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Abstract

Admixture graphs are mathematical structures that describe the an-
cestry of populations in terms of divergence and merging (admixing) of
ancestral populations as a graph. An admixture graph consists of a graph
topology, branch lengths, and admixture proportions. The branch lengths
and admixture proportions can be estimated using numerous numerical
optimization methods, but inferring the topology involves a combinato-
rial search for which no polynomial algorithm is known. In this paper, we
present a reversible jump MCMC algorithm for sampling high-probability
admixture graphs and show that this approach works well both as a heuris-
tic search for a single best-fitting graph and for summarizing shared fea-
tures extracted from posterior samples of graphs. We apply the method
to 11 Native American and Siberian populations and exploit the shared
structure of high-probability graphs to address the relationship between
Saqqaq, Inuit, Koryaks, and Athabascans. Our analyses show that the
Saqqaq is not a good proxy for the previously identified gene flow from

Arctic people into the Na-Dene speaking Athabascans.

Author Summary

One way of summarizing historical relationships between genetic samples is by
constructing an admixture graph. An admixture graph describes the demo-
graphic history of a set of populations as a directed acyclic graph representing
population splits and mergers. The inference of admixture graphs is currently
done via greedy search algorithms that may fail to find the global optimum.
We here improve on these approaches by developing a novel MCMC sampling
method, AdmiztureBayes, that can sample from the posterior distribution of ad-
mixture graphs. This enables an efficient search of the entire state space as well
as the ability to report a level of confidence in the sampled graphs. We apply
AdmixtureBayes to a set of Native American and Arctic genomes to reconstruct
the demographic history of these populations and report posterior probabilities

of specific admixture events. While some previous studies have identified the
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ancient Saqqaq culture as a source of introgression into Athabascans, we instead
find that it is the Siberian Koryak population, not the Saqqaq, that serves as

the best proxy for gene flow into Athabascans.

Introduction

Admixture graphs? provide a concise description of the historical demographic
relationships between genetic samples of populations, assuming their relation-
ships are the product of discrete, instantaneous splits and admixture events. The
assumption of discrete, instantaneous events is clearly an oversimplification for
most real data, but it facilitates interpretation and makes admixture graphs
a popular first step in analyses. Each graph topology is associated with pa-
rameters capturing population divergence and admixture proportions, and once
these are fitted to genetic data, the goodness of fit can be measured to determine
how accurately the graph captures the historical relationship between samples.
Inferring graph topologies, however, involves a combinatorial search, and since
the space of graphs grows super-exponentially in the number of populations and
the number of admixture events, an exhaustive search is typically not possible.
Instead, the search for well-fitting topologies is often done manually or through
greedy algorithms.

The most popular methods for estimating admixture graphs are TreeMiz by
Pickrell and Pritchard? and ¢pGraph by Patterson et al., both of which take
a greedy approach to searching the state space of graph topologies. qpGraph
allows users to sequentially identify the best phylogenetic position of a possibly
admixed population in a previously established admixture graph and evalu-
ate the improved fit in terms of simple allele-sharing statistics. The program
MizMapper by Lipson et al.® employs a similar strategy and has options for
fitting up to two admixture events simultanously. TreeMix estimates an admix-
ture graph de novo by automatically estimating the best tree without admixture

events followed by automatic, sequential insertion of the admixture branches.
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In contrast to MixMapper and qpGraph, TreeMix searches through many po-
tential admixture graphs without user input. To penalize deviations from the
expected and observed allele sharing statistics, all three methods use a Gaussian
model for the distribution of allele frequencies among populations. The implicit
assumption in the Gaussian model is that changes in allele frequency due to ge-
netic drift can be approximated as a Brownian motion process. This assumption
dates back to the early work by Edwards and Cavalli-Sforza® and has recently
re-emerged as a computationally attractive alternative to the full Wright-Fisher
process. It has previously been used in several other methods aimed at modeling
the joint distribution of allele frequencies among populations®.

There are also phylogenetic network methods that infer admixture graphs
using sets of locus-specific gene trees as nuisance parameters which are either
pre-estimated® or integrated out using MCMC™8., These approaches must eval-
uate the likelihood of each gene tree separately, making them more computa-
tionally expensive and therefore limited to fewer populations than the Gaussian
drift models. To handle larger datasets, some methods summarize all the gene
trees into a few statistics that are evaluated with a pseudo-likelihood?1Y for a
small reduction in accuracyl!. In terms of speed, these pseudo-likelihood meth-
ods are similar to the Gaussian drift methods. However, the Gaussian approach
offers a way to compute a true likelihood, which we use in this paper.

The greedy search algorithms used by current methods do not guarantee
that the inferred graph is optimal. In practice, the optimal graph found by a
greedy search can potentially be very different from better-fitting, but never-
discovered, graphs™12, Regardless of whether a search finds the optimal graph
or not, if a single graph is inferred and used for all downstream analysis, that
point estimate would not intrinsically report confidence in various estimated
features, such as the topology of relationships among populations, the presence
or absence of admixture events, and the intensity of those events. There might
be many graphs that fit the data equally well, and we should have more confi-

dence in features shared among many of them than we should in features that
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are only found in some of them; shared features are most likely signals in the
data while those that rarely occur are most likely spurious. Analyses based on
a single graph do not distinguish between features that are estimated with high
confidence and those estimated with low confidence. While it is possible to gen-
erate a distribution of TreeMix graphs across independent analyses of bootstrap
replicates, it is rarely done in practice.

Here, we provide an alternative to greedy searches. Based on a model sim-
ilar to TreeMix and qpGraph, we develop a Bayesian approach to sample over
the graph-space using a reversible jump Markov Chain Monte Carlo (MCMC)
method. The method can identify the graph with the highest likelihood en-
countered by the MCMC sampler, thereby effectively working as a heuristic
maximum-likelihood optimizer, or it can report several summaries of the poste-
rior distribution of admixture graphs. For example, it can estimate the graph
topology with the highest marginal likelihood when integrated over admixture
and divergence times as measured by occupancy in the MCMC sampler. Such a
marginal likelihood is computed in admizturegraph™® as well, but the exhaustive
search algorithm of admixturegraph finds the graph with the highest likelihood -
not the graph shape with the highest marginal likelihood. A particular strength
of our new method is that it circumvents the need to report a single best graph
by allowing calculations of posterior probabilities of particular marginal relation-
ships between populations. We consider three approaches for this: one based on
simplifying admixture graphs into simpler structures, one based on summarizing
shared topologies into a consensus graph, and one based on subgraph analysis.
If the number of leaves in the considered subgraph is kept small, we will ob-
serve few distinct subgraphs with these leaves, and we can estimate a complete
posterior distribution over these graphs. Sampling subgraphs from the space of
full graphs allows us to incorporate information from other populations when
exploring the relationship between a subset of the populations.

We illustrate the utility of our method using simulations and reanalyze a pre-

viously published genomic dataset of Siberians and Native Americans™®. We use
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the method to revisit two important and controversial questions in the history of
the peopling of the Americas. First, we analyze the origin of the Inuit and show
that they are modeled best as an admixture between a population represented
by the Saqqaq genome, and Native Americans, represented by Athabascans.
Secondly, we show that Athabascans are best represented as admixed between
a Native American population and a Siberian population most closely related

to the Koryak, but not the Saqqaq.

Results

The Methods section describes our implementation of a Markov Chain Monte
Carlo (MCMC) algorithm, AdmiztureBayes, which samples admixture graphs
from their posterior distribution. We summarize genetic data from multiple
populations as a matrix that captures how allele frequencies in the data co-
vary between populations. AdmixtureBayes samples graphs that explain this
covariance matrix. The topology of any sampled graph captures the relation-
ships between samples as a mixture of the graphically structured covariance
matrices. Branch lengths capture the amount of genetic divergence between
populations, measured by drift, and admixture events explain shared allelic co-
variance between otherwise independently evolving populations. As a prop-
erty of the MCMC algorithm, each graph is sampled at a frequency corre-
sponding to its posterior probability. AdmixtureBayes is available to use at

https://github.com/avaughn271/AdmixtureBayes|

Evaluating convergence and mixing rate

In order to evaluate the convergence of the MCMC sampler, we used two dif-
ferent metrics, both of which are based on examining summary statistics of the
chain. The summary statistics we chose to consider were the number of admix-
ture events, the posterior probability, and the total branch length of the graph.

Our first metric was simply examining the trace plots of the chain. From these
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plots, it is often possible to visualize the burn-in period. The second metric was
the more sophisticated Gelman-Rubin convergence diagnostic, which analyzes
the behavior of several chains run in parallel from different starting states.™
This diagnostic is based on calculating the ratio of the variance of the summary
statistic between chains to the variance of the summary statistic within chains.
A ratio close to 1 signifies that all chains have converged from their disparate
starting states to the same equilibrium distribution. We used the coda package
to perform this comparison.'% To evaluate the mixing rates of the chain, we
plotted the autocorrelation of the summary statistics as a function of the lag
between samples.

We demonstrated these analyses on a simulated dataset. Our simulated
dataset was generated with msprime’” with a genomic region with mutation
and recombination rates both equal to 10~® and with 11 subpopulations. We

used the following code snippet:

n=125

demography = msprime.Demography.stepping_stone_model (

[n,n,n,n,n,n,n n,n,n,n], migration_rate=0.01/11)

ts = msprime.sim_ancestry ({0:2,1:2,2:2,3:2,4:2,5:2,6:2,
7:2,8:2,9:2,10:2} ,demography=demography ,

sequence_length=2e9 ,recombination_rate = le—8)

mts = msprime.sim_mutations(ts, rate = le—8)

We took the first population to be the outgroup, which gives 10 leaf pop-
ulations. We then ran AdmixtureBayes for three different chains, each with
--MCMC_chains 16 and --n 150000 and using a random starting state, which

is the default behavior of AdmixtureBayes. We plot the convergence and mixing
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results in Supplementary Figures and

Comparisons with TreeMix

To compare the accuracy of AdmixtureBayes to TreeMix, we first simulated
several datasets using an admixture graph simulator (see Appendix . The
admixture graphs all had 10 populations and 0, 1, 2 or 5 admixture events.
Based on the admixture graph, we simulated SNP data where we varied the

18 In-

number of haplotypes per population between 2, 10 and 50 using ms
stead of simulating a fixed number of SNPs, we simulated datasets with a fixed
mutation rate across 2000 or 5000 independent segments of 500 kb linked sites.
This produced 250,000-850,000 SNPs, which we filtered to yield 25,000-85,000
effectively independent SNPs (see Methods), which is comparable in size to real
biological datasets. Genomic datasets in humans, resulting from whole genome
sequencing, typically contain information corresponding to between 50,000 and
100,000 effectively independent SNPs (see section on Saqqaq, Inuit, and Native
Americans).

We then analyzed all simulated datasets with both AdmixtureBayes and
TreeMix (see Appendix . Comparing their accuracy is not straightforward
because TreeMix produces one graph whereas AdmixtureBayes produces a pos-
terior sample of graphs. In addition, TreeMix assumes a fixed number of admix-
ture events, whereas AdmixtureBayes samples graphs with different numbers of
admixture events. To solve the latter issue, we ran TreeMix conditioned on the
true number of admixture events whereas we thinned the AdmixtureBayes sam-
ples such that they only contained admixture graphs with the true number of
admixture events. However, to illustrate the ability of AdmixtureBayes to infer
the number of admixture events, we include both the thinned and unthinned
AdmixtureBayes samples in the plots. We used five metrics to compare the
methods. The Mean Topology Equality is the proportion of the Markov chain
spent in the true topology, which approximates the posterior probability of the

true topology. The Mode Topology Equality is the proportion of replicates in
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which the maximum a posterior (MAP) estimate of the topology equals the true
topology. The Mode Topology Equality and Mean Topology Equality were both
compared to the proportion of times TreeMix infers the correct topology. The
next metric we considered is the Covariance Distance, defined as the average of
the Frobenius distance between the true graph and the covariance matrices im-
plied by the MCMC-sampled graphs (see Methods). We compared that to the
Frobenius distance between the covariance matrix implied by the TreeMix in-
ferred graph and the true graph. Finally, we measured the Set Distance, which
we defined as a topological distance measure similar to the Robinson-Foulds
metric (Figure Methods section). We evaluated both the ergodic average
of the Set Distance between a graph in the chain and the true graph (Mean
Set Distance) and the Set Distance between the MAP estimate of the topology
and the true topology (Mode Set Distance). In both cases, we compared the
results to the Set Distance between the true topology and the TreeMix inferred
topology.

We note that the accuracy of the MAP estimate of the topology for a given
number of admixture events is similar in both methods (Figure )7 although
AdmixtureBayes is perhaps slightly better when the number of admixture events
is > 0. However, we also notice that neither method infers the true topology
with high probability when the number of admixture events is equal to 2 or
larger. This suggests that it may not be scientifically meaningful to focus on
a single estimate of an admixture graph with 10 or more populations and 2 or
more admixture events. Using Mode Set Distance, the story is somewhat similar
(Figure )7 but the advantage of AdmixtureBayes over TreeMix becomes more
apparent in that the Mode Set Distance for AdmixtureBayes with 2 admixture
events is considerably lower than the distance between the TreeMix graph and
the true graph. In other words, when the methods infer incorrect topologies, the
MAP estimates obtained by AdmixtureBayes tend in average to be less wrong
than the estimates obtained by TreeMix. Because both methods use similar

evolutionary models, improved optimization in TreeMix would likely lead to


https://doi.org/10.1101/2022.09.06.506725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.06.506725; this version posted September 6, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

a performance more similar to that observed for AdmixtureBayes. The three
metrics evaluating ergodic averages over the chain tell slightly different stories
(Figure —e). While the Mean Set Distance is still considerably smaller for
AdmixtureBayes than for TreeMix (Figure ), the ergodic average of the
Topology Equality is slightly smaller (Figure ), and the Covariance Distance
is slightly larger (Figure ) for AdmixtureBayes. That is, while a randomly
sampled graph from the posterior tends to be closer (in terms of Set Distance)
to the true graph than the TreeMix estimate is, the same is not true when
using Covariance Distance or Topology Equality. It is expected that the MAP
estimate is more accurate than the average posterior graph, yet a large difference
could be a sign that the sampled posterior distribution is inaccurate. However,
the difference here is small, which supports the correctness of the posterior
sampling.

We varied the sample sizes (number of individuals per population used to
estimate allele frequencies), to determine the dependence of these conclusions
on sample size (see Figure[S2)). In general, the conclusions seem to follow those
obtained in the previous simulations. It is also apparent that there is a pro-
nounced advantage in terms of accuracy in moving from 2 to 10 haplotypes per
population. The improvement in performance is smaller when moving from 10

to 50 haplotypes.

Summarizing subgraphs

While it may be difficult to obtain a unique point estimate of the admix-
ture graph with highest statistical support, particularly for analyses involving
many populations and large state spaces of graphs, elements of the graph may,
nonetheless, be well supported. It is possible to consider the relative support, in
terms of posterior probability, of individual subgraphs. Analyzing the support
for subgraphs within the context of a larger admixture graph has an advantage
over analyses limited to the focal populations represented in the subgraph, that

information from other populations can be directly taken into account.

10
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Using parts of the same simulations as before (see Appendix , we ex-
plored the accuracy of subgraph inference. For each dataset, we considered
subgraphs for 3, 4 and 5 randomly drawn focal populations. Having already an-
alyzed the datasets for all 10 populations, we extracted estimates by marginal-
izing the estimates for the full admixture graph, which we denote as subgraphs
from the ‘Big’ dataset. We also recomputed the subgraphs by analyzing only
the data from the focal population while discarding all information from the
non-focal populations, which we denote as ‘Small’ graphs. Marginalizing a joint
graph is presumably better than estimating the marginal graph, because the
joint estimation uses information from all populations of the dataset. As ex-
pected, the Big graphs estimated by AdmixtureBayes do have higher accuracy
than the Small graphs (Figure . Surprisingly, the same is not the case for
TreeMix Big and Small graphs. This pattern is repeated for most accuracy and
distance measures and subgraph sizes (Supplementary Figure . TreeMix
graphs are more accurate for very small graphs, but they lose accuracy fast as
the number of populations increases (Figure Small columns). Figure
suggests that the expected improvement of the Big TreeMix subgraphs com-

pared to the Small subgraphs decreases when including more populations.

Exploring the genetic history of Saqqaq, Inuit and Native

Americans

We applied AdmixtureBayes to a set of previously published Siberian and Na-
tive American samples™ to explore the relationship between Siberian Chukotko-
Kamchatcan speakers (Koryak), an ancient individual from the extinct Saqqaq
culture (Saqqaq), Inuit-Yupik-Unangan speakers (Greenlandic Inuit), and Na-
Dene speakers (Athabascan). The dataset also contained North and South
Americans (Anzick, Aymara) and various other groups. We chose the Yoruba
population as the outgroup. Running time of AdmixtureBayes was 50 hours in
parallel on 32 cores.

To extract information from the posterior distribution of admixture graph

11
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topologies, we introduce two ways of summarizing relationships among sets of
focal populations (for details, see Methods). Both are based on summarizing
each sampled admixture graph in the posterior into a topology set, which is
the set of all nodes labeled by their descendants. This discards information
about the number of and timing of admixture events (see Figure . From
such a topology set, we can create the minimal topology, which is the ‘simplest’
directed graph yielding the same topology set (see Figure . The two minimal
topologies with the highest posterior probabilities are shown in Figure [S4 We
also considered the frequency of each internal node across posterior samples. In
Figure [S4] these frequencies are denoted as percentages in parentheses in each
node. The second summary of the admixture graph sample is the set of nodes
with a frequency higher than « in the topology sets, which we denote as the
consensus graph at threshold «. Figure [S5 shows this summary for o = 0.75.
While no single graph received high support when including all data, we
can extract subgraphs that are informative about the relationships between
specific subsets of populations. In particular, there has been considerable debate
about the relationships between populations represented by the Koryak, Saqqaq,
Greenlanders, and the Athabascans. Archaeological evidence suggests that the
Inuit people from Greenland and people from the now extinct Saqqaq culture
represent independent migrations into the Americas from Eastern Siberia and

t19 20121

the area around the Bering strai . However, there is some debate about

2212320124 \ost molecular evidence of Athabascan

the origin of the Athabascans
ancestry is thought to have originated from the first migration of people into
the Americas that also gave rise to most other Native American groups, such as
the indigenous people in Central and South America. However, some portion
of genetic variation in Athabascans seems to have also originated from other
groups, perhaps related to Inuit, Saqqaq, or other Siberians such as the Koryak.
Naming and identifying sources of genetic variation is further complicated by

the fact that these possible reference populations may themselves be admixed.

A marginal analysis of the relationship between Koryak, Saqqaq, Greenlanders,

12


https://doi.org/10.1101/2022.09.06.506725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.06.506725; this version posted September 6, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

and Athabascans, that can take gene flow from other groups into account, is
therefore very much wanted.

Figures [S6] and [S7] depict the subgraphs for different subsets of these groups
and for all groups together, extracted from the posterior distribution of graphs
from the full dataset. The most strongly supported subgraph for Saqqaq,
Athabascan, and Koryak supports the tree ((Athabascan, Koryak), Saqqaq)
with 96% posterior probability. This implies that a relationship where the gene
flow into Athabascans came from a population closer to the Saqqaq, than to
the Koryak from Siberia, is not supported by the data. In contrast, when con-
sidering the relationship between Koryak, Athabascans and the Inuit Greenlan-
ders, the most strongly supported admixture graph is a tree with the structure
((Athabascan, Greenlander), Koryak), likely reflecting gene flow into the Inuit
Greenlander from Native Americans related to Athabascans. We emphasize that
in these inferences, by analyzing the posterior probability of subgraphs embed-
ded within larger graphs, we have also explicitly modeled the effects of gene flow
from other groups including various Siberian, Native American, and East Asian
groups. When considering all four populations together, the Greenlanders are
best modeled as a population admixed between Athabascan related populations
and Saqqaq related populations. Again, there is no apparent gene flow between

the Saqqaq and the Athabascans following their initial divergence.

Discussion

We here present the program AdmixtureBayes, which is a method for inferring
admixture graphs using MCMC. On simulated data, it infers graphs more ac-
curately than TreeMix under the Set Distance measure. AdmixtureBayes also
tends to find the true topology with slightly higher probability than TreeMix
does. We speculate that the superior performance of AdmixtureBayes in terms
of Set Distance is likely caused by issues relating to optimization in TreeMix.

Possibly, the procedure in TreeMix could be improved to more or less match the

13
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performance of AdmixtureBayes in terms of producing point estimates. How-
ever, we also note that for larger graphs, the probability that the graph identified
is the true graph is very small for both methods. This suggests that the report-
ing of a single graph may not necessarily be accurate. As is common practice
in phylogenetics, admixture graphs should report measures of statistical con-
fidence for the relationships inferred among internal nodes in the graph, as is
reported in this paper. We also encourage the use of embedded subgraphs as
a powerful approach for investigating the relationship between specific popula-
tions while taking gene flow from other reference populations into account. The
use of posterior probabilities, as reported here, is facilitated by the use of a boot-
strap procedure that can estimate the effective number of independent SNPs.
In our real data analysis, we obtained information from human genomes corre-
sponding to approximately 40,000 independent SNPs. This number determines
the peakedness of the likelihood surface, which directly influences the posterior
distribution of admixture graphs. TreeMix and qpGraph employ similar resam-
pling techniques to obtain variance estimates that control the peakedness of
their likelihood surfaces, thereby reducing the complexity of admixture graphs
explored during inference.

Our analysis of Native American and Siberian samples largely recapitulates
many previous analyses and identifies many admixture events'!4. Furthermore,
we find a similar, but not identical topology, to a previous admixture topology™4.
However, our results also indicate that several features of the true admixture
graph remain uncertain. For example, we could not definitively resolve the
question of introgression into the Han lineage from the ancestral lineage of Ust’-
Ishim. Our analysis does not support previous claims that the Saqqaq culture
is a good proxy for the source of gene flow into Athabascans?320 although
statistical power could still be improved. In both our analysis and previous
work, each population is represented by just one or two diploid individuals. Our
simulations suggest that increasing the number of individuals per population

might lead to substantially improved statistical accuracy. We also note that the

14


https://doi.org/10.1101/2022.09.06.506725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.06.506725; this version posted September 6, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

sample quality was relatively poor for some samples analyzed here, particularly
the Saqqaq, which has many missing sites.

The estimation of admixture graphs is becoming one of the most important
tools in population genomics. However, methods for estimating such graphs are
still in their infancy. AdmixtureBayes provides a step towards improved esti-
mation and more rigorous quantification of statistical uncertainty in admixture

graph inference.

Methods

Data

We analyzed a dataset consisting of SNPs for 12 human populations that was
first analyzed by Moreno-Mayer et al.1#. We treated the Yoruba population
as an outgroup leaving effectively 11 populations with unknown relationships
to estimate. One diploid individual was sampled from each population, except
the Koryak, Ket, Greenlander and Athabascan populations, which each had two
diploid individuals. Whole genome-sequencing was performed on each individual
to provide an average coverage between 1X (for the Malta individual) to 44.2X
(for one of the Greenlander individuals). Further details regarding sequencing
and data processing methods are described in Moreno-Mayer et al.l%. The
alleles for the ancient individuals from the populations Saqqaq, Malta, Anzick
and USR1 that were not transversions were treated as missing. We then filtered
out any site for which there was a population with missing data. In total
251,542 biallelic SNPs were retained. Large numbers of missing SNPs for some
individuals is not a computational problem for AdmixtureBayes, though it does
violate the assumption of even sampling imposed by the Wishart distribution

(see Methods, equation ().
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Fig 1: An admixture graph for the 3 populations and one outgroup. Considering

a single SNP, the quantities z1,...,x7 are changes in allele frequency, w is the
admixture proportion, and Py, Py, P> and P3 are allele frequencies in the sampled
populations.

AdmixtureBayes Model

The AdmixtureBayes program searches the posterior distribution of admixture
graphs given observed SNP data using a Markov Chain Monte Carlo procedure.
To assess the likelihood of an admixture graph we summarize both the admix-
ture graph and the data as covariance matrices of allele frequency changes?.
The admixture graph covariance matrix is calculated as in TreeMix. Consider
the tree structure in Figure [I| where population 2 is a mix of two ancestral
populations with proportions w and 1 — w.

The allele frequency in the 4 populations, Py, Pi, P, and P3; are related

through the allele frequency changes xy, ..., z7 at any SNP.

Py Py To+T1 + T2 xo
Pl |P|=|mo+ar+wlxs+ay)+(1—w)es+az) | =4
Ps Py To + T3+ x4 Z7

(1)

Notice that A is a matrix that only depends on the admixture graph through
the graph structure and admixture proportions. We consider the vector of allele

frequency drifts terms <1’0 e z7> to be stochastic because it depends on a
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random sample of SNPs. In the neutral Wright-Fisher model, changes in allele
frequencies due to genetic drift can be approximated by a normal distribution
when the allele frequency change is small and the frequency is far from the
boundaries at 0 and 1. If x; is the amount of drift from a node with allele
frequency p;, then the allele frequency change can be approximated as x; ~
N(0,(1—e~%)p;(1—p;)) where d; = t;/2N; is the number of generations scaled
with the population size??. We collect the factor (1 — e~%) into a single factor
¢; and substitute the node-specific p; with a SNP-global p giving the tractable,

approximate, expression
x; ~ N(0,¢;p(1 = p)).

Consequently, we can approximate the joint distribution of allele frequencies at

all leaf nodes as

P, — P,
P,—PFy | ~= N(Oap(lfp)z)’ E:A~diag(co,...,07) AT (2)

P — P,

where matrix 3 is called the admixture graph covariance matriz.

The empirical estimate of the covariance of allele frequencies is denoted the
data covariance matriz. In real data we never observe the population allele
frequencies but rather the sample allele frequencies. This complicates the com-
putation of the data covariance matrix slightly. Let p;; be the sample allele
frequency in the i’th population at the j'th SNP, ¢ =0,1,...,n,j=1,..., N.
They are assumed to come from the distribution

1
Bin(mij7Pij) (3)

mij

Dij ~

where m;; is the number of haplotypes sampled and F;; is the population allele

frequency.

17


https://doi.org/10.1101/2022.09.06.506725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.06.506725; this version posted September 6, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Denote population ¢ = 0 an outgroup, and consider the intuitive estimate of

the covariance matrix
1N
Skg = ~ Z: Prj — Poj)(Pij — Poj) (4)

If there are any missing values in a summand, we leave that summand out of
the sum. Regardless of missing values, is inherently biased because the inner
term (prj —poj)(Pij —Poj) does not have the same mean as (Py; — FPo;) (P — FPoj)-

From we calculate the difference as

Pyj (1 — Py;) n Po; (1 — Poj)

mij mij

Lip=ty

which suggests the following bias correction factor for Sy ;:

pkg pk] pOj pO]
B =1q- ”NZT Z my 1

j=1

After correcting, we normalize with

to take the factor p(1 — p) from into account.

If the sample allele frequencies were normally distributed and independent
across markers, the estimator in would be Wishart distributed and the de-
grees of freedom would be the number of markers. The sample allele frequencies

are not independent and only approximately normal, yet we use the likelihood
W (S/h; S + B/h,df). (5)

The degrees of freedom, df, is adjusted to take into account the lack of inde-
pendence. We estimate df using R bootstrapped replicates of S/ h which we

will denote X, ..., X(B) Let X be the average of the bootstrap samples. It
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would be natural to estimate the df with the maximum likelihood of the model

X0 x® WX, df) (6)

However, simulations show that the estimates of df from @ give results that
are less accurate than the following moment-based estimator (Supplementary
Figure [S13). We take advantage of the fact that the variance of the (k,1)’th

entry of a Wishart distribution with mean ¥/df and degrees of freedom, df, is

1
dff(‘lfil + Uy ¥y
to estimate the df as
. no.n ) n 1 - B 9
arguin ; ; (Var(ngz)a LX) - (X + kaXu)) (7)

where Var is the sample variance. This moment-based estimator leads to better
performance of AdmixtureBayes (Supplementary Figure [S13)).
In practice, to make the inference more robust to deviations from the prior,

we normalize the matrices by using the likelihood
W (csS/h;cs(S + B/h), df) (8)

where ¢g = (logy(L)L + L)/tr(S/h). For more on this, see the later section on

Robustness Correction.

Admixture Graphs

An admixture graph consists of a topology and a set of continuous parameters.
The space of topologies for a given number of leaves, L, consists of all uniquely

labeled graphs of the set of all directed acyclic graphs which fulfills

1. There exists one and only one root. That is a node with no parents and

exactly two children.
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2. The number of nodes with no children is L. All these nodes have only one

parent and are called leaves.
3. If a node is not a root nor a leaf, it has either

(a) 1 parent and 2 children in which case we call it divergence node.

(b) 2 parents and 1 child in which case we call it admixture node.

4. There are no eyes, i.e. the parent nodes of an admixture node are distinct

(and the child nodes of a divergence node are distinct).
The labeling consists of

1. All leaves are given a unique label.

2. Parent edges of an admixture node can be either a ‘main’ branch or an

‘admixture’ branch. All admixture nodes have one parent edge of each
type.

We do not label branches and nodes in general, meaning that even though the
the leaves are given a unique label, the leaves themselves are not unique. For
example, switching the labels of two leaves that form a cherry in the graph,
would not change the graph. For a more formal definition, see the definition of
topology in Appendix

All branches have a length in the interval (0,00) and all admixture nodes

are given an admixture proportion in the interval (0, 1).

Prior

We define a prior on the topology, G, and on the continuous parameters of the
admixture graph. The continuous parameters include the branch lengths, 7=
(c1,...,¢p), and the admixture proportions W = (wi,...,wk). Let K denote
the number of admixture events, L the number of leaves, and D = 2L — 2+ 3K

the number of branches. The full prior is then

P(G, 7, W) = P(G|K)P(K)P(?|K)P(W|K).

20


https://doi.org/10.1101/2022.09.06.506725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.06.506725; this version posted September 6, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

The prior on the number of admixture events is a geometric distribution with
parameter 0.5 (truncated to max 20). The prior on G, P(G|K), is a uniform
prior on all labeled admixture graphs with K admixture events. To evaluate
this prior, we need to calculate the number of possible topologies for a given

number of admixture events. Therefore we have derived the recurrence formula

N(L,P,K,E)= 2(E+1)N(L—1,P,K,E+1)
+(L—-2P+1)N(L—1,P—1,K,E)

+(L+2P+3K —2E —2)N(L - 1,P,K,E)

2P +1)

LN AL P LE -1 E -1
4P+1)(P+2)

it | it ) 1 ~1
D NEHLPA2K -1 E)
(P“Li)((L 2)P UN(L+1L,P+1K —1,B)
(L—2P)(L—2P+1)

+ LT N(L+1,PK —1,E),

where L is the number of leaves, P is the number of pairs of leaves that share a
common parent, K is the number of admixture events, F is the number of eyes,
and N(L,P,K,FE) is the number of unique topologies with those attributes.
Notice that we here allow eyes which otherwise are disallowed in our definition

of admixture graphs. See Appendix [A-3] for proof. Then

1
S WRIN(L, P K, 0)

PGIK) =

For the admixture proportion prior, P(3|K ), we chose the uniform distri-
bution on the interval (0,1).

For the prior on the branch lengths, P(7|K), we chose to let all branch
lengths be independent and marginally follow the distribution

2L -2
D

ciNExp< ) i=1,...,D 9)
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The rate of the exponential prior adapts to the topology such that graphs
with many branches, and thereby many admixture events, are expected to have
smaller branch lengths. For motivation see the following section on Robustness

Correction.

Robustness Correction

In the Bayesian phylogeny program MrBayes?Y, it has been shown that in-
dependent, exponentially distributed priors on the branch lengths can unduly
influence posterior estimates of total tree length®?, which could also be a prob-
lem for AdmixtureBayes. To see this, consider the average branch length c.
For simplicity, assume the effective population size, N., is constant across the
admixture graph. Furthermore, suppose that the exponential rate of @[) is 1.
Let T = >_T; be the total time (not drift) of all branches in the admixture

graph. Then we can write

D
1 T; T
C = — T 2Ne ~ . 10
¢ D;e 9DN, (10)

Since it is an average of independent random variables, its mean and variance

are

E(@@) =1 (11)
Var(c) = % (12)

This means that the prior expects % to be very close to 1. However, for
real datasets we would expect the ratio to vary much more, and there is no
biological reason why it should be near the arbitrary number 1. For a specific

dataset, if the true value of % were smaller than 1, the posterior would be

overestimated for admixture graphs with higher values of ﬁ. Such graphs
would generally possess a deflated number of admixture events and thereby a

smaller D. Similarly, large true values of the ratio would result in a skew towards
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admixture graphs with an inflated number of admixture events.

To mitigate the problems caused by the independent, exponential priors, Mr-
Bayes includes an alternative compound Dirichlet-Gamma prior on the branch
lengths, such that the variance of the average branch length can be set arbitrar-
ily high®?. However, we normalize the data covariance matrix and adjust the
rates of the exponential distributions accordingly.

To reduce the sensitivity of our posterior estimates to the prior, we wish for

T

the prior exponential rate of ¢; to be close to s75—. We rewrite
2L -2 ED . ¢

D 2L -2

The first fraction is manageable because the prior is allowed to depend on L and
D. The second fraction is the average branch length if there are no admixture
events in the admixture graph. It can be estimated by summing the outgroup-
leaf distances for all leaves and dividing by the number of branches between the
outgroup and the leaves. Denote that divisor D. Unfortunately, D depends on
the topology. Therefore, we approximate D ~ L log, (L) + L, which leads to the

approximation

_ E L_l . C;
Ele] ~ QLD 2. [LZI:%(%TL ) (14)

where C; is the set of indices of the branches between the outgroup and leaf [.

Regardless of the true topology, we can estimate E [ZzL:1 > .o ci] by the trace

1€Cy

of the data covariance matrix.

B = 2L =2 tr[S/h]

== Thog,() 1 L (15)
°oL -2 1
e (16)

Instead of letting be the exponential rate of the branch length prior, we

2L=2 Y6 the expected mean

normalize the data covariance matrix by cg and let =55

of the branch lengths. We avoid having a prior that depends on the data by
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moving cg out of the prior. However, since cg depends on the data, the matrix
¢$S/h would not be Wishart distributed, even if S/h were truly Wishart dis-
tributed. The scaling by cs therefore adds another layer of approximation to
the likelihood.

This robustness correction makes the graph inference independent of the
absolute scale (as measured by the trace) of the data covariance matrix. The
maximum likelihood methods TreeMix2, qpGraph, and MixMapper® inher-

ently have this property as well.

MCMC

The MCMC is implemented as a parallel Metropolis coupled MCMC algo-
rithm829 to increase the number of jumps between modes of the posterior
surface. Because admixture graphs with different number of admixture events
also have different numbers of continuous parameters, we use the reversible jump
generalization of the MCMC algorithm®. The proposal distribution is a mix of

7 smaller proposals. They are

1. Add an admixture branch to the admixture graph. An admixture branch
goes from a source branch to a sink branch (Figure . To make the
proposal, a random sink branch, s, is chosen with probability % where D
is the number of branches in the graph (not including the branch to the
outgroup). Next, a random source branch, s, is chosen from the remaining
branches (including the root/outgroup branch) such that an addition of an
admixture branch would not create a cycle in the graph. If the number of
possible sink branches is D’(s), the probability of the sink position is D+@'
Next the attachment point on the sink branch is simulated uniformly. If
the branch lengths of s and s’ is ¢(s) and ¢(s’) the attachment outcome
has density m If the source branch is the root branch, we simulate
the attachment point with an exponential distribution, Exp(1), instead.
The new admixture proportion is simulated uniformly between 0 and 1,

and the admixture branch length, 3, is simulated from Exp(1) with density
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e~%. Lastly, the labeling of the two parent branches of the new admixture
node is simulated. The probability of either possible labeling is % In

conclusion, the density is

1 1 1

1
D'(s)e(s)e(s’) 2

(17)

Sl =

To find the acceptance probability of this proposal, we calculate the pro-
posal probability of the reverse move (see proposal number 2). The re-

versible jump Jacobian factor is 1.

2. Remove an admixture branch from the admixture graph. An admixture
branch can be removed if 1) its parent is not an admixture node and 2)
its removal will not cause an eye. Let the number of admixture branches
eligible for removal be K’. We choose uniformly from that set and remove

the admixture branch. The density is

= (18)

3. Node sliding. A random branch whose parent is a divergence node is
chosen. We move its attachment point to its source branch a distance
Azr where x ~ x2(1). A node can often be slid either up and down and
sometimes the sliding node meets a bifurcation where it can slide in either
of two directions. We choose the new node position uniformly from the set
of the possible sliding destinations, following the topological constraints
defined in step 1. If the sliding node slides out of the graph, we reject
the proposal. The forward density is x*(§)/w where w is the number of
possible sliding destinations for a node when moved a distance x from its
position in the current graph. We compute the backward density using the
same formula. We update A on-the-fly following guidelines for adaptive
proposals in MCMCHY, eliminating the need for pre-analysis parameter

tuning.
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sink branch

Fig 2: When adding an admixture branch (green), we will randomly draw the
branch where it comes from, the source branch (red). The admixture branch
goes into the sink branch (blue).

4. Random walk on the branch lengths. We add a normally distributed
noise to all the branch lengths. If any branch length become negative,
we automatically reject the proposal. The backward density is identical
to the forward density. The variance of the random walk increments is
controlled by parameter s which we also adapt on-the-fly using adaptive

strategies.

5. Random walk on the admixture proportions as in step 4 but with another

s-value. Proposals outside (0, 1) are rejected.

6. Random walk on the branch to the outgroup as in step 4 but with another

s-value. Negative proposed branch lengths are again rejected.

7. Random walk on the branch lengths but inside the null space of matrix
A. This means that the proposed admixture graph will have the same
covariance matrix - and therefore the same likelihood - as the previous

graph. This proposal is also adaptive, as in step 4.

Graph Summaries

In the Results section we explained the two summaries, minimal topology and
consensus graph, which we will define formally here. Furthermore, we introduced

the Set Distance used to measure distances between admixture graph topologies
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and the Covariance Distance for distances between admixture graphs. In this
section, we define these quantities.
The Covariance Distance between two admixture graphs with L leaves and

covariance matrices X! and X2, respectively, is

L L
j{:j{: (B —x2) (19)

For a single node let the descendant set be the the set of its leaf descendants,
e.g. t ={l1,la,...,l,}. For a topology, let T be the topology set, which is the
set of descendant sets of all its nodes, excluding those sets for the leaf and
root nodes. The minimal topology is the extension of such a topology set to a
directed graph. The extension starts by adding the trivial descendant sets for
the leaves (containing only one leaf) and the root (containing all the leaves).
Denote this set 7. The minimal topology has the same nodes as 7 and there is

a connection from node t € T to ¢/ € T if

t£t (20)

t'Ct (21)

and At" e T\{t,t'}:t' Ct" Ct (22)

To summarize a sample of admixture graphs, ¢1,...,ggr, using a consensus

graph, we first transform all of them into their topology sets and obtain a sample
Ti,...,Tr. The posterior probability of a node can be estimated by the sample
frequency

fu):HTe{ﬂy.éﬂﬁ:teTH

The topology set of the consensus graph at threshold « is

:{teCJTi:f(t)>a}. (23)

The consensus graph itself is obtained by extending T to a directed graph with
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the rules — .

The Set Distance between two graphs g; and g, with topology sets T and
TQ is
T\ To| + T2\ T (24)
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A Appendix

A.1 Simulations of admixture graphs and datasets

In the simulation studies in Figures and we have simulated
admixture graphs. Their number of admixture events, admixture proportions
and branch lengths are simulated from our prior. However, our uniform prior on

the topologies does not naturally yield a simulation method. We constructed
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an alternative algorithm that simulates admixture graphs conditioned on the
number of admixture events using a discrete-time Markov chain that follows
lineages back in time. If there are L leaves, there are L free lineages at the
start. Given the number of leaves and the number of admixture events, we
know the number of divergence and admixture nodes. The free lineages choose

a parent node uniformly at random such that
1. No more than two lineages choose the same divergence node
2. No more than one lineage choose the same admixture node

3. No ‘eyes’ are formed. That is, two lineages from the same admixture node

will not choose the same divergence node.

4. The complete admixture graph can still be constructed. For example, if
no two lineages had chosen the same divergence node, there would not be

any free lineages in the next step of the Markov chain.

When two lineages have chosen a divergence node, a new free lineage is released
for the next Markov chain. Likewise, a chosen admixture node produces two
new lineages. The algorithm stops when there is just one free lineage left and
all divergence nodes and admixture nodes have been ‘filled’. For topologies
without admixture events, our simulation algorithm chooses uniformly between
the possible topologies. For topologies with admixture events, the algorithm
prefers admixture events closer to the root when compared to the uniform prior.

TreeMix and AdmixtureBayes do not operate with the same admixture graph
space. TreeMix allows admixture flow into the outgroup population, whereas
AdmixtureBayes does not. On the other hand, AdmixtureBayes searches through
admixture graphs with invisible admizture events. An admixture graph has an
invisible admixture event if its admixture graph covariance matrix can be ob-
tained by another admixture graph with fewer admixture events. For a fair
comparison, all simulated admixture graphs are from the intersection of the two

admixture graph spaces.
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The computations behind Figures and also include sim-

ulation of genetic data using ms™®. A command given to ms for simulation of

a graph with 5 populations could be

ms 250 2000 -t 0.4 —r 1 500000
—I 5 50 50 50 50 50 —en 0.0 3 0.8719

—en 0.0 2 22.705 —en 0.0 1 2.784

—en 0.0 5 0.5485 —en 0.0 4 7.878

—ej 0.01795 3 5 —en 0.01795 5 1.970

—es 0.03590 5 0.1829 —en 0.03590 5 36.041
—en 0.03590 6 1.705 —ej 0.05386 2 6

—en 0.05386 6 0.3165 —ej 0.07181 1 6

—en 0.07181 6 0.5572 —ej 0.08977 4 6

—en 0.08977 6 5.940 —ej 0.1077 5 6

—en 0.1077 6 100.0

In the above code 50 individuals are sampled in each population. To assess
how well AdmixtureBayes and TreeMix handle linked sites, we always simulate
linked SNPs (with r/t = 1/0.4 = 2.5). To lessen the computational burden, we
simulate the genome in 2000 independent segments of 500,000 sites. The branch
lengths of the admixture graph are incorporated by adjusting the population
sizes using the “-en” option. We always set the root population size to the high
value 100 to increase the number SNPs present in all populations. The outputs
of our ms commands are easily transformed into the input format of TreeMix
(which is identical to the input of AdmixtureBayes).

In the simulation study for comparing AdmixtureBayes and TreeMix on
admixture graphs with 10 populations, we simulated independent datasets. All
datasets were based on different admixture graphs with either 0, 1, 2 or 5
admixture events. The datasets also varied in the number of haplotypes (2, 20
or 50) and the number of genomic segments (2000 or 5000). We analyzed all

datasets with both AdmixtureBayes and TreeMix.
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In the simulation study for comparing AdmixtureBayes and TreeMix on sub-
sets of admixture graphs with 10 populations, we simulated datasets with 0, 1
and 2 admixture events, 5000 independent DNA segments, and 10 haplotypes
per population. For subsets of size x, we chose x populations uniformly from
the 10 possible populations. From the AdmixtureBayes samples in the previ-
ous simulation study we extracted the marginal distributions of the subgraphs
of those x populations. We compared those to the true subgraphs using Set
Distance and Topology Equality. From the TreeMix estimates of the previous
section we extracted subgraphs of the maximum likelihood admixture graphs
and also compared them to the true subgraphs. We refer to both these types
of results as ‘Big’ because they are based on the full, larger dataset. Likewise
we extracted datasets for the same x populations and analyzed them with both
TreeMix and AdmixtureBayes. We varied z between 3, 4 and 5 populations. A
subgraph of an admixture graph will often contain a smaller number of admix-
ture events than the full graph. Furthermore, the remaining admixture events
may be invisible in the subgraph. TreeMix does not consider graphs with invis-
ible admixture events. Therefore, we ran TreeMix with the number of visible
admixture events in the subgraph. When the true subgraph contains invisible
admixtures, TreeMix has probability 0 of finding the true graph. In compar-
ison, AdmixtureBayes can rarely visit graphs with invisible admixture events,
which could give it an unfair advantage in the comparison. Fortunately, this
only influences the Mean Topology Equality and Mode Topology Equality of
the Small subgraphs (not shown in Figure but in Figure , because the

Set Distance measures are unaffected by invisible admixture events.

A.2 Running TreeMix and AdmixtureBayes

TreeMix can estimate a maximum likelihood graph for a fixed number of ad-
mixture events, but the higher the number of admixture events, the higher the
maximum likelihood value. Therefore, the original TreeMix paper suggests iter-

atively adding admixture events and stopping when the added admixture event
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does not pass a test for statistical significance. However, to simplify the com-
parison, we ran TreeMix with the true number of admixture events. Otherwise
we used the default settings of version 1.13. The program first estimates an
initial admixture-free tree by iteratively adding best fitting populations in a
random procedure. Next, the admixture branches are added deterministically.
Because of the randomness of the first step, the starting seed could influence
the results. However, preliminary results showed that repeating the TreeMix
maximum likelihood optimization for different seeds and choosing the highest
likelihood graph amongst the repeated analyses did not change the accuracy of
the estimated admixture graphs when analyzing our simulated datasets. Most
seeds produced the same maximum likelihood graphs. Therefore, we used only
one seed.

For each analysis, AdmixtureBayes was run for up to 12 hours on 15 cores.
We ended the analysis when the effective sample sizes of several summary statis-
tics exceeded the threshold 20022 after removing the first half of the samples
as burn-in. This is an indication that the Monte Carlo Markov Chain has ade-
quately approximated its stationary distribution, which is the target posterior
density. For this reason, many analyses lasted no longer than 1 hour. Even if a
chain did not fulfill the stopping criteria after 12 hours, we included the chain
in the subsequent analysis after removing the burn-in period. Otherwise, we

used the default settings.

A.3 Number of admixture graph topologies

In order to compute the prior on the space of admixture graphs, we use the
number of possible admixture graph topologies with K admixture events. This
number grows at least exponentially with K and is further complicated by our
specific requirements to the admixture graph topology. For computational con-
venience we will consider an extended class of admixture topologies: a multi-
graph topology with L leaves is an acyclic directed multigraph (which is a graph

that allows more than one edge between two vertices) for which
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1. There exists one and only one root. That is a node with no parents and

exactly one child.

2. The number of nodes with no children is L. All these nodes have only one

parent and are called leaves.
3. If a node is neither a root nor a leaf, it has either

(a) 1 parent and 2 children in which case we call it a divergence node, or

(b) 2 parents and 1 child in which case we call it an admizture node.

This extends our original definition of an admixture graph topology by allowing
eyes, i.e. admixture nodes whose parent branches merge in the same divergence
node. The root is also now a node with one child instead of two, which means
that all multigraph topologies have a single branch “on top.” Furthermore, we
explicitly label all inner nodes. As before each admixture node will have one

masn parent branch and one admizture parent branch. We will use the notation
e The edges leading to leaves are referred to as terminal edges.
e A set of two terminal edges from a single node is a pair.

These graph elements are illustrated in Figure [3]

Fig 3: In all of our illustrations the direction of edges is from top to bottom,
unless marked otherwise. This multigraph topology has 4 leaves, 1 pair, 2
admixture nodes, 5 divergence nodes, and 1 eye. The root is the node at the
very top of the topology. We have not explicitly labeled the nodes and branches.

A multigraph topology consists of a set of nodes V, a set of main edges &y,
and a set of admixture edges £4. There are L leaf nodes, {ly,...,Ip} C V.

For every admixture node, one of its parent branches belongs to £4 and the
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other belongs to £;. Note that all nodes are uniquely labeled. However, we are
only interested in counting the number of topologies that differ in a nontrivial
way. For example, switching the labels of leaf nodes that form a pair can be
considered a trivial change to a topology. Therefore, we construct equivalence
classes on the set of multigraph topologies and count those equivalence classes
instead.

Let £ = £4WE) be the multiset union of £y; and £4. The admixture edges
of a multigraph topology (V,Enr,E4) are classified into two subsets, £y and
Ea, but we can also disregard the classification and consider the reduced multi-
graph topology (V,E€). We call a graph isomorphism between reduced multi-
graph topologies shape preserving while a graph isomorphism between multi-
graph topologies is symmetry preserving. A symmetry preserving isomorphism
is clearly also shape preserving. If f is a symmetry preserving graph isomor-
phism, we say that f is leaf preserving if f(l;) =1; for all j =1,...,L. When
counting admixture graphs, we consider two admixture graphs different if and
only if they are not isomorphic under such an isomorphism.

For a fixed number of leaves L, number of pairs P, number of admixture

events K, and eyes E, we will consider the three sets

1. The set of equivalence classes under shape preserving isomorphisms is

denoted S, p i, 5. The equivalence classes are called shapes.

2. The set of equivalence classes under symmetry preserving isomorphisms is

denoted Uy, p k.. The equivalence classes are called unlabeled topologies.

3. The set of equivalence classes under leaf preserving isomorphisms is de-
noted 7z p i,z The equivalence classes are called topologies and some-

times explicitly labeled topologies.

We are particularly interested in the cardinality of the set T p k g, which we
denote by N(L, P, K,E). The difference between the sets Si p.x g, UL p.k.E

and 77, p i, is illustrated in Figure @
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In Figure 4] both shapes in S3 1,10 correspond to two unlabeled topologies in
Us1,1,0, and each of the four unlabeled topologies in U3 11,0 correspond to three
topologies in 73 1,1,0. However, in general some graphs exhibit more symmetry
than others. Let Ug be the set of unlabeled topologies corresponding to the
shape S, and Ty the set of topologies corresponding to the unlabeled topology

U, so that

TL.pK.E = U Tu = U U 7. (25)

UelUyr p k. E SeSr p,x,E UEUs
As illustrated in Figure [5] we can have |[Ug, | # |Us,| with 51,52 € St pk.E,
and ‘TUl‘ #* ‘TUQ‘ with Uy,Us € Usg, S € SL,pﬁKﬁE.
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12 13 ll 12 13 ll

Fig 4: Representatives of the sets 731,1,0(left), Us110(center) and
S3.1,1,0(right). In all of our illustrations on labeled or unlabeled topologies,
the admixture edges in £4 are marked with a dashed line. Here |S51.1,0] = 2,
|Z/{371’1’0| =4 and |7§,1,1’0| = N(3, 1, 1, 0) =12.
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S

Fig 5: Tlustration of a shape, S; (left), and the three unlabeled topologies
corresponding to a shape Sy (S2 not explicitly drawn). We have S1, 52 € S2.0.3.1,
|Us,| = 2 and Ug, = {U1,Us,Us}. Furthermore, the leaves of U; and U, are
indistinguishable, while the leaves of Us can be told apart. To see this, follow
the path from the leaves to root; in U; and Us the path will only depend on
whether the parent branch of the first encountered admixture is in £y or €4
and not on the starting leaf. In contrast the starting leaf does matter for Us so
the leaves are distinguishable. Hence, |Ty,| = |Tu,| = 1 but |Ty,| = 2.

Given an unlabeled topology U € Uy, p k,E, choose an arbitrary multigraph
topology representative of U denoted G. Let T/, be the set of all multigraph
topologies obtained by relabeling the L leaves of G using the L! possible permu-
tations. Clearly each equivalence class in Ty is represented by at least one of the
elements in 77, implying |7y < |T|. Consider the set of elements of 77, that
are isomorphic to G under a leaf preserving isomorphism. It can be considered
as a set of permutations, Hg, where the identity permutation corresponds to G.
It is straightforward to show that Hg is a subgroup of the permutation group.
Because H¢ is a subgroup, its cosets are disjoint, contain the same number of
elements, and span the whole permutation group (see Figure @ This char-
acterization gives us a more concrete representation of the elements 7; p i, g,

namely as equi-sized sets of permutations of the leaf-labels.
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Slel 52:U2

Fig 6: The two shapes of §(5,2,0,0), denoted S; and Sy are illustrated above.
Here, Us, = {U1} and Us, = {Usz}, because there are no admixture edges.
Interestingly, the shape Sy exhibits more symmetry than the shape S;. To
see this, let G; and G5 be representatives of U; and Us with leaves labeled
l1,12,13,14,15 from left to right. In both cases |77 | = |Tf,| = 5! = 120. The
group Hg, = (e, (12),(34)) has four elements and so |Ty,| = 120/4 = 30. The
group Heg, = (e, (12), (34), (13)(24)) has eight elements and so |Ty,| = 120/8 =
15. Altogether, N(5,2,0,0) = 15+ 30 = 45 by decomposition . Notice that
the leaves I4 and l5 form a pair in one fifth of the elements in both |7y, | and
|Tu, | although the two sets are of different size.

There are two basic approaches for counting phylogenetic trees with labeled
leaves: recurrence by splitting the tree at the root¥ or recurrence by removal

25 The first approach is difficult to generalize to admix-

of one of the leaves
ture graphs, but the latter strategy behaves relatively nicely. Our strategy for
counting topologies is based on decomposing a topology into a recursive series
of predecessors, such that we only need to count the number of possible pre-
decessors in each step. The predecessor p(G) of a labeled topology G with L
leaves is defined as follows. In p(G) the leaf I, and the terminal edge leading

to it are removed and

1) If the terminal edge was from a node with outdegree 2, the edge to it and

the remaining edge from it are combined to a single edge.

2) If the terminal edge was from an admixture node, the admixture node is
also removed, its parental edge in &£ is redirected to a new leaf [;, and

its parental edge in €4 is redirected to a new leaf I;1.

Examples of topologies and their predecessors are given in Figure|7] The topol-
ogy with only one edge (graph p(Gi.2) in Figure has no predecessor. By

examining the graph elements of the predecessors, we can now derive a recur-
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rence formula for the numbers N (L, P, K, E):

N(L,P,K,E)= 2(E+1)N(L—1,P,K,E+1)
+(L-2P+1)N(L—1,P-1,K,E)

+(L+2P+3K —2E —2)N(L - 1,P,K, E)

2(P 4 1)

L NI L P LE - LE 1)

AP +1)(P+2)

AWV vy P42 K- 1, E
L(L+1) ( + 1, + 2, 5 )
(P+i)((L 2)P UN(L+1,P+ 1K —1,B)
(L—2P)(L —2P + 1)

+ SRRt N(L+1,P,K —1,E).

The initial conditions are N(1,0,0,0) = 1 and N(L,P,K,E) = 0if L < 1,
P>2L, K<EorE<0.

The predecessor of any topology in Tz p kg is from one of eight possible
sources T pr k' g We count N(L,P, K, E) by looking at these eight sub
cases and finding out which graphs in T/ p/ i/ g are eligible predecessors and
of how many graphs in 77, p k g. An example of all the sub cases 1.1) — 2.4) is

presented in Figure [7}

1.1) The latest leaf I, stems from an edge forming an eye in p(G). Then
p(G) € Tr—1,p,ix.E+1, and since every topology in Tr_1 px g+1 has E+1

eyes, and every eye has two edges, the contribution to N(L, P, K, E) is

2AE+1)N(L—1,P,K,E+1). (26)

1.2) The latest leaf [, stems from a terminal edge not belonging to any pairs in
p(G). Since p(G) € Tr—1,p—1,k,E, and every topology in 71,1 p_1 kg has
L —1 terminal edges, 2(P — 1) of which belong to a pair, the contribution
to N(L,P,K,E) is

(L-2P+1)N(L-1,P-1,K,E). (27)
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1.3) The latest leaf [, stems from an edge belonging to a pair in p(G). Since
p(G) € Tr—1 pk.E, and every topology in Tr_1 p i g has 2P edges be-

longing to a pair, the contribution to N(L, P, K, F) is

2PN(L—1,P,K,E). (28)

1.4) The latest leaf [}, stems from an edge which is neither terminal nor form an
eye in p(G). Since p(G) € Tr—1,p.k,E, and every topology in Tr_1,p k.E
has 2L + 3K — 3 edges by induction, L — 1 of which are terminal and other

2F form eyes, the contribution to N(L, P, K, E) is

(L+3K —2E —2)N(L—1,P,K,E). (29)

2.1) The latest leaf I}, of G stems from an admixture node formed by joining

together the edges Iy, and ;41 that form a pair in p(G). We now have
p(G) € Tr41,p41,k-1,E—1, but not every topology in Tr41,p+1,k-1,E-1
have the property p; that the leaves I;, and l4; form a pair.
Let U € Ur41,P+1,Kk—1,E—1 be any unlabeled topology. By simple combi-
natorics, the proportion of multigraph topologies with property p; among
the (L + 1)! elements in 7} is 2(P + 1)/(L? + L). Since the property p;
is invariant under leaf preserving graph isomorphisms, and every equiv-
alence class under the leaf preserving graph isomorphisms in 7, have
the same cardinality, the proportion of p; among the labeled admix-
ture graphs in Ty is also 2(P + 1)/(L? 4+ L). Finally, because this ap-
plies to every U € U1, pi1,K-1,E—1, Using we conclude that the
proportion of topologies having property p; among all the topologies in
Ti+1,P+1,K-1,6—1 must be 2(P +1)/(L? + L) too. Therefore, the contri-
bution to N(L, P, K, E) is

2(P+1)
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2.2) The latest leaf [;, stems from an admixture node formed by joining to-
gether two edges belonging to two distinct pairs in p(G). We now have
p(G) € Toy1,p+2,K-1,E, but not every topology in 741, py2 k1,2 have

the property po that the leaves [; and l; 1, belong to two distinct pairs.

Let U € Ur4+1,p+2,k—1,E be any unlabeled topology. By simple combina-
torics, the proportion of multigraph topologies having property po among
the (L + 1)! elements in 7, is 4(P? + 3P 4+ 2)/(L?* + L). As before, since
the property po is invariant under leaf preserving graph isomorphisms, all
equivalence classes in 7, are of equal size and this holds for all unlabeled
topologies, the proportion of topologies having property po among the

elements in 77,41 pt2, x—1,p is the same. Therefore, the contribution to

N(L,P,K,E) is

4(P?+3P+2)

o NL+LP+2K-1LE). (31)

2.3) The latest leaf [}, stems from an admixture node formed by joining together
two terminal edges exactly one of which belongs to a pair in p(G). We now
have p(G) € Tr+41,p+1,k-1,E, but not every topology in Tr41,p+1,k-1.E
have the property ps that exactly one of the leaves [, and ;1 belong to

a pair.

Let U € Ur4+1,p+1,k—1,E be any unlabeled topology. By simple combina-
torics, the proportion of multigraph topologies having property ps among
the (L + 1)! elements in T, is 4(PL + L —2P? —3P —1)/(L? + L). As
before, since the property ps is invariant under leaf preserving graph iso-
morphisms, all equivalence classes in 7;; are of equal size and this holds
for all unlabeled topologies, the proportion of topologies with property
p3 among the topologies in 7741, p+1,x—1,r is the same. Therefore, the
contribution to N(L, P, K, E) is

4(PL+L—-2P%?—-3P—1)
L2+ L

N(L+1,P+1,K—-1,E). (32
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2.4) The latest leaf {;, stems from an admixture node formed by joining to-
gether two terminal edges outside the pairs of p(G). We now have p(G) €
TL+1,P,K—1,E, but not every topology in 7141, p x—1,r have the property

py that the leaves {1, and I;41 do not belong to a pair.

Let U € Ur+1,p,xk—1,r be any unlabeled topology. By simple combina-
torics, the proportion of multigraph topologies having property p4 among
the (L + 1)! elements in T} is (L? — 4PL + L + 4P? — 2P)/(L* + L).
As before, since the property p4 is invariant under leaf preserving graph
isomorphisms, all equivalence classes in T}, are of equal size and this holds
for all unlabeled topologies, the proportion of topologies having property
ps among the elements in 7741 px—1 g is the same. Therefore, the con-
tribution to N(L, P, K, E) is

L? —4PL+ L+ 4P? —2P
L2+ L

N(L+1,P,K—-1,FE). (33)
Formula (A.3]) follows by summing up all the contributions — . The

recurrence procedure converges in L + 2K steps, because either L decreases by

one, or K decreases by one increasing L by one.

47


https://doi.org/10.1101/2022.09.06.506725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.06.506725; this version posted September 6, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

A\t

Gl.l

la Iy I I3

h

Ga.3 p(Ga.3) Gaa p(G2.4)

Fig 7. Example graphs and their predecessors from each sub case 1.1) — 2.4).
The graph p(G1.2) is the only labeled admixture graph that doesn’t have a
predecessor, and the ultimate predecessor of every other graph.
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Fig S1: We simulated datasets based on admixture graphs with 10 populations
and 0, 1, 2, or 5 admixture events and analyzed them with TreeMix and Admix-
tureBayes. For explanation of how we simulated the datasets, see Appendix [A1]
The simulations were equally split between datasets with 2, 10, and 50 haplo-
types per population and equally split between datasets with 2000 segments and
5000 segments of 500 kb linked sites. Therefore, each column in the plot is a mix
of datasets with 2, 10 and 50 haplotypes and 2000 segments and 5000 segments.
We compared the results of AdmixtureBayes and TreeMix to the true under-
lying admixture graph using 5 different measures (see Results). The thinned
AdmixtureBayes results are extracted from the unthinned AdmixtureBayes by
discarding all graphs that do not contain the true number of admixture events.
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Fig S2: In Figure we separated our simulation study results based on the
number of admixture events while averaging over the number of haplotypes per
population (2, 10, or 50). These are the same analysis results, instead separated
by the number of haplotypes in each population while averaging over numbers
of admixture events (0, 1, 2, or 5).
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Fig S3: Using admixture graphs with 10 leaves and 0, 1 and 2 admixture events,
we simulated 60 different admixture graph datasets with ms (see Appendix.
We estimated randomly selected subgraphs of size 3, 4 and 5 from each dataset.
The Small column contains graphs built from the marginal dataset and the Big
column contains subgraphs of graphs obtained from the full dataset. The Mode
Set Distance on the y-axis measures the distance between the true topology
of the subgraph and the subgraphs estimated by either AdmixtureBayes or
TreeMix.
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Ustlshim

Ustlshim

Aymara Anzick Koryak Saqqaq

Anzick

Athabascan

Fig S4: The two minimal topologies with the highest posterior probabilities in
our real dataset. Each inner node is colored according to the posterior prob-
ability that the true graph has a node with the same descendants. Higher
probabilities have a darker shade of green. The posterior probability is written
as a percentage in parentheses inside each node, next to the node name, which
is arbitrary. The left graph has a posterior of 32%. The right graph has a
posterior of 19%.
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UstIshim

Saqqaq

Anzick Aymara Athabascan

Fig S5: From the posterior AdmixtureBayes samples, we computed the posterior
probability of all nodes. The above graph is the smallest directed graph with
all the nodes that have a posterior probability higher than 75%. Each internal
node is colored according to its posterior probability, as described in Figure [S4}
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Sub topology:
Athabascan, Koryak and Saqqaq.

Sub topology:
Greenlander, Koryak and Saqqaq.

Saqqaq

Athabascan Koryak

Posterior: 96%

Koryak Saqgaq
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Koryak Saqqaq
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Koryak

Greenlander Saqqaq

Posterior: 20%

Koryak Saqqaq

Posterior: 1%

Saqqaq

Greenlander Koryak

Posterior: <1%

Fig S6: From the posterior AdmixtureBayes sample, we computed the posterior
probability of all minimal topologies for several subsets of the populations. Here
we show the three topologies with the highest posterior.
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and Athabaschan.

Sub topology: Greenlander, Koryak,
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Fig S7: Continuation of Figure [S6]
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Fig S8: The method used to calculate the Set Distance between two admixture
graph topologies (left). First, the topologies are transformed in their descendant
sets/topology sets (middle). The distance is then calculated as the symmetric
set distance between the two topology sets (right).
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Fig S9: Examples of how the minimal topology is calculated. First, we derive
the topology set (middle) from the topology (left). The minimal topology (right)
is the smallest possible graph that is consistent with the topology set. Note,
node labels assigned to the topology (left) are arbitrary and do not identify
corresponding nodes in the minimal topology (right).

57


https://doi.org/10.1101/2022.09.06.506725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.06.506725; this version posted September 6, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Chain 1 Chain 2 Chain 3

T T T T
0 50000 150000 0 50000 150000 0 50000 150000

Posterior
-140000 -60000 O
I T O Y |
-140000 -60000 O
I T I N |
—-120000 -60000 0
I T O N |

20
1

Total Branch Length
5 10 15 20
1 1 1 1
10 15 20
L 1 1
5 10 15
L 1 1

0 50000 150000 0 50000 150000 0 50000 150000
2
g v s v
> . 3 w .
o o | o B
ERE P : S . ..
g S ;—'" : S S -?—"-—-'——'—. T
< —] S T——— :
5 . N o -
. 0
It
£ H H o .
2 T T T T T T T T T T T T
0 50000 150000 0 50000 150000 0 50000 150000
Iteration Iteration Iteration

Fig S10: Here, we plot the trace plots for our simulated dataset. Fach chain
is shown as a separate column. Each summary statistic is shown as a separate
row.


https://doi.org/10.1101/2022.09.06.506725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.06.506725; this version posted September 6, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Gelman-Rubin Convergence Diagnostics
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Fig S11: We plot the Gelman-Rubin convergence diagnostics on our simulated
dataset for our three summary statistics after a burn-in fraction of 0.35. A rapid
convergence to 1 indicates that this is a sufficient burn-in period.
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Fig S12: We here show the autocorrelation plots for the summary statistics
of our simulated data after a burn-in fraction of 0.35. We only show the re-
sults for Chain 1 and do not include the number of admixture events as the
autocorrelation shows strange behavior for discrete variables.
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Fig S13: We simulated admixture graphs with 10 leaves and 0, 1 and 2 admix-
ture events. Using these graphs, we simulated datasets using ms with different
sample sizes. The top plot illustrates the ratio between the maximum likelihood
degrees of freedom estimate from @ and the variance estimator in @ We ran
AdmixtureBayes with the maximum likelihood estimate (MLE), the variance
estimate (VAR), and 2 and 4 times the variance estimate (VARx2 and VARx4
respectively). We calculated the Mean Topology Equality, which was maximized
when using the VAR estimates.
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Fig S14: In Figure we calculated how TreeMix and AdmixtureBayes per-
formed when estimating subgraphs. Here we have stratified the same analysis
according to subgraph size (in the columns) and measure of accuracy (in the
rows)
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Fig S15: In Figure [SI we separated our simulation study on the number of
admixture events. Here, it is separated on the length of the simulated genomes.
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