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Abstract

Admixture graphs are mathematical structures that describe the an-

cestry of populations in terms of divergence and merging (admixing) of

ancestral populations as a graph. An admixture graph consists of a graph

topology, branch lengths, and admixture proportions. The branch lengths

and admixture proportions can be estimated using numerous numerical

optimization methods, but inferring the topology involves a combinato-

rial search for which no polynomial algorithm is known. In this paper, we

present a reversible jump MCMC algorithm for sampling high-probability

admixture graphs and show that this approach works well both as a heuris-

tic search for a single best-fitting graph and for summarizing shared fea-

tures extracted from posterior samples of graphs. We apply the method

to 11 Native American and Siberian populations and exploit the shared

structure of high-probability graphs to address the relationship between

Saqqaq, Inuit, Koryaks, and Athabascans. Our analyses show that the

Saqqaq is not a good proxy for the previously identified gene flow from

Arctic people into the Na-Dene speaking Athabascans.

Author Summary

One way of summarizing historical relationships between genetic samples is by

constructing an admixture graph. An admixture graph describes the demo-

graphic history of a set of populations as a directed acyclic graph representing

population splits and mergers. The inference of admixture graphs is currently

done via greedy search algorithms that may fail to find the global optimum.

We here improve on these approaches by developing a novel MCMC sampling

method, AdmixtureBayes, that can sample from the posterior distribution of ad-

mixture graphs. This enables an efficient search of the entire state space as well

as the ability to report a level of confidence in the sampled graphs. We apply

AdmixtureBayes to a set of Native American and Arctic genomes to reconstruct

the demographic history of these populations and report posterior probabilities

of specific admixture events. While some previous studies have identified the
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ancient Saqqaq culture as a source of introgression into Athabascans, we instead

find that it is the Siberian Koryak population, not the Saqqaq, that serves as

the best proxy for gene flow into Athabascans.

Introduction

Admixture graphs1 provide a concise description of the historical demographic

relationships between genetic samples of populations, assuming their relation-

ships are the product of discrete, instantaneous splits and admixture events. The

assumption of discrete, instantaneous events is clearly an oversimplification for

most real data, but it facilitates interpretation and makes admixture graphs

a popular first step in analyses. Each graph topology is associated with pa-

rameters capturing population divergence and admixture proportions, and once

these are fitted to genetic data, the goodness of fit can be measured to determine

how accurately the graph captures the historical relationship between samples.

Inferring graph topologies, however, involves a combinatorial search, and since

the space of graphs grows super-exponentially in the number of populations and

the number of admixture events, an exhaustive search is typically not possible.

Instead, the search for well-fitting topologies is often done manually or through

greedy algorithms.

The most popular methods for estimating admixture graphs are TreeMix by

Pickrell and Pritchard2 and qpGraph by Patterson et al.1, both of which take

a greedy approach to searching the state space of graph topologies. qpGraph

allows users to sequentially identify the best phylogenetic position of a possibly

admixed population in a previously established admixture graph and evalu-

ate the improved fit in terms of simple allele-sharing statistics. The program

MixMapper by Lipson et al.3 employs a similar strategy and has options for

fitting up to two admixture events simultanously. TreeMix estimates an admix-

ture graph de novo by automatically estimating the best tree without admixture

events followed by automatic, sequential insertion of the admixture branches.
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In contrast to MixMapper and qpGraph, TreeMix searches through many po-

tential admixture graphs without user input. To penalize deviations from the

expected and observed allele sharing statistics, all three methods use a Gaussian

model for the distribution of allele frequencies among populations. The implicit

assumption in the Gaussian model is that changes in allele frequency due to ge-

netic drift can be approximated as a Brownian motion process. This assumption

dates back to the early work by Edwards and Cavalli-Sforza4 and has recently

re-emerged as a computationally attractive alternative to the full Wright-Fisher

process. It has previously been used in several other methods aimed at modeling

the joint distribution of allele frequencies among populations5.

There are also phylogenetic network methods that infer admixture graphs

using sets of locus-specific gene trees as nuisance parameters which are either

pre-estimated6 or integrated out using MCMC7 8. These approaches must eval-

uate the likelihood of each gene tree separately, making them more computa-

tionally expensive and therefore limited to fewer populations than the Gaussian

drift models. To handle larger datasets, some methods summarize all the gene

trees into a few statistics that are evaluated with a pseudo-likelihood9 10 for a

small reduction in accuracy10. In terms of speed, these pseudo-likelihood meth-

ods are similar to the Gaussian drift methods. However, the Gaussian approach

offers a way to compute a true likelihood, which we use in this paper.

The greedy search algorithms used by current methods do not guarantee

that the inferred graph is optimal. In practice, the optimal graph found by a

greedy search can potentially be very different from better-fitting, but never-

discovered, graphs11 12. Regardless of whether a search finds the optimal graph

or not, if a single graph is inferred and used for all downstream analysis, that

point estimate would not intrinsically report confidence in various estimated

features, such as the topology of relationships among populations, the presence

or absence of admixture events, and the intensity of those events. There might

be many graphs that fit the data equally well, and we should have more confi-

dence in features shared among many of them than we should in features that
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are only found in some of them; shared features are most likely signals in the

data while those that rarely occur are most likely spurious. Analyses based on

a single graph do not distinguish between features that are estimated with high

confidence and those estimated with low confidence. While it is possible to gen-

erate a distribution of TreeMix graphs across independent analyses of bootstrap

replicates, it is rarely done in practice.

Here, we provide an alternative to greedy searches. Based on a model sim-

ilar to TreeMix and qpGraph, we develop a Bayesian approach to sample over

the graph-space using a reversible jump Markov Chain Monte Carlo (MCMC)

method. The method can identify the graph with the highest likelihood en-

countered by the MCMC sampler, thereby effectively working as a heuristic

maximum-likelihood optimizer, or it can report several summaries of the poste-

rior distribution of admixture graphs. For example, it can estimate the graph

topology with the highest marginal likelihood when integrated over admixture

and divergence times as measured by occupancy in the MCMC sampler. Such a

marginal likelihood is computed in admixturegraph 13 as well, but the exhaustive

search algorithm of admixturegraph finds the graph with the highest likelihood -

not the graph shape with the highest marginal likelihood. A particular strength

of our new method is that it circumvents the need to report a single best graph

by allowing calculations of posterior probabilities of particular marginal relation-

ships between populations. We consider three approaches for this: one based on

simplifying admixture graphs into simpler structures, one based on summarizing

shared topologies into a consensus graph, and one based on subgraph analysis.

If the number of leaves in the considered subgraph is kept small, we will ob-

serve few distinct subgraphs with these leaves, and we can estimate a complete

posterior distribution over these graphs. Sampling subgraphs from the space of

full graphs allows us to incorporate information from other populations when

exploring the relationship between a subset of the populations.

We illustrate the utility of our method using simulations and reanalyze a pre-

viously published genomic dataset of Siberians and Native Americans14. We use
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the method to revisit two important and controversial questions in the history of

the peopling of the Americas. First, we analyze the origin of the Inuit and show

that they are modeled best as an admixture between a population represented

by the Saqqaq genome, and Native Americans, represented by Athabascans.

Secondly, we show that Athabascans are best represented as admixed between

a Native American population and a Siberian population most closely related

to the Koryak, but not the Saqqaq.

Results

The Methods section describes our implementation of a Markov Chain Monte

Carlo (MCMC) algorithm, AdmixtureBayes, which samples admixture graphs

from their posterior distribution. We summarize genetic data from multiple

populations as a matrix that captures how allele frequencies in the data co-

vary between populations. AdmixtureBayes samples graphs that explain this

covariance matrix. The topology of any sampled graph captures the relation-

ships between samples as a mixture of the graphically structured covariance

matrices. Branch lengths capture the amount of genetic divergence between

populations, measured by drift, and admixture events explain shared allelic co-

variance between otherwise independently evolving populations. As a prop-

erty of the MCMC algorithm, each graph is sampled at a frequency corre-

sponding to its posterior probability. AdmixtureBayes is available to use at

https://github.com/avaughn271/AdmixtureBayes.

Evaluating convergence and mixing rate

In order to evaluate the convergence of the MCMC sampler, we used two dif-

ferent metrics, both of which are based on examining summary statistics of the

chain. The summary statistics we chose to consider were the number of admix-

ture events, the posterior probability, and the total branch length of the graph.

Our first metric was simply examining the trace plots of the chain. From these
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plots, it is often possible to visualize the burn-in period. The second metric was

the more sophisticated Gelman-Rubin convergence diagnostic, which analyzes

the behavior of several chains run in parallel from different starting states.15

This diagnostic is based on calculating the ratio of the variance of the summary

statistic between chains to the variance of the summary statistic within chains.

A ratio close to 1 signifies that all chains have converged from their disparate

starting states to the same equilibrium distribution. We used the coda package

to perform this comparison.16 To evaluate the mixing rates of the chain, we

plotted the autocorrelation of the summary statistics as a function of the lag

between samples.

We demonstrated these analyses on a simulated dataset. Our simulated

dataset was generated with msprime17 with a genomic region with mutation

and recombination rates both equal to 10−8 and with 11 subpopulations. We

used the following code snippet:

n=125

demography = msprime . Demography . s t epp ing s tone mode l (

[ n , n , n , n , n , n , n n , n , n , n ] , m i g r a t i o n r a t e =0.01/11)

t s = msprime . s im ance s t ry ( { 0 : 2 , 1 : 2 , 2 : 2 , 3 : 2 , 4 : 2 , 5 : 2 , 6 : 2 ,

7 : 2 , 8 : 2 , 9 : 2 , 1 0 : 2 } , demography=demography ,

s equence l eng th=2e9 , r e combinat i on ra te = 1e−8)

mts = msprime . s im mutat ions ( ts , r a t e = 1e−8)

We took the first population to be the outgroup, which gives 10 leaf pop-

ulations. We then ran AdmixtureBayes for three different chains, each with

--MCMC chains 16 and --n 150000 and using a random starting state, which

is the default behavior of AdmixtureBayes. We plot the convergence and mixing
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results in Supplementary Figures S10, S11, and S12.

Comparisons with TreeMix

To compare the accuracy of AdmixtureBayes to TreeMix, we first simulated

several datasets using an admixture graph simulator (see Appendix A.1). The

admixture graphs all had 10 populations and 0, 1, 2 or 5 admixture events.

Based on the admixture graph, we simulated SNP data where we varied the

number of haplotypes per population between 2, 10 and 50 using ms 18. In-

stead of simulating a fixed number of SNPs, we simulated datasets with a fixed

mutation rate across 2000 or 5000 independent segments of 500 kb linked sites.

This produced 250,000-850,000 SNPs, which we filtered to yield 25,000-85,000

effectively independent SNPs (see Methods), which is comparable in size to real

biological datasets. Genomic datasets in humans, resulting from whole genome

sequencing, typically contain information corresponding to between 50,000 and

100,000 effectively independent SNPs (see section on Saqqaq, Inuit, and Native

Americans).

We then analyzed all simulated datasets with both AdmixtureBayes and

TreeMix (see Appendix A.2). Comparing their accuracy is not straightforward

because TreeMix produces one graph whereas AdmixtureBayes produces a pos-

terior sample of graphs. In addition, TreeMix assumes a fixed number of admix-

ture events, whereas AdmixtureBayes samples graphs with different numbers of

admixture events. To solve the latter issue, we ran TreeMix conditioned on the

true number of admixture events whereas we thinned the AdmixtureBayes sam-

ples such that they only contained admixture graphs with the true number of

admixture events. However, to illustrate the ability of AdmixtureBayes to infer

the number of admixture events, we include both the thinned and unthinned

AdmixtureBayes samples in the plots. We used five metrics to compare the

methods. The Mean Topology Equality is the proportion of the Markov chain

spent in the true topology, which approximates the posterior probability of the

true topology. The Mode Topology Equality is the proportion of replicates in
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which the maximum a posterior (MAP) estimate of the topology equals the true

topology. The Mode Topology Equality and Mean Topology Equality were both

compared to the proportion of times TreeMix infers the correct topology. The

next metric we considered is the Covariance Distance, defined as the average of

the Frobenius distance between the true graph and the covariance matrices im-

plied by the MCMC-sampled graphs (see Methods). We compared that to the

Frobenius distance between the covariance matrix implied by the TreeMix in-

ferred graph and the true graph. Finally, we measured the Set Distance, which

we defined as a topological distance measure similar to the Robinson-Foulds

metric (Figure S8; Methods section). We evaluated both the ergodic average

of the Set Distance between a graph in the chain and the true graph (Mean

Set Distance) and the Set Distance between the MAP estimate of the topology

and the true topology (Mode Set Distance). In both cases, we compared the

results to the Set Distance between the true topology and the TreeMix inferred

topology.

We note that the accuracy of the MAP estimate of the topology for a given

number of admixture events is similar in both methods (Figure S1a), although

AdmixtureBayes is perhaps slightly better when the number of admixture events

is > 0. However, we also notice that neither method infers the true topology

with high probability when the number of admixture events is equal to 2 or

larger. This suggests that it may not be scientifically meaningful to focus on

a single estimate of an admixture graph with 10 or more populations and 2 or

more admixture events. Using Mode Set Distance, the story is somewhat similar

(Figure S1b), but the advantage of AdmixtureBayes over TreeMix becomes more

apparent in that the Mode Set Distance for AdmixtureBayes with 2 admixture

events is considerably lower than the distance between the TreeMix graph and

the true graph. In other words, when the methods infer incorrect topologies, the

MAP estimates obtained by AdmixtureBayes tend in average to be less wrong

than the estimates obtained by TreeMix. Because both methods use similar

evolutionary models, improved optimization in TreeMix would likely lead to

9
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a performance more similar to that observed for AdmixtureBayes. The three

metrics evaluating ergodic averages over the chain tell slightly different stories

(Figure S1c-e). While the Mean Set Distance is still considerably smaller for

AdmixtureBayes than for TreeMix (Figure S1d), the ergodic average of the

Topology Equality is slightly smaller (Figure S1c), and the Covariance Distance

is slightly larger (Figure S1e) for AdmixtureBayes. That is, while a randomly

sampled graph from the posterior tends to be closer (in terms of Set Distance)

to the true graph than the TreeMix estimate is, the same is not true when

using Covariance Distance or Topology Equality. It is expected that the MAP

estimate is more accurate than the average posterior graph, yet a large difference

could be a sign that the sampled posterior distribution is inaccurate. However,

the difference here is small, which supports the correctness of the posterior

sampling.

We varied the sample sizes (number of individuals per population used to

estimate allele frequencies), to determine the dependence of these conclusions

on sample size (see Figure S2). In general, the conclusions seem to follow those

obtained in the previous simulations. It is also apparent that there is a pro-

nounced advantage in terms of accuracy in moving from 2 to 10 haplotypes per

population. The improvement in performance is smaller when moving from 10

to 50 haplotypes.

Summarizing subgraphs

While it may be difficult to obtain a unique point estimate of the admix-

ture graph with highest statistical support, particularly for analyses involving

many populations and large state spaces of graphs, elements of the graph may,

nonetheless, be well supported. It is possible to consider the relative support, in

terms of posterior probability, of individual subgraphs. Analyzing the support

for subgraphs within the context of a larger admixture graph has an advantage

over analyses limited to the focal populations represented in the subgraph, that

information from other populations can be directly taken into account.
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Using parts of the same simulations as before (see Appendix A.1), we ex-

plored the accuracy of subgraph inference. For each dataset, we considered

subgraphs for 3, 4 and 5 randomly drawn focal populations. Having already an-

alyzed the datasets for all 10 populations, we extracted estimates by marginal-

izing the estimates for the full admixture graph, which we denote as subgraphs

from the ‘Big’ dataset. We also recomputed the subgraphs by analyzing only

the data from the focal population while discarding all information from the

non-focal populations, which we denote as ‘Small’ graphs. Marginalizing a joint

graph is presumably better than estimating the marginal graph, because the

joint estimation uses information from all populations of the dataset. As ex-

pected, the Big graphs estimated by AdmixtureBayes do have higher accuracy

than the Small graphs (Figure S3). Surprisingly, the same is not the case for

TreeMix Big and Small graphs. This pattern is repeated for most accuracy and

distance measures and subgraph sizes (Supplementary Figure S14). TreeMix

graphs are more accurate for very small graphs, but they lose accuracy fast as

the number of populations increases (Figure S14, Small columns). Figure S3

suggests that the expected improvement of the Big TreeMix subgraphs com-

pared to the Small subgraphs decreases when including more populations.

Exploring the genetic history of Saqqaq, Inuit and Native

Americans

We applied AdmixtureBayes to a set of previously published Siberian and Na-

tive American samples14 to explore the relationship between Siberian Chukotko-

Kamchatcan speakers (Koryak), an ancient individual from the extinct Saqqaq

culture (Saqqaq), Inuit-Yupik-Unangan speakers (Greenlandic Inuit), and Na-

Dene speakers (Athabascan). The dataset also contained North and South

Americans (Anzick, Aymara) and various other groups. We chose the Yoruba

population as the outgroup. Running time of AdmixtureBayes was 50 hours in

parallel on 32 cores.

To extract information from the posterior distribution of admixture graph
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topologies, we introduce two ways of summarizing relationships among sets of

focal populations (for details, see Methods). Both are based on summarizing

each sampled admixture graph in the posterior into a topology set, which is

the set of all nodes labeled by their descendants. This discards information

about the number of and timing of admixture events (see Figure S8). From

such a topology set, we can create the minimal topology, which is the ‘simplest’

directed graph yielding the same topology set (see Figure S9). The two minimal

topologies with the highest posterior probabilities are shown in Figure S4. We

also considered the frequency of each internal node across posterior samples. In

Figure S4 these frequencies are denoted as percentages in parentheses in each

node. The second summary of the admixture graph sample is the set of nodes

with a frequency higher than α in the topology sets, which we denote as the

consensus graph at threshold α. Figure S5 shows this summary for α = 0.75.

While no single graph received high support when including all data, we

can extract subgraphs that are informative about the relationships between

specific subsets of populations. In particular, there has been considerable debate

about the relationships between populations represented by the Koryak, Saqqaq,

Greenlanders, and the Athabascans. Archaeological evidence suggests that the

Inuit people from Greenland and people from the now extinct Saqqaq culture

represent independent migrations into the Americas from Eastern Siberia and

the area around the Bering strait19 20 21. However, there is some debate about

the origin of the Athabascans22 23 20 24. Most molecular evidence of Athabascan

ancestry is thought to have originated from the first migration of people into

the Americas that also gave rise to most other Native American groups, such as

the indigenous people in Central and South America. However, some portion

of genetic variation in Athabascans seems to have also originated from other

groups, perhaps related to Inuit, Saqqaq, or other Siberians such as the Koryak.

Naming and identifying sources of genetic variation is further complicated by

the fact that these possible reference populations may themselves be admixed.

A marginal analysis of the relationship between Koryak, Saqqaq, Greenlanders,

12
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and Athabascans, that can take gene flow from other groups into account, is

therefore very much wanted.

Figures S6 and S7 depict the subgraphs for different subsets of these groups

and for all groups together, extracted from the posterior distribution of graphs

from the full dataset. The most strongly supported subgraph for Saqqaq,

Athabascan, and Koryak supports the tree ((Athabascan, Koryak), Saqqaq)

with 96% posterior probability. This implies that a relationship where the gene

flow into Athabascans came from a population closer to the Saqqaq, than to

the Koryak from Siberia, is not supported by the data. In contrast, when con-

sidering the relationship between Koryak, Athabascans and the Inuit Greenlan-

ders, the most strongly supported admixture graph is a tree with the structure

((Athabascan, Greenlander), Koryak), likely reflecting gene flow into the Inuit

Greenlander from Native Americans related to Athabascans. We emphasize that

in these inferences, by analyzing the posterior probability of subgraphs embed-

ded within larger graphs, we have also explicitly modeled the effects of gene flow

from other groups including various Siberian, Native American, and East Asian

groups. When considering all four populations together, the Greenlanders are

best modeled as a population admixed between Athabascan related populations

and Saqqaq related populations. Again, there is no apparent gene flow between

the Saqqaq and the Athabascans following their initial divergence.

Discussion

We here present the program AdmixtureBayes, which is a method for inferring

admixture graphs using MCMC. On simulated data, it infers graphs more ac-

curately than TreeMix under the Set Distance measure. AdmixtureBayes also

tends to find the true topology with slightly higher probability than TreeMix

does. We speculate that the superior performance of AdmixtureBayes in terms

of Set Distance is likely caused by issues relating to optimization in TreeMix.

Possibly, the procedure in TreeMix could be improved to more or less match the
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performance of AdmixtureBayes in terms of producing point estimates. How-

ever, we also note that for larger graphs, the probability that the graph identified

is the true graph is very small for both methods. This suggests that the report-

ing of a single graph may not necessarily be accurate. As is common practice

in phylogenetics, admixture graphs should report measures of statistical con-

fidence for the relationships inferred among internal nodes in the graph, as is

reported in this paper. We also encourage the use of embedded subgraphs as

a powerful approach for investigating the relationship between specific popula-

tions while taking gene flow from other reference populations into account. The

use of posterior probabilities, as reported here, is facilitated by the use of a boot-

strap procedure that can estimate the effective number of independent SNPs.

In our real data analysis, we obtained information from human genomes corre-

sponding to approximately 40,000 independent SNPs. This number determines

the peakedness of the likelihood surface, which directly influences the posterior

distribution of admixture graphs. TreeMix and qpGraph employ similar resam-

pling techniques to obtain variance estimates that control the peakedness of

their likelihood surfaces, thereby reducing the complexity of admixture graphs

explored during inference.

Our analysis of Native American and Siberian samples largely recapitulates

many previous analyses and identifies many admixture events14. Furthermore,

we find a similar, but not identical topology, to a previous admixture topology14.

However, our results also indicate that several features of the true admixture

graph remain uncertain. For example, we could not definitively resolve the

question of introgression into the Han lineage from the ancestral lineage of Ust’-

Ishim. Our analysis does not support previous claims that the Saqqaq culture

is a good proxy for the source of gene flow into Athabascans23 20, although

statistical power could still be improved. In both our analysis and previous

work, each population is represented by just one or two diploid individuals. Our

simulations suggest that increasing the number of individuals per population

might lead to substantially improved statistical accuracy. We also note that the
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sample quality was relatively poor for some samples analyzed here, particularly

the Saqqaq, which has many missing sites.

The estimation of admixture graphs is becoming one of the most important

tools in population genomics. However, methods for estimating such graphs are

still in their infancy. AdmixtureBayes provides a step towards improved esti-

mation and more rigorous quantification of statistical uncertainty in admixture

graph inference.

Methods

Data

We analyzed a dataset consisting of SNPs for 12 human populations that was

first analyzed by Moreno-Mayer et al.14. We treated the Yoruba population

as an outgroup leaving effectively 11 populations with unknown relationships

to estimate. One diploid individual was sampled from each population, except

the Koryak, Ket, Greenlander and Athabascan populations, which each had two

diploid individuals. Whole genome-sequencing was performed on each individual

to provide an average coverage between 1X (for the Malta individual) to 44.2X

(for one of the Greenlander individuals). Further details regarding sequencing

and data processing methods are described in Moreno-Mayer et al.14. The

alleles for the ancient individuals from the populations Saqqaq, Malta, Anzick

and USR1 that were not transversions were treated as missing. We then filtered

out any site for which there was a population with missing data. In total

251,542 biallelic SNPs were retained. Large numbers of missing SNPs for some

individuals is not a computational problem for AdmixtureBayes, though it does

violate the assumption of even sampling imposed by the Wishart distribution

(see Methods, equation (5)).
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P1 P2 P3

P0

x0

x1

x2

x3

x4

x5 x6

x7
w

Fig 1: An admixture graph for the 3 populations and one outgroup. Considering
a single SNP, the quantities x1, . . . , x7 are changes in allele frequency, w is the
admixture proportion, and P0, P1, P2 and P3 are allele frequencies in the sampled
populations.

AdmixtureBayes Model

The AdmixtureBayes program searches the posterior distribution of admixture

graphs given observed SNP data using a Markov Chain Monte Carlo procedure.

To assess the likelihood of an admixture graph we summarize both the admix-

ture graph and the data as covariance matrices of allele frequency changes2.

The admixture graph covariance matrix is calculated as in TreeMix. Consider

the tree structure in Figure 1 where population 2 is a mix of two ancestral

populations with proportions w and 1− w.

The allele frequency in the 4 populations, P0, P1, P2 and P3 are related

through the allele frequency changes x0, . . . , x7 at any SNP.


P1

P2

P3

−

P0

P0

P0

 =


x0 + x1 + x2

x0 + x7 + w(x6 + x4) + (1− w)(x5 + x2)

x0 + x3 + x4

 = A


x0
...

x7

 .

(1)

Notice that A is a matrix that only depends on the admixture graph through

the graph structure and admixture proportions. We consider the vector of allele

frequency drifts terms

(
x0 · · · x7

)
to be stochastic because it depends on a
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random sample of SNPs. In the neutral Wright-Fisher model, changes in allele

frequencies due to genetic drift can be approximated by a normal distribution

when the allele frequency change is small and the frequency is far from the

boundaries at 0 and 1. If xi is the amount of drift from a node with allele

frequency pi, then the allele frequency change can be approximated as xi ∼

N(0, (1−e−di)pi(1−pi)) where di = ti/2Ni is the number of generations scaled

with the population size25. We collect the factor (1− e−di) into a single factor

ci and substitute the node-specific pi with a SNP-global p giving the tractable,

approximate, expression

xi ∼ N(0, cip(1− p)).

Consequently, we can approximate the joint distribution of allele frequencies at

all leaf nodes as
P1 − P0

P2 − P0

P3 − P0

 ∼≈ N(0, p(1− p)Σ), Σ = A · diag(c0, . . . , c7) ·A∗ (2)

where matrix Σ is called the admixture graph covariance matrix.

The empirical estimate of the covariance of allele frequencies is denoted the

data covariance matrix. In real data we never observe the population allele

frequencies but rather the sample allele frequencies. This complicates the com-

putation of the data covariance matrix slightly. Let pij be the sample allele

frequency in the i’th population at the j’th SNP, i = 0, 1, . . . , n, j = 1, . . . , N .

They are assumed to come from the distribution

pij ∼
1

mij
Bin(mij , Pij) (3)

where mij is the number of haplotypes sampled and Pij is the population allele

frequency.
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Denote population i = 0 an outgroup, and consider the intuitive estimate of

the covariance matrix

Sk,l =
1

N

N∑
j=1

(pkj − p0j)(plj − p0j) (4)

If there are any missing values in a summand, we leave that summand out of

the sum. Regardless of missing values, (4) is inherently biased because the inner

term (pkj−p0j)(plj−p0j) does not have the same mean as (Pkj−P0j)(Plj−P0j).

From (3) we calculate the difference as

1{k=l}
Pkj(1− Pkj)

mij
+
P0j(1− P0j)

mij

which suggests the following bias correction factor for Sk,l:

B̂kl = 1{k=l}
1

N

N∑
j=1

pkj(1− pkj)
mij − 1

+
1

N

N∑
j=1

p0j(1− p0j)
mij − 1

.

After correcting, we normalize with

ĥ =
1

N

N∑
j=1

p̄j(1− p̄j), where p̄j =
1

n+ 1

n∑
i=0

pij

to take the factor p(1− p) from (2) into account.

If the sample allele frequencies were normally distributed and independent

across markers, the estimator in (4) would be Wishart distributed and the de-

grees of freedom would be the number of markers. The sample allele frequencies

are not independent and only approximately normal, yet we use the likelihood

W
(
S/ĥ; Σ + B̂/ĥ,df

)
. (5)

The degrees of freedom, df, is adjusted to take into account the lack of inde-

pendence. We estimate df using R bootstrapped replicates of S/ĥ which we

will denote X(1), . . . , X(R). Let X̄ be the average of the bootstrap samples. It
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would be natural to estimate the df with the maximum likelihood of the model

X(1), . . . , X(R) ∼W (X̄, df) (6)

However, simulations show that the estimates of df from (6) give results that

are less accurate than the following moment-based estimator (Supplementary

Figure S13). We take advantage of the fact that the variance of the (k, l)’th

entry of a Wishart distribution with mean Ψ/df and degrees of freedom, df, is

1

df

(
Ψ2
kl + ΨkkΨll

)
to estimate the df as

arg min
df

n∑
k=1

n∑
l=1

(
V̂ar(X

(1)
kl , . . . , X

(R)
kl )− 1

df

(
X̄2
kl + X̄kkX̄ll

))2
(7)

where V̂ar is the sample variance. This moment-based estimator leads to better

performance of AdmixtureBayes (Supplementary Figure S13).

In practice, to make the inference more robust to deviations from the prior,

we normalize the matrices by using the likelihood

W
(
cSS/ĥ; cS(Σ + B̂/ĥ),df

)
(8)

where cS = (log2(L)L + L)/tr(S/ĥ). For more on this, see the later section on

Robustness Correction.

Admixture Graphs

An admixture graph consists of a topology and a set of continuous parameters.

The space of topologies for a given number of leaves, L, consists of all uniquely

labeled graphs of the set of all directed acyclic graphs which fulfills

1. There exists one and only one root. That is a node with no parents and

exactly two children.
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2. The number of nodes with no children is L. All these nodes have only one

parent and are called leaves.

3. If a node is not a root nor a leaf, it has either

(a) 1 parent and 2 children in which case we call it divergence node.

(b) 2 parents and 1 child in which case we call it admixture node.

4. There are no eyes, i.e. the parent nodes of an admixture node are distinct

(and the child nodes of a divergence node are distinct).

The labeling consists of

1. All leaves are given a unique label.

2. Parent edges of an admixture node can be either a ‘main’ branch or an

‘admixture’ branch. All admixture nodes have one parent edge of each

type.

We do not label branches and nodes in general, meaning that even though the

the leaves are given a unique label, the leaves themselves are not unique. For

example, switching the labels of two leaves that form a cherry in the graph,

would not change the graph. For a more formal definition, see the definition of

topology in Appendix A.3.

All branches have a length in the interval (0,∞) and all admixture nodes

are given an admixture proportion in the interval (0, 1).

Prior

We define a prior on the topology, G, and on the continuous parameters of the

admixture graph. The continuous parameters include the branch lengths, −→c =

(c1, . . . , cD), and the admixture proportions −→w = (w1, . . . , wK). Let K denote

the number of admixture events, L the number of leaves, and D = 2L− 2 + 3K

the number of branches. The full prior is then

P (G,−→c ,−→w ) = P (G|K)P (K)P (−→c |K)P (−→w |K).
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The prior on the number of admixture events is a geometric distribution with

parameter 0.5 (truncated to max 20). The prior on G, P (G|K), is a uniform

prior on all labeled admixture graphs with K admixture events. To evaluate

this prior, we need to calculate the number of possible topologies for a given

number of admixture events. Therefore we have derived the recurrence formula

N(L,P,K,E) = 2(E + 1)N(L− 1, P,K,E + 1)

+(L− 2P + 1)N(L− 1, P − 1,K,E)

+(L+ 2P + 3K − 2E − 2)N(L− 1, P,K,E)

+
2(P + 1)

L(L+ 1)
N(L+ 1, P + 1,K − 1, E − 1)

+
4(P + 1)(P + 2)

L(L+ 1)
N(L+ 1, P + 2,K − 1, E)

+
4(P + 1)(L− 2P − 1)

L(L+ 1)
N(L+ 1, P + 1,K − 1, E)

+
(L− 2P )(L− 2P + 1)

L(L+ 1)
N(L+ 1, P,K − 1, E),

where L is the number of leaves, P is the number of pairs of leaves that share a

common parent, K is the number of admixture events, E is the number of eyes,

and N(L,P,K,E) is the number of unique topologies with those attributes.

Notice that we here allow eyes which otherwise are disallowed in our definition

of admixture graphs. See Appendix A.3 for proof. Then

P (G|K) =
1∑bL/2c

P=0 N(L,P,K, 0)

For the admixture proportion prior, P (−→w |K), we chose the uniform distri-

bution on the interval (0, 1).

For the prior on the branch lengths, P (−→c |K), we chose to let all branch

lengths be independent and marginally follow the distribution

ci ∼ Exp
(2L− 2

D

)
, i = 1, . . . , D (9)
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The rate of the exponential prior adapts to the topology such that graphs

with many branches, and thereby many admixture events, are expected to have

smaller branch lengths. For motivation see the following section on Robustness

Correction.

Robustness Correction

In the Bayesian phylogeny program MrBayes26, it has been shown that in-

dependent, exponentially distributed priors on the branch lengths can unduly

influence posterior estimates of total tree length27, which could also be a prob-

lem for AdmixtureBayes. To see this, consider the average branch length c̄.

For simplicity, assume the effective population size, Ne, is constant across the

admixture graph. Furthermore, suppose that the exponential rate of (9) is 1.

Let T =
∑
Ti be the total time (not drift) of all branches in the admixture

graph. Then we can write

c̄ =
1

D

D∑
i=1

e−
Ti

2Ne ≈ T

2DNe
. (10)

Since it is an average of independent random variables, its mean and variance

are

E(c̄) = 1 (11)

Var(c̄) =
1

D
(12)

This means that the prior expects T
2DNe

to be very close to 1. However, for

real datasets we would expect the ratio to vary much more, and there is no

biological reason why it should be near the arbitrary number 1. For a specific

dataset, if the true value of T
2DNe

were smaller than 1, the posterior would be

overestimated for admixture graphs with higher values of T
2DNe

. Such graphs

would generally possess a deflated number of admixture events and thereby a

smaller D. Similarly, large true values of the ratio would result in a skew towards
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admixture graphs with an inflated number of admixture events.

To mitigate the problems caused by the independent, exponential priors, Mr-

Bayes includes an alternative compound Dirichlet-Gamma prior on the branch

lengths, such that the variance of the average branch length can be set arbitrar-

ily high27. However, we normalize the data covariance matrix and adjust the

rates of the exponential distributions accordingly.

To reduce the sensitivity of our posterior estimates to the prior, we wish for

the prior exponential rate of ci to be close to T
2DNe

. We rewrite

E[c̄] =
2L− 2

D
·
E[
∑
i ci]

2L− 2
(13)

The first fraction is manageable because the prior is allowed to depend on L and

D. The second fraction is the average branch length if there are no admixture

events in the admixture graph. It can be estimated by summing the outgroup-

leaf distances for all leaves and dividing by the number of branches between the

outgroup and the leaves. Denote that divisor D̃. Unfortunately, D̃ depends on

the topology. Therefore, we approximate D̃ ≈ L log2(L) +L, which leads to the

approximation

E[c̄] ≈ 2L− 2

D
·
E[
∑L
l=1

∑
i∈Cl ci]

L log2(L) + L
(14)

where Cl is the set of indices of the branches between the outgroup and leaf l.

Regardless of the true topology, we can estimate E[
∑L
l=1

∑
i∈Cl ci] by the trace

of the data covariance matrix.

Ê[c̄] =
2L− 2

D
· tr[S/h̄]

L log2(L) + L
(15)

=
2L− 2

D
· 1

cS
(16)

Instead of letting (16) be the exponential rate of the branch length prior, we

normalize the data covariance matrix by cS and let 2L−2
D be the expected mean

of the branch lengths. We avoid having a prior that depends on the data by
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moving cS out of the prior. However, since cS depends on the data, the matrix

cSS/ĥ would not be Wishart distributed, even if S/ĥ were truly Wishart dis-

tributed. The scaling by cS therefore adds another layer of approximation to

the likelihood.

This robustness correction makes the graph inference independent of the

absolute scale (as measured by the trace) of the data covariance matrix. The

maximum likelihood methods TreeMix2, qpGraph1, and MixMapper3 inher-

ently have this property as well.

MCMC

The MCMC is implemented as a parallel Metropolis coupled MCMC algo-

rithm28 29 to increase the number of jumps between modes of the posterior

surface. Because admixture graphs with different number of admixture events

also have different numbers of continuous parameters, we use the reversible jump

generalization of the MCMC algorithm30. The proposal distribution is a mix of

7 smaller proposals. They are

1. Add an admixture branch to the admixture graph. An admixture branch

goes from a source branch to a sink branch (Figure 2). To make the

proposal, a random sink branch, s, is chosen with probability 1
D where D

is the number of branches in the graph (not including the branch to the

outgroup). Next, a random source branch, s′, is chosen from the remaining

branches (including the root/outgroup branch) such that an addition of an

admixture branch would not create a cycle in the graph. If the number of

possible sink branches is D′(s), the probability of the sink position is 1
D′(s) .

Next the attachment point on the sink branch is simulated uniformly. If

the branch lengths of s and s′ is c(s) and c(s′) the attachment outcome

has density 1
c(s)c(s′) . If the source branch is the root branch, we simulate

the attachment point with an exponential distribution, Exp(1), instead.

The new admixture proportion is simulated uniformly between 0 and 1,

and the admixture branch length, s̃, is simulated from Exp(1) with density
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e−s̃. Lastly, the labeling of the two parent branches of the new admixture

node is simulated. The probability of either possible labeling is 1
2 . In

conclusion, the density is

1

D

1

D′(s)

1

c(s)

1

c(s′)
e−s̃

1

2
(17)

To find the acceptance probability of this proposal, we calculate the pro-

posal probability of the reverse move (see proposal number 2). The re-

versible jump Jacobian factor is 1.

2. Remove an admixture branch from the admixture graph. An admixture

branch can be removed if 1) its parent is not an admixture node and 2)

its removal will not cause an eye. Let the number of admixture branches

eligible for removal be K ′. We choose uniformly from that set and remove

the admixture branch. The density is

1

K ′
(18)

3. Node sliding. A random branch whose parent is a divergence node is

chosen. We move its attachment point to its source branch a distance

λx where x ∼ χ2(1). A node can often be slid either up and down and

sometimes the sliding node meets a bifurcation where it can slide in either

of two directions. We choose the new node position uniformly from the set

of the possible sliding destinations, following the topological constraints

defined in step 1. If the sliding node slides out of the graph, we reject

the proposal. The forward density is χ2(xλ )/ω where ω is the number of

possible sliding destinations for a node when moved a distance x from its

position in the current graph. We compute the backward density using the

same formula. We update λ on-the-fly following guidelines for adaptive

proposals in MCMC31, eliminating the need for pre-analysis parameter

tuning.
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c(s′)
source branch

proposed admixture branch c(s)

sink branch

Fig 2: When adding an admixture branch (green), we will randomly draw the
branch where it comes from, the source branch (red). The admixture branch
goes into the sink branch (blue).

4. Random walk on the branch lengths. We add a normally distributed

noise to all the branch lengths. If any branch length become negative,

we automatically reject the proposal. The backward density is identical

to the forward density. The variance of the random walk increments is

controlled by parameter s which we also adapt on-the-fly using adaptive

strategies.

5. Random walk on the admixture proportions as in step 4 but with another

s-value. Proposals outside (0, 1) are rejected.

6. Random walk on the branch to the outgroup as in step 4 but with another

s-value. Negative proposed branch lengths are again rejected.

7. Random walk on the branch lengths but inside the null space of matrix

A. This means that the proposed admixture graph will have the same

covariance matrix - and therefore the same likelihood - as the previous

graph. This proposal is also adaptive, as in step 4.

Graph Summaries

In the Results section we explained the two summaries, minimal topology and

consensus graph, which we will define formally here. Furthermore, we introduced

the Set Distance used to measure distances between admixture graph topologies
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and the Covariance Distance for distances between admixture graphs. In this

section, we define these quantities.

The Covariance Distance between two admixture graphs with L leaves and

covariance matrices Σ1 and Σ2, respectively, is

√√√√ L∑
i=1

L∑
j=1

(
Σ1
ij − Σ2

ij

)2
(19)

For a single node let the descendant set be the the set of its leaf descendants,

e.g. t = {l1, l2, . . . , la}. For a topology, let T be the topology set, which is the

set of descendant sets of all its nodes, excluding those sets for the leaf and

root nodes. The minimal topology is the extension of such a topology set to a

directed graph. The extension starts by adding the trivial descendant sets for

the leaves (containing only one leaf) and the root (containing all the leaves).

Denote this set T . The minimal topology has the same nodes as T and there is

a connection from node t ∈ T to t′ ∈ T if

t 6= t′ (20)

t′ ⊆ t (21)

and 6 ∃ t′′ ∈ T \ {t, t′} : t′ ⊆ t′′ ⊆ t (22)

To summarize a sample of admixture graphs, g1, . . . , gR, using a consensus

graph, we first transform all of them into their topology sets and obtain a sample

T1, . . . , TR. The posterior probability of a node can be estimated by the sample

frequency

f(t) =
|{T ∈ {T1, . . . , TR} : t ∈ T}|

R

The topology set of the consensus graph at threshold α is

Tα =
{
t ∈

R⋃
i=1

Ti : f(t) > α
}
. (23)

The consensus graph itself is obtained by extending Tα to a directed graph with

27

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506725doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506725
http://creativecommons.org/licenses/by/4.0/


the rules (20)-(22).

The Set Distance between two graphs g1 and g2 with topology sets T1 and

T2 is

|T1 \ T2|+ |T2 \ T1| (24)
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A Appendix

A.1 Simulations of admixture graphs and datasets

In the simulation studies in Figures S1, S2, S3, S14 and S15, we have simulated

admixture graphs. Their number of admixture events, admixture proportions

and branch lengths are simulated from our prior. However, our uniform prior on

the topologies does not naturally yield a simulation method. We constructed
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an alternative algorithm that simulates admixture graphs conditioned on the

number of admixture events using a discrete-time Markov chain that follows

lineages back in time. If there are L leaves, there are L free lineages at the

start. Given the number of leaves and the number of admixture events, we

know the number of divergence and admixture nodes. The free lineages choose

a parent node uniformly at random such that

1. No more than two lineages choose the same divergence node

2. No more than one lineage choose the same admixture node

3. No ‘eyes’ are formed. That is, two lineages from the same admixture node

will not choose the same divergence node.

4. The complete admixture graph can still be constructed. For example, if

no two lineages had chosen the same divergence node, there would not be

any free lineages in the next step of the Markov chain.

When two lineages have chosen a divergence node, a new free lineage is released

for the next Markov chain. Likewise, a chosen admixture node produces two

new lineages. The algorithm stops when there is just one free lineage left and

all divergence nodes and admixture nodes have been ‘filled’. For topologies

without admixture events, our simulation algorithm chooses uniformly between

the possible topologies. For topologies with admixture events, the algorithm

prefers admixture events closer to the root when compared to the uniform prior.

TreeMix and AdmixtureBayes do not operate with the same admixture graph

space. TreeMix allows admixture flow into the outgroup population, whereas

AdmixtureBayes does not. On the other hand, AdmixtureBayes searches through

admixture graphs with invisible admixture events. An admixture graph has an

invisible admixture event if its admixture graph covariance matrix can be ob-

tained by another admixture graph with fewer admixture events. For a fair

comparison, all simulated admixture graphs are from the intersection of the two

admixture graph spaces.
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The computations behind Figures S1, S2, S3, S14 and S15 also include sim-

ulation of genetic data using ms 18. A command given to ms for simulation of

a graph with 5 populations could be

ms 250 2000 −t 0 . 4 −r 1 500000

−I 5 50 50 50 50 50 −en 0 .0 3 0 .8719

−en 0 .0 2 22 .705 −en 0 .0 1 2 .784

−en 0 .0 5 0 .5485 −en 0 .0 4 7 .878

−e j 0 .01795 3 5 −en 0.01795 5 1 .970

−es 0 .03590 5 0 .1829 −en 0.03590 5 36 .041

−en 0.03590 6 1 .705 −e j 0 .05386 2 6

−en 0.05386 6 0 .3165 −e j 0 .07181 1 6

−en 0.07181 6 0 .5572 −e j 0 .08977 4 6

−en 0.08977 6 5 .940 −e j 0 .1077 5 6

−en 0 .1077 6 100 .0

In the above code 50 individuals are sampled in each population. To assess

how well AdmixtureBayes and TreeMix handle linked sites, we always simulate

linked SNPs (with r/t = 1/0.4 = 2.5). To lessen the computational burden, we

simulate the genome in 2000 independent segments of 500,000 sites. The branch

lengths of the admixture graph are incorporated by adjusting the population

sizes using the “-en” option. We always set the root population size to the high

value 100 to increase the number SNPs present in all populations. The outputs

of our ms commands are easily transformed into the input format of TreeMix

(which is identical to the input of AdmixtureBayes).

In the simulation study for comparing AdmixtureBayes and TreeMix on

admixture graphs with 10 populations, we simulated independent datasets. All

datasets were based on different admixture graphs with either 0, 1, 2 or 5

admixture events. The datasets also varied in the number of haplotypes (2, 20

or 50) and the number of genomic segments (2000 or 5000). We analyzed all

datasets with both AdmixtureBayes and TreeMix.
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In the simulation study for comparing AdmixtureBayes and TreeMix on sub-

sets of admixture graphs with 10 populations, we simulated datasets with 0, 1

and 2 admixture events, 5000 independent DNA segments, and 10 haplotypes

per population. For subsets of size x, we chose x populations uniformly from

the 10 possible populations. From the AdmixtureBayes samples in the previ-

ous simulation study we extracted the marginal distributions of the subgraphs

of those x populations. We compared those to the true subgraphs using Set

Distance and Topology Equality. From the TreeMix estimates of the previous

section we extracted subgraphs of the maximum likelihood admixture graphs

and also compared them to the true subgraphs. We refer to both these types

of results as ‘Big’ because they are based on the full, larger dataset. Likewise

we extracted datasets for the same x populations and analyzed them with both

TreeMix and AdmixtureBayes. We varied x between 3, 4 and 5 populations. A

subgraph of an admixture graph will often contain a smaller number of admix-

ture events than the full graph. Furthermore, the remaining admixture events

may be invisible in the subgraph. TreeMix does not consider graphs with invis-

ible admixture events. Therefore, we ran TreeMix with the number of visible

admixture events in the subgraph. When the true subgraph contains invisible

admixtures, TreeMix has probability 0 of finding the true graph. In compar-

ison, AdmixtureBayes can rarely visit graphs with invisible admixture events,

which could give it an unfair advantage in the comparison. Fortunately, this

only influences the Mean Topology Equality and Mode Topology Equality of

the Small subgraphs (not shown in Figure S3 but in Figure S14), because the

Set Distance measures are unaffected by invisible admixture events.

A.2 Running TreeMix and AdmixtureBayes

TreeMix can estimate a maximum likelihood graph for a fixed number of ad-

mixture events, but the higher the number of admixture events, the higher the

maximum likelihood value. Therefore, the original TreeMix paper suggests iter-

atively adding admixture events and stopping when the added admixture event
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does not pass a test for statistical significance. However, to simplify the com-

parison, we ran TreeMix with the true number of admixture events. Otherwise

we used the default settings of version 1.13. The program first estimates an

initial admixture-free tree by iteratively adding best fitting populations in a

random procedure. Next, the admixture branches are added deterministically.

Because of the randomness of the first step, the starting seed could influence

the results. However, preliminary results showed that repeating the TreeMix

maximum likelihood optimization for different seeds and choosing the highest

likelihood graph amongst the repeated analyses did not change the accuracy of

the estimated admixture graphs when analyzing our simulated datasets. Most

seeds produced the same maximum likelihood graphs. Therefore, we used only

one seed.

For each analysis, AdmixtureBayes was run for up to 12 hours on 15 cores.

We ended the analysis when the effective sample sizes of several summary statis-

tics exceeded the threshold 20032 after removing the first half of the samples

as burn-in. This is an indication that the Monte Carlo Markov Chain has ade-

quately approximated its stationary distribution, which is the target posterior

density. For this reason, many analyses lasted no longer than 1 hour. Even if a

chain did not fulfill the stopping criteria after 12 hours, we included the chain

in the subsequent analysis after removing the burn-in period. Otherwise, we

used the default settings.

A.3 Number of admixture graph topologies

In order to compute the prior on the space of admixture graphs, we use the

number of possible admixture graph topologies with K admixture events. This

number grows at least exponentially with K and is further complicated by our

specific requirements to the admixture graph topology. For computational con-

venience we will consider an extended class of admixture topologies: a multi-

graph topology with L leaves is an acyclic directed multigraph (which is a graph

that allows more than one edge between two vertices) for which
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1. There exists one and only one root. That is a node with no parents and

exactly one child.

2. The number of nodes with no children is L. All these nodes have only one

parent and are called leaves.

3. If a node is neither a root nor a leaf, it has either

(a) 1 parent and 2 children in which case we call it a divergence node, or

(b) 2 parents and 1 child in which case we call it an admixture node.

This extends our original definition of an admixture graph topology by allowing

eyes, i.e. admixture nodes whose parent branches merge in the same divergence

node. The root is also now a node with one child instead of two, which means

that all multigraph topologies have a single branch “on top.” Furthermore, we

explicitly label all inner nodes. As before each admixture node will have one

main parent branch and one admixture parent branch. We will use the notation

• The edges leading to leaves are referred to as terminal edges.

• A set of two terminal edges from a single node is a pair.

These graph elements are illustrated in Figure 3.

Fig 3: In all of our illustrations the direction of edges is from top to bottom,
unless marked otherwise. This multigraph topology has 4 leaves, 1 pair, 2
admixture nodes, 5 divergence nodes, and 1 eye. The root is the node at the
very top of the topology. We have not explicitly labeled the nodes and branches.

A multigraph topology consists of a set of nodes V, a set of main edges EM ,

and a set of admixture edges EA. There are L leaf nodes, {l1, . . . , lL} ⊆ V.

For every admixture node, one of its parent branches belongs to EA and the
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other belongs to EM . Note that all nodes are uniquely labeled. However, we are

only interested in counting the number of topologies that differ in a nontrivial

way. For example, switching the labels of leaf nodes that form a pair can be

considered a trivial change to a topology. Therefore, we construct equivalence

classes on the set of multigraph topologies and count those equivalence classes

instead.

Let E = EA ]EM be the multiset union of EM and EA. The admixture edges

of a multigraph topology (V, EM , EA) are classified into two subsets, EM and

EA, but we can also disregard the classification and consider the reduced multi-

graph topology (V, E). We call a graph isomorphism between reduced multi-

graph topologies shape preserving while a graph isomorphism between multi-

graph topologies is symmetry preserving. A symmetry preserving isomorphism

is clearly also shape preserving. If f is a symmetry preserving graph isomor-

phism, we say that f is leaf preserving if f(lj) = lj for all j = 1, . . . , L. When

counting admixture graphs, we consider two admixture graphs different if and

only if they are not isomorphic under such an isomorphism.

For a fixed number of leaves L, number of pairs P , number of admixture

events K, and eyes E, we will consider the three sets

1. The set of equivalence classes under shape preserving isomorphisms is

denoted SL,P,K,E . The equivalence classes are called shapes.

2. The set of equivalence classes under symmetry preserving isomorphisms is

denoted UL,P,K,E . The equivalence classes are called unlabeled topologies.

3. The set of equivalence classes under leaf preserving isomorphisms is de-

noted TL,P,K,E . The equivalence classes are called topologies and some-

times explicitly labeled topologies.

We are particularly interested in the cardinality of the set TL,P,K,E , which we

denote by N(L,P,K,E). The difference between the sets SL,P,K,E , UL,P,K,E

and TL,P,K,E is illustrated in Figure 4.
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In Figure 4, both shapes in S3,1,1,0 correspond to two unlabeled topologies in

U3,1,1,0, and each of the four unlabeled topologies in U3,1,1,0 correspond to three

topologies in T3,1,1,0. However, in general some graphs exhibit more symmetry

than others. Let US be the set of unlabeled topologies corresponding to the

shape S, and TU the set of topologies corresponding to the unlabeled topology

U , so that

TL,P,K,E =
⋃

U∈UL,P,K,E

TU =
⋃

S∈SL,P,K,E

⋃
U∈US

TU . (25)

As illustrated in Figure 5, we can have |US1
| 6= |US2

| with S1, S2 ∈ SL,P,K,E ,

and |TU1 | 6= |TU2 | with U1, U2 ∈ US , S ∈ SL,P,K,E .
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l1 l2 l3 l1 l2 l3

l1 l3 l2 l1 l3 l2

l2 l3 l1 l2 l3 l1

l1 l2 l3 l1 l2 l3

l1 l3 l2 l1 l3 l2

l2 l3 l1 l2 l3 l1

Fig 4: Representatives of the sets T3,1,1,0(left), U3,1,1,0(center) and
S3,1,1,0(right). In all of our illustrations on labeled or unlabeled topologies,
the admixture edges in EA are marked with a dashed line. Here |S3,1,1,0| = 2,
|U3,1,1,0| = 4 and |T3,1,1,0| = N(3, 1, 1, 0) = 12.
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S1 U1 U2 U3

Fig 5: Illustration of a shape, S1 (left), and the three unlabeled topologies
corresponding to a shape S2 (S2 not explicitly drawn). We have S1, S2 ∈ S2,0,3,1,
|US1
| = 2 and US2

= {U1, U2, U3}. Furthermore, the leaves of U1 and U2 are
indistinguishable, while the leaves of U3 can be told apart. To see this, follow
the path from the leaves to root; in U1 and U2 the path will only depend on
whether the parent branch of the first encountered admixture is in EM or EA
and not on the starting leaf. In contrast the starting leaf does matter for U3 so
the leaves are distinguishable. Hence, |TU1

| = |TU2
| = 1 but |TU3

| = 2.

Given an unlabeled topology U ∈ UL,P,K,E , choose an arbitrary multigraph

topology representative of U denoted G. Let T ′U be the set of all multigraph

topologies obtained by relabeling the L leaves of G using the L! possible permu-

tations. Clearly each equivalence class in TU is represented by at least one of the

elements in T ′U , implying |TU | ≤ |T ′U |. Consider the set of elements of T ′U that

are isomorphic to G under a leaf preserving isomorphism. It can be considered

as a set of permutations, HG, where the identity permutation corresponds to G.

It is straightforward to show that HG is a subgroup of the permutation group.

Because HG is a subgroup, its cosets are disjoint, contain the same number of

elements, and span the whole permutation group (see Figure 6). This char-

acterization gives us a more concrete representation of the elements TL,P,K,E ,

namely as equi-sized sets of permutations of the leaf-labels.
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S2 = U2S1 = U1

Fig 6: The two shapes of S(5, 2, 0, 0), denoted S1 and S2 are illustrated above.
Here, US1

= {U1} and US2
= {U2}, because there are no admixture edges.

Interestingly, the shape S2 exhibits more symmetry than the shape S1. To
see this, let G1 and G2 be representatives of U1 and U2 with leaves labeled
l1, l2, l3, l4, l5 from left to right. In both cases |T ′U1

| = |T ′U2
| = 5! = 120. The

group HG1 = 〈e, (12), (34)〉 has four elements and so |TU1 | = 120/4 = 30. The
group HG2 = 〈e, (12), (34), (13)(24)〉 has eight elements and so |TU2 | = 120/8 =
15. Altogether, N(5, 2, 0, 0) = 15 + 30 = 45 by decomposition (25). Notice that
the leaves l4 and l5 form a pair in one fifth of the elements in both |TU1

| and
|TU2
| although the two sets are of different size.

There are two basic approaches for counting phylogenetic trees with labeled

leaves: recurrence by splitting the tree at the root33 or recurrence by removal

of one of the leaves25. The first approach is difficult to generalize to admix-

ture graphs, but the latter strategy behaves relatively nicely. Our strategy for

counting topologies is based on decomposing a topology into a recursive series

of predecessors, such that we only need to count the number of possible pre-

decessors in each step. The predecessor ρ(G) of a labeled topology G with L

leaves is defined as follows. In ρ(G) the leaf lL and the terminal edge leading

to it are removed and

1) If the terminal edge was from a node with outdegree 2, the edge to it and

the remaining edge from it are combined to a single edge.

2) If the terminal edge was from an admixture node, the admixture node is

also removed, its parental edge in EM is redirected to a new leaf lL and

its parental edge in EA is redirected to a new leaf lL+1.

Examples of topologies and their predecessors are given in Figure 7. The topol-

ogy with only one edge (graph ρ(G1.2) in Figure 7) has no predecessor. By

examining the graph elements of the predecessors, we can now derive a recur-
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rence formula for the numbers N(L,P,K,E):

N(L,P,K,E) = 2(E + 1)N(L− 1, P,K,E + 1)

+(L− 2P + 1)N(L− 1, P − 1,K,E)

+(L+ 2P + 3K − 2E − 2)N(L− 1, P,K,E)

+
2(P + 1)

L(L+ 1)
N(L+ 1, P + 1,K − 1, E − 1)

+
4(P + 1)(P + 2)

L(L+ 1)
N(L+ 1, P + 2,K − 1, E)

+
4(P + 1)(L− 2P − 1)

L(L+ 1)
N(L+ 1, P + 1,K − 1, E)

+
(L− 2P )(L− 2P + 1)

L(L+ 1)
N(L+ 1, P,K − 1, E).

The initial conditions are N(1, 0, 0, 0) = 1 and N(L,P,K,E) = 0 if L < 1,

P > 2L, K < E or E < 0.

The predecessor of any topology in TL,P,K,E is from one of eight possible

sources TL′,P ′,K′,E′ . We count N(L,P,K,E) by looking at these eight sub

cases and finding out which graphs in TL′,P ′,K′,E′ are eligible predecessors and

of how many graphs in TL,P,K,E . An example of all the sub cases 1.1) – 2.4) is

presented in Figure 7.

1.1) The latest leaf lL stems from an edge forming an eye in ρ(G). Then

ρ(G) ∈ TL−1,P,K,E+1, and since every topology in TL−1,P,K,E+1 has E+ 1

eyes, and every eye has two edges, the contribution to N(L,P,K,E) is

2(E + 1)N(L− 1, P,K,E + 1) . (26)

1.2) The latest leaf lL stems from a terminal edge not belonging to any pairs in

ρ(G). Since ρ(G) ∈ TL−1,P−1,K,E , and every topology in TL−1,P−1,K,E has

L− 1 terminal edges, 2(P − 1) of which belong to a pair, the contribution

to N(L,P,K,E) is

(L− 2P + 1)N(L− 1, P − 1,K,E) . (27)
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1.3) The latest leaf lL stems from an edge belonging to a pair in ρ(G). Since

ρ(G) ∈ TL−1,P,K,E , and every topology in TL−1,P,K,E has 2P edges be-

longing to a pair, the contribution to N(L,P,K,E) is

2PN(L− 1, P,K,E) . (28)

1.4) The latest leaf lL stems from an edge which is neither terminal nor form an

eye in ρ(G). Since ρ(G) ∈ TL−1,P,K,E , and every topology in TL−1,P,K,E

has 2L+3K−3 edges by induction, L−1 of which are terminal and other

2E form eyes, the contribution to N(L,P,K,E) is

(L+ 3K − 2E − 2)N(L− 1, P,K,E) . (29)

2.1) The latest leaf lL of G stems from an admixture node formed by joining

together the edges lL and lL+1 that form a pair in ρ(G). We now have

ρ(G) ∈ TL+1,P+1,K−1,E−1, but not every topology in TL+1,P+1,K−1,E−1

have the property p1 that the leaves lL and lL+1 form a pair.

Let U ∈ UL+1,P+1,K−1,E−1 be any unlabeled topology. By simple combi-

natorics, the proportion of multigraph topologies with property p1 among

the (L + 1)! elements in T ′U is 2(P + 1)/(L2 + L). Since the property p1

is invariant under leaf preserving graph isomorphisms, and every equiv-

alence class under the leaf preserving graph isomorphisms in T ′U have

the same cardinality, the proportion of p1 among the labeled admix-

ture graphs in TU is also 2(P + 1)/(L2 + L). Finally, because this ap-

plies to every U ∈ UL+1,P+1,K−1,E−1, using (25) we conclude that the

proportion of topologies having property p1 among all the topologies in

TL+1,P+1,K−1,E−1 must be 2(P + 1)/(L2 + L) too. Therefore, the contri-

bution to N(L,P,K,E) is

2(P + 1)

L2 + L
N(L+ 1, P + 1,K − 1, E − 1) . (30)
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2.2) The latest leaf lL stems from an admixture node formed by joining to-

gether two edges belonging to two distinct pairs in ρ(G). We now have

ρ(G) ∈ TL+1,P+2,K−1,E , but not every topology in TL+1,P+2,K−1,E have

the property p2 that the leaves lL and lL+1 belong to two distinct pairs.

Let U ∈ UL+1,P+2,K−1,E be any unlabeled topology. By simple combina-

torics, the proportion of multigraph topologies having property p2 among

the (L+ 1)! elements in T ′U is 4(P 2 + 3P + 2)/(L2 + L). As before, since

the property p2 is invariant under leaf preserving graph isomorphisms, all

equivalence classes in T ′U are of equal size and this holds for all unlabeled

topologies, the proportion of topologies having property p2 among the

elements in TL+1,P+2,K−1,E is the same. Therefore, the contribution to

N(L,P,K,E) is

4(P 2 + 3P + 2)

L2 + L
N(L+ 1, P + 2,K − 1, E) . (31)

2.3) The latest leaf lL stems from an admixture node formed by joining together

two terminal edges exactly one of which belongs to a pair in ρ(G). We now

have ρ(G) ∈ TL+1,P+1,K−1,E , but not every topology in TL+1,P+1,K−1,E

have the property p3 that exactly one of the leaves lL and lL+1 belong to

a pair.

Let U ∈ UL+1,P+1,K−1,E be any unlabeled topology. By simple combina-

torics, the proportion of multigraph topologies having property p3 among

the (L + 1)! elements in T ′U is 4(PL + L − 2P 2 − 3P − 1)/(L2 + L). As

before, since the property p3 is invariant under leaf preserving graph iso-

morphisms, all equivalence classes in T ′U are of equal size and this holds

for all unlabeled topologies, the proportion of topologies with property

p3 among the topologies in TL+1,P+1,K−1,E is the same. Therefore, the

contribution to N(L,P,K,E) is

4(PL+ L− 2P 2 − 3P − 1)

L2 + L
N(L+ 1, P + 1,K − 1, E) . (32)
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2.4) The latest leaf lL stems from an admixture node formed by joining to-

gether two terminal edges outside the pairs of ρ(G). We now have ρ(G) ∈

TL+1,P,K−1,E , but not every topology in TL+1,P,K−1,E have the property

p4 that the leaves lL and lL+1 do not belong to a pair.

Let U ∈ UL+1,P,K−1,E be any unlabeled topology. By simple combina-

torics, the proportion of multigraph topologies having property p4 among

the (L + 1)! elements in T ′U is (L2 − 4PL + L + 4P 2 − 2P )/(L2 + L).

As before, since the property p4 is invariant under leaf preserving graph

isomorphisms, all equivalence classes in T ′U are of equal size and this holds

for all unlabeled topologies, the proportion of topologies having property

p4 among the elements in TL+1,P,K−1,E is the same. Therefore, the con-

tribution to N(L,P,K,E) is

L2 − 4PL+ L+ 4P 2 − 2P

L2 + L
N(L+ 1, P,K − 1, E) . (33)

Formula (A.3) follows by summing up all the contributions (26) – (33). The

recurrence procedure converges in L+ 2K steps, because either L decreases by

one, or K decreases by one increasing L by one.
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G1.1

l3 l2 l1

7→

ρ(G1.1)

l2 l1

G1.2

l1 l2

7→

ρ(G1.2)

l1

G1.3

l4 l1 l2 l3

7→

ρ(G1.3)

l1 l2 l3

G1.4

l4 l2 l1 l3

7→

ρ(G1.4)

l2 l1 l3

G2.1

l1 l2

7→

ρ(G2.1)

l1 l3 l2

G2.2

l2 l3 l1

7→

ρ(G2.2)

l2 l3 l4 l1

G2.3

l1 l3 l2

7→

ρ(G2.3)

l1 l3 l4 l2

G2.4

l1 l2

7→

ρ(G2.4)

l3 l1 l2

Fig 7: Example graphs and their predecessors from each sub case 1.1) – 2.4).
The graph ρ(G1.2) is the only labeled admixture graph that doesn’t have a
predecessor, and the ultimate predecessor of every other graph.
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B Supplementary Figures
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Fig S1: We simulated datasets based on admixture graphs with 10 populations
and 0, 1, 2, or 5 admixture events and analyzed them with TreeMix and Admix-
tureBayes. For explanation of how we simulated the datasets, see Appendix A.1.
The simulations were equally split between datasets with 2, 10, and 50 haplo-
types per population and equally split between datasets with 2000 segments and
5000 segments of 500 kb linked sites. Therefore, each column in the plot is a mix
of datasets with 2, 10 and 50 haplotypes and 2000 segments and 5000 segments.
We compared the results of AdmixtureBayes and TreeMix to the true under-
lying admixture graph using 5 different measures (see Results). The thinned
AdmixtureBayes results are extracted from the unthinned AdmixtureBayes by
discarding all graphs that do not contain the true number of admixture events.
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Fig S2: In Figure S1, we separated our simulation study results based on the
number of admixture events while averaging over the number of haplotypes per
population (2, 10, or 50). These are the same analysis results, instead separated
by the number of haplotypes in each population while averaging over numbers
of admixture events (0, 1, 2, or 5).
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Fig S3: Using admixture graphs with 10 leaves and 0, 1 and 2 admixture events,
we simulated 60 different admixture graph datasets with ms (see Appendix A.1).
We estimated randomly selected subgraphs of size 3, 4 and 5 from each dataset.
The Small column contains graphs built from the marginal dataset and the Big
column contains subgraphs of graphs obtained from the full dataset. The Mode
Set Distance on the y-axis measures the distance between the true topology
of the subgraph and the subgraphs estimated by either AdmixtureBayes or
TreeMix.
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Fig S4: The two minimal topologies with the highest posterior probabilities in
our real dataset. Each inner node is colored according to the posterior prob-
ability that the true graph has a node with the same descendants. Higher
probabilities have a darker shade of green. The posterior probability is written
as a percentage in parentheses inside each node, next to the node name, which
is arbitrary. The left graph has a posterior of 32%. The right graph has a
posterior of 19%.
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Fig S5: From the posterior AdmixtureBayes samples, we computed the posterior
probability of all nodes. The above graph is the smallest directed graph with
all the nodes that have a posterior probability higher than 75%. Each internal
node is colored according to its posterior probability, as described in Figure S4.
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Fig S6: From the posterior AdmixtureBayes sample, we computed the posterior
probability of all minimal topologies for several subsets of the populations. Here
we show the three topologies with the highest posterior.
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Fig S7: Continuation of Figure S6.
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Fig S8: The method used to calculate the Set Distance between two admixture
graph topologies (left). First, the topologies are transformed in their descendant
sets/topology sets (middle). The distance is then calculated as the symmetric
set distance between the two topology sets (right).
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Fig S9: Examples of how the minimal topology is calculated. First, we derive
the topology set (middle) from the topology (left). The minimal topology (right)
is the smallest possible graph that is consistent with the topology set. Note,
node labels assigned to the topology (left) are arbitrary and do not identify
corresponding nodes in the minimal topology (right).
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Fig S10: Here, we plot the trace plots for our simulated dataset. Each chain
is shown as a separate column. Each summary statistic is shown as a separate
row.
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Fig S11: We plot the Gelman-Rubin convergence diagnostics on our simulated
dataset for our three summary statistics after a burn-in fraction of 0.35. A rapid
convergence to 1 indicates that this is a sufficient burn-in period.
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Fig S12: We here show the autocorrelation plots for the summary statistics
of our simulated data after a burn-in fraction of 0.35. We only show the re-
sults for Chain 1 and do not include the number of admixture events as the
autocorrelation shows strange behavior for discrete variables.
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Fig S13: We simulated admixture graphs with 10 leaves and 0, 1 and 2 admix-
ture events. Using these graphs, we simulated datasets using ms with different
sample sizes. The top plot illustrates the ratio between the maximum likelihood
degrees of freedom estimate from (6) and the variance estimator in (7). We ran
AdmixtureBayes with the maximum likelihood estimate (MLE), the variance
estimate (VAR), and 2 and 4 times the variance estimate (VARx2 and VARx4
respectively). We calculated the Mean Topology Equality, which was maximized
when using the VAR estimates.
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Fig S14: In Figure S3, we calculated how TreeMix and AdmixtureBayes per-
formed when estimating subgraphs. Here we have stratified the same analysis
according to subgraph size (in the columns) and measure of accuracy (in the
rows)
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Fig S15: In Figure S1, we separated our simulation study on the number of
admixture events. Here, it is separated on the length of the simulated genomes.
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