major unresolved clinical problem. 

Targeting the interaction between ERBB2 and a number of non-canonical RTKs (i.e. 

EGFR, ERBB3, and ERBB4) has emerged as a promising therapeutic method that 

overcomes drug resistance in treating breast cancer metastasis.[55] 

Here, we considered that breast cancer LNM may be the outcome of allosteric 

driver mutations in RET.[56] As one of the RTK members, RET is a target for several 

kinds of human cancer, such as thyroid, breast, and colorectal carcinoma. Many RET 

missense mutations are known to be causally associated with breast cancer, including 

extracellular domain mutations C611R, C620F, L633V, C634R, C634F, and T636M, 

and the kinase domain M918T.[57] A structural understanding of the mutational roles 

of RET in different interactions suggested V778I as an allosteric mutation, raveling 

potential targets to prevent LNM in breast cancer from overcoming resistance in 

ERBB2.

Altogether, the analysis characterized a differential module representing 

significant changes in their interaction patterns during LNM in breast cancer, and 

their functions roles in terms of three enrichment analyses and mutation analysis 

based on the structural level. In addition, the differential module is potentially 

valuable not only for understanding LNM but also for developing effective diagnosis, 

prognosis, and treatment strategies. 
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S1 Table. The effects of FGFR2, ERBB2 and ERBB3 mutations on the stability of 

protein-protein interaction.

S1 Fig. (a) Volcano map of the lymph node metastasis group and the non-lymph node 

metastasis group in breast cancer. (b) Kaplan-Meier survival curves of the lymph 

node metastasis group and the non-lymph node metastasis group. (c) The heatmap of 

Jaccard similarity coefficients for the modules between the N0 and N+ PPI networks. 

(d) The modular structure of N+ network. 

S2 Fig. The distribution of degree and betweenness for hubs involved in 

inter-modular edge and intra-modular edge enriched top 10 Reactome pathways. 

S3 Fig. The oncoplot for top 30 mutated party hubs and RET-centered sub-module. 

S4 Fig. The structural models for the RET-FGFR2, RET-ERBB2, and RET-ERBB3 

protein complexes and the distribution of missense mutations. 

S5 Fig. The allosteric effect of RET mutations on its three interaction partners. 

S6 Fig. The allosteric effect of FGFR2 mutations on RET. 

S7 Fig. The allosteric effect of ERBB2 mutations on RET. 

S8 Fig. The allosteric effect of ERBB3 mutations on RET. 
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