
i
i

“output” — 2022/9/6 — 17:41 — page 1 — #1 i
i

i
i

i
i

Preprint

Bayesian optimization for demographic inference
Ekaterina Noskova 1,∗, Viacheslav Borovitskiy 2,∗

1Computer Technologies Laboratory, ITMO University, St. Petersburg, 197101, Russia
2Department of Computer Science, ETH Zürich, Zürich, 8092, Switzerland

∗To whom correspondence should be addressed.

Abstract

Motivation: Inference of demographic histories of species and populations is one of the central problems
in population genetics. It is usually stated as an optimization problem: find a model’s parameters that
maximize a certain log-likelihood. This log-likelihood is often expensive to evaluate in terms of time and
hardware resources, critically more so for larger population counts. Although genetic algorithm based
solution have proven efficient for demographic inference in the past, it struggles to deal with log-likelihoods
in the setting of more than three populations. Different tools are therefore needed to handle such scenarios.
Results: We introduce a new specialized optimization pipeline for demographic inference with time-
consuming log-likelihood evaluations. It is based on Bayesian optimization, a prominent technique for
optimizing expensive black box functions. Comparing to the existing widely used genetic algorithm solution,
we demonstrate new pipeline’s superiority in time limited conditions for demographic inference with four
and five populations when using log-likelihoods provided by the moments tool. Moreover, we expect this
behavior to generalize just as well to other expensive-to-evaluate log-likelihood functions in the field.
Availability: The proposed method was implemented as part of the GADMA software framework and is
freely and openly available on GitHub: https://github.com/ctlab/GADMA.
Contact: ekaterina.e.noskova@gmail.com, viacheslav.borovitskiy@gmail.com
Supplementary information: Supplementary materials are available as a separate document.

1 Introduction
The history of populations’ development — the demographic history —
is imprinted into genomes of all individuals. It is a record of events that
happened in the past, including changes in population size, population
splits, migration and selection events. Demographic histories provide
important insights about populations to biological and medical researches.

Reconstruction of the demographic history is called demographic
inference. There exists a multitude of tools for demographic inference
from genetic data based on a variety of mathematical models (Gutenkunst
et al., 2009; Jouganous et al., 2017; Steinrücken et al., 2019; Kamm et al.,
2020; Excoffier et al., 2013, 2021; DeWitt et al., 2021). They all consist
of two rather independent components: simulation and optimization. The
simulation component evaluates log-likelihood of the observed data under
a proposed demographic history. The optimization component takes in a
demographic model — a parametric family of demographic histories —
and searches for the parameters that maximize log-likelihood produced by
the simulation component.

Existing tools for demographic inference are usually limited in the
number of analyzed populations. For example, the original version of the
∂a∂i tool by Gutenkunst et al. (2009) is able to handle only up to three
populations. Another tool, moments by Jouganous et al. (2017) can handle
only up to five populations. This is caused by computational complexity
of simulation techniques used therein, which would scale exponentially
with the number of populations: for example, ∂a∂i numerically solves a
partial differential equation whose dimension is equal to the number of
populations. Some tools, e.g. momi2 by Kamm et al. (2020), use methods
that scale linearly with respect to the number of populations, and are
therefore able to handle an arbitrary number thereof. This does not change
the big picture though: different tools rely on different mathematical
models with different assumptions and thus are not interchangeable.

In the end, demographic inference for multiple populations is widely
regarded to be a slow and expensive procedure, making the problem of
speeding it up to be a valuable research direction. One way to do this,
is to speed up the simulation component of the tools. Along these lines
moments was presented as a faster but somewhat less accurate alternative
to ∂a∂i as well as ∂a∂i itself received GPU support in Gutenkunst (2021)

Preprint 1

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.06.506809doi: bioRxiv preprint 

https://github.com/ctlab/GADMA
ekaterina.e.noskova@gmail.com
viacheslav.borovitskiy@gmail.com
https://doi.org/10.1101/2022.09.06.506809
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2022/9/6 — 17:41 — page 2 — #2 i
i

i
i

i
i

2 Ekaterina Noskova and Viacheslav Borovitskiy

(a) Gaussian process regression is performed on
previous target function evaluations (black circles).

(b) Target function is evaluated (red circle) at the
argmax (dashed line) of the acquisition (red).

(c) With dataset expanded by a new point, the
regression is performed anew starting the next iteration.

Fig. 1: A fragment of Bayesian optimization’s workflow. The blue line is the prediction of the Gaussian process regression, i.e. m̂(·), the shaded blue

regions represent uncertainty bars whose hight is proportional to
√

k̂(·, ·). The red curve is the acquisition function, the dashed vertical line is its argmax.

that allowed it to handle up to five populations. A whole other direction to
boost demographic inference is to improve the optimization component.
This was done in the first author’s previous work. It proposed a new tool
GADMA (Noskova et al., 2020, 2022) based on a genetic algorithm as a
substitute to the optimization components of various tools — mostly based
on the (restarted) local search techniques — giving better performance.

However, even though e.g. ∂a∂i’s and moments’s simulation
components can now handle up to five populations, it is recommended
to use GADMA with up to three populations. This is a natural limitation
stemming from genetic algorithm’s hunger for log-likelihood evaluations,
something that becomes prohibiting for really expensive log-likelihoods.

In this paper we address this problem by introducing Bayesian
optimization as a tool for demographic inference with larger numbers
of populations and implementing it as part of the GADMA framework.
Bayesian optimization (Shahriari et al., 2015) is a state of the art approach
for optimizing expensive-to-evaluate functions within a limited (time)
budget. From the data acquired by evaluating the target function it learns a
probabilistic model and uses it to guide the choice of a new evaluation
location. It comes with a cost though: Bayesian optimization’s inner
workings are rather expensive, making it suitable only for problems where
the target function is itself expensive to evaluate. Previous works used it for
tuning large-scale systems (Snoek et al., 2012; Chen et al., 2018) or robot
control policies (Berkenkamp et al., 2021; Jaquier et al., 2022) as well as
for chemical reaction optimization (Shields et al., 2021), to name a few.

Our contribution is the following. We propose and implement a
specialized Bayesian optimization pipeline for demographic inference
with larger population counts. To choose this pipeline, we evaluate
the performance of a number of candidates using moments’s simulation
component. In the same way we then study the efficiency of the approach,
expecting it to generalize to other expensive-to-evaluate settings. The
results show rapid convergence of the proposed method on different
datasets and prove its efficiency compared to the genetic algorithm in
the settings of four and five populations.

2 Methods and materials
In this section we introduce the methods used in this study, namely
Bayesian optimization and Gaussian process regression, the machine
learning technique Bayesian optimization relies upon. In the end, we
describe the datasets used in Section 4 for performance evaluation.

2.1 Bayesian optimization

As it was mentioned in the introduction, Bayesian optimization provides
state of the art performance for optimizing expensive black-box functions.

Bayesian optimization minimizes a black box functionϕ : T → R, i.e.
a function we are able to evaluate at any input t ∈ T , obtaining a possibly

noisy observation y(t) of ϕ(t), but nothing more (e.g. no gradients).
Moreover, it is usually assumed that each evaluation is expensive and
the objective is to converge as fast as possible or to get as close to the
global optimum as possible within a fixed budget of evaluations or time.

The main idea of this technique is to use a relatively cheap surrogate
model to approximate the expensive target functionϕ each iteration and use
it as a proxy to guide decisions. The most widely used surrogate models are
Gaussian processes (Rasmussen and Williams, 2006) discussed in detail
in Section 2.2. The reason is their ability to perform well in small data
regimes and to quantify uncertainty associated with their own predictions.

The optimization procedure begins by drawing a small random sample
from the domain T and evaluating the target function at each of the
inputs from this sample. The obtained data is called the initial design.
After this, a prior Gaussian process is chosen, usually from the options
detailed later in Section 2.2.4. This may be done manually, aided by some
external considerations like prior knowledge about smoothness of the target
function, or alternatively it may be chosen by means of the cross-validation
procedure described in Section 2.2.5.

At each optimization iteration, using as data the target function
evaluations t1, y1, . . . , tn, yn obtained so far, Gaussian process
regression is executed, as detailed in Section 2.2, resulting in a posterior
Gaussian process f̂ ∼ GP (m̂, k̂). The value m̂(t) = E f̂(t) of its mean
function m̂ : T → R at input t is treated as a prediction of the target
function therein, while the value k̂(t, t) = Var f̂(t) of its covariance
function k̂ : T × T → R at (t, t) is treated as the projected variance of
this prediction, i.e. a measure of uncertainty.

Given the posterior Gaussian process, the location t∗ to evaluate the
target function next is chosen by solving

t∗ = argmax
t∈T

α(t)

where α : T → R is the acquisition function defined in terms of the
posterior process f̂ (Frazier, 2018). Common choices of α include

αEI(t) = E
(
max(0, min

1≤i≤I
yi − f̂(x))

)
, (1)

αPI(t) = P(f̂(x) < min
1≤i≤I

yi), (2)

αlogEI(t) = E
(
max(0, min

1≤i≤I
eyi − ef̂(x))

)
. (3)

Here “EI” stands for Expected Improvement and “PI” stands for
Probability of Improvement. The acquisition functionαlogEI(t) by Hutter
et al. (2009) is intended for use in conjunction with log-transformed data,
i.e. when yj > 0 and t1, log y1, . . . , tn, log yn are fed into Gaussian

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.06.506809doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506809
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2022/9/6 — 17:41 — page 3 — #3 i
i

i
i

i
i

Bayesian optimization for demographic inference 3

process regression instead of ti, yi, . . . , tn, yn.1 For a Gaussian process
f̂ with known m̂ and k̂ these acquisition functions are tractable and
may be computed in closed form and efficiently optimized by gradient
descent (with restarts). Further we refer to the acquisition functions in
Equations (1), (2) and (3) by the names EI, PI and LogEI respectively.

A part of Bayesian optimization’s workflow is illustrated in Figure 1.

2.2 Gaussian process regression

Gaussian process regression models an unknown function from data and
provides well-calibrated uncertainty bars alongside with its predictions.
As its name suggests, it is based on Gaussian processes.

2.2.1 Gaussian processes
Mathematically, a Gaussian process is a family {ft}t∈T of jointly
Gaussian random variables ft indexed by some set T . Sometimes people
reserve this term only for such index sets T that T ⊆ R but we will
not stick to this convention. Instead, T will be a subset of Rd, typically a
product of segments, corresponding to the domain of the modeled function.

A Gaussian process (or rather, strictly speaking, its distribution)
is determined by a pair of deterministic functions: the mean
function m : T → R and the covariance kernel k : T × T → R:

m(t) = E(ft), k(t, t′) = Cov(ft, ft′ ). (4)

Conversely, each pair of deterministic functions m and k where k

is positive semidefinite (see Rasmussen and Williams (2006) for the
definition) constitutes a Gaussian process. This one-to-one correspondence
motivates the standard notation

f ∼ GP (m, k). (5)

Because of their simplicity, Gaussian processes are attractive to encode
distributions over functions. Furthermore, they turn out to be particularly
suitable for the Bayesian learning framework that we briefly describe next.

2.2.2 Bayesian learning
The framework of Bayesian learning combines a prior Gaussian process
f ∼ GP (m, k), some data y ∈ Rn at locations t ∈ T n and a likelihood
function p(y | f) into the posterior process f̂ given by the Bayes’ rule2

p(f̂)
def
= p(f | y) =

p(y | f)p(f)
p(y)

. (6)

The posterior f̂ is “similar” to the prior f but also respects the data y in a
way prescribed by the likelihood p(y | f).

The posterior process f̂ may in general fail to be Gaussian, in
which case any computations involving it will require complex numerical
techniques like Markov Chain Monte Carlo (MCMC). Fortunately, if
the likelihood function corresponds to the situation where for each
observation yi one assumes yi = f(ti) + ε with ε ∼ N(0, σ2

ε)

being Gaussian noise with variance σ2
ε , then f̂ is a Gaussian process.

Moreover, f̂ ∼ GP (m̂, k̂)with functions m̂ and k̂ given by the following

1 We will use it to model negative log likelihood, which in many cases of
interest is indeed positive. This means that Gaussian process regression
will be used to predict the logarithm of negative log likelihood.
2 Note that equation (6) is non-rigorous: this form of Bayes’ rule treats the
distributions of Gaussian processes as if they were absolutely continuous
with respect to a finite dimensional Lebesgue measure, which they are not.
The rigorous formalism exists of course, but we do not dwell on this here.

simple closed form expressions (Rasmussen and Williams, 2006) which
we present, for further simplicity, under the assumption that m ≡ 0.

m̂(t) = Kt,t(Kt,t + σ2
εI)

−1y, (7)

k̂(t, t′) = k(t, t′)−Kt,t(Kt,t + σ2
εI)

−1Kt,t′ , (8)

where for a pair of vectors a ∈ T l, b ∈ T s, the symbol Ka,b denotes
the l × s matrix defined by

(
Ka,b

)
ij

= k(ai, bj); t = (t1, . . . , tn)⊤

and similarly y = (y1, . . . , yn)⊤. Because of this remarkable simplcity,
such likelihood assumption is often the setting of choice for applications.

Bayesian learning with Gaussian processes is the main part of the
Gaussian process regression technique which we describe next.

2.2.3 Regression
As a preparatory step before Gaussian process regression, a parametric
family of priors fθ ∼ GP (mθ, kθ) must be selected. We postpone the
discussion on specific families of priors used in practice until Section 2.2.4,
but right away make the widely used assumption ofmθ ≡ 0 for simplicity.

After choosing such a family, the Gaussian process regression
technique proceeds in two steps. First, the optimal parameters θ̂ of the
prior and σ̂ε

2 of the likelihood function are found by maximizing the
marginal log-likelihood (Rasmussen and Williams, 2006):

θ̂, σ̂ε
2 = argmax

θ,σ2
ε

log pθ,σ2
ε
(y)

= argmax
θ,σ2

ε

−
1

2
y⊤(Kθ,t,t + σ2

εI)
−1y

−
1

2
log
(
det
(
Kθ,t,t + σ2

εI
))

−
n

2
log(2π).

To solve this optimization problem the simple gradient descent with
multiple restarts is usually the tool of choice.

The second step of the Gaussian process regression is to compute the
Cholesky decomposition of the positive-definite matrix Kθ̂,t,t+ σ̂2

εI, i.e.
lay the groundword for solving linear systems of form

(Kθ̂,t,t + σ̂2
εI)a = b. (9)

After this is done, the prediction at an arbitrary location t is given by m̂(t)

and the error bars therein are given by k̂(t, t).
The optimization problem which involves solving a linear system

and computing a determinant, as well as the later step of computing the
Cholesky decomposition have computational complexity O(n3) where n
is the size of the dataset.3 This prohibits the use of this simple approach for
large n. However, after the two steps are completed, the computation of
predictions and error bars requires only the relatively cheap — O(n) and
O(n2) respectively — and easily parallelizable matrix-vector products.

We now turn to the question of practical Gaussian process priors.

2.2.4 Practical priors
In order to perform Gaussian process regression, a parametric family of
priors fθ ∼ GP (mθ, kθ) has to be selected. In practice, the prior mean
mθ is usually assumed to either be zero or an (optimizable) constant. With
that said, we focus on choosing kθ and assume mθ ≡ 0.

The most widely used family of prior Gaussian processes is the Matérn
family (Stein, 2012; Rasmussen and Williams, 2006). It is parameterized
by three positive parameters: smoothness ν that determines how many
derivatives the resulting Gaussian process will have, length scale κ which

3 Searching for θ̂, σ̂n
2 requires solving a linear system and computing a

determinant at each iteration of the optimization procedure making it the
super-cubic bottleneck in the computational complexity of the regression.

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.06.506809doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506809
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2022/9/6 — 17:41 — page 4 — #4 i
i

i
i

i
i

4 Ekaterina Noskova and Viacheslav Borovitskiy

scales the t axis and variance σ2 which sacales the y axis. These are the
zero-mean Gaussian processes with covariances given by

kν,κ,σ2 (t, t′)=
21−ν

Γ(ν)

(√
2ν

∥t− t′∥
κ

)ν

Kν

(√
2ν

∥t− t′∥
κ

)
, (10)

where Kν is the Bessel function of the second kind and Γ denotes the
gamma function (see Gradshteyn and Ryzhik (2014) for definitions).

The general Matérn family given by equation (10) is often divided into
subfamilies corresponding to a single value of ν. Specifically, the cases of
ν ∈ {1/2, 3/2, 5/2,∞} are usually considered, in which Equation (10)
may be substantially simplified (Rasmussen and Williams, 2006) to give

k1/2,κ,σ2 (t, t′) = σ2 exp
(
−
u

κ

)
, (11)

k3/2,κ,σ2 (t, t′) = σ2

(
1 +

√
3u

κ

)
exp

(
−
√
3u

κ

)
, (12)

k5/2,κ,σ2 (t, t′) = σ2

(
1 +

√
5u

κ
+

5u2

3κ2

)
exp

(
−
√
5u

κ

)
, (13)

k∞,κ,σ2 (t, t′) = σ2 exp

(
−

u2

2κ2

)
, where u = ∥t− t′∥. (14)

The first covariance is also called the exponential kernel, the last — the
Gaussian, the squared exponential or the RBF kernel. Subsequently, we
refer to zero mean Gaussian processes with kernels (11), (12), (13) and
(14) by Exponential, Matern32, Matern52 and RBF respectively.

2.2.5 Cross-validation for prior selection
Although a parametric family of priors is often chosen manually, there
are ways to automate this. Here we describe one popular way, termed
leave-one-out cross validation (LOO-CV). It takes in some data, usually
the initial design, and a finite number of parametric families of priors. For
each it computes a certain score, choosing the family with the highest.

Assuming a fixed parametric family of priors, the score is computed
by leaving one datum ti, yi out of the data and computing the prediction
quality at ti of the model f̂−i obtained from the rest of the data, which
we denote by t−i,y−i. This is then averaged over all i ∈ {1, . . . , n}:

LLOO−CV =
1

n

n∑
i=1

Q(yi, f̂−i(ti)).

Assuming f̂−i(ti) = N(µ, σ2), the prediction quality metric Q may be
defined by

Q(yi, f̂−i(ti)) = −E(yi − f̂−i(ti))
2 = −(yi − µ)2 − σ2.

However, this metric clearly favors models that underestimate predictive
uncertainty: a lower value of σ2 directly causes Q to be higher. Because
of this, another prediction quality metric is used, based on the likelihood,
which is able to balance prediction quality with uncertaintly calibration:

Q(yi, f̂−i(ti)) = log pf̂−i(ti)
(yi) (15)

= −
(yi − µ)2

2σ2
−

1

2
log(2πσ2). (16)

Note that when LogEI acquisition function is used, ti, log yi must be
used in Equation (16) in place of ti, yi.

2.3 Datasets

The log-likelihood functions provided by simulation components of
different tools are determined by the observed genetic data. To evaluate

3_YRI_CEU_CHB_13_Gut

Number of 
populations

Number of 
parameters

Demographic 
model 

description

Source of data
(simulation or 

paper ID)

Fig. 2: Dataset naming convention.

the performance of different optimization pipelines, we use several
datasets from the package deminf_data.4 The genetic data in each
of the datasets is represented by the allele frequency spectrum5 statistic.
Additionally, each dataset contains a demographic model and bounds for
the model’s parameters. Datasets are named according to the convention
described in Figure 2. More information about the datasets is available in
the repository of deminf_data. The list of used datasets along with the
corresponding times of log-likelihood evaluation is presented in Figure 3.

Different Bayesian optimization pipelines studied in Section 4 are
tested on the first eleven datasets. There is one dataset with one population,
four datasets with two populations, two datasets with three populations,
three datasets with four populations and one dataset with five populations.

In Sections 4.6 and 4.7, additionally, two last datasets from Figure 3
are used to (1) compare the final Bayesian optimization pipeline to
the genetic algorithm implemented as part of the GADMA tool and (2)
show that the former is able to find demographic models with higher
log-likelihood values than observed in the literature. These datasets
correspond to demographic models with four and five modern human
populations and the genetic data built by Jouganous et al. (2017) from
autosomal synonymous sequence data of the publicly available 1000

Genomes Project (Sudmant et al., 2015; Consortium et al., 2015). The
data for four populations includes: 1) Yoruba individuals from Ibadan,
Nigeria (YRI); 2) Utah residents with northern and western European
ancestry (CEU); 3) Han Chinese from Beijin, China (CHB); and 4)
the Japanese from Tokyo (JPT). The data for five populations includes
the same four populations and 5) Kinh Vietnamese (KHV) population.
These two datasets are also included in deminf_data package and
are named 4_YRI_CEU_CHB_JPT_17_Jou for four populations and
5_YRI_CEU_CHB_JPT_KHV_21_Jou for five populations.

4 https://github.com/noscode/demographic_inference_data.
5 Histogram of joint distribution of derived alleles of individuals.

1_Bot_4_Sim

2_ExpDivNoMig_5_Sim

2_DivMig_5_Sim

2_BotDivMig_8_Sim

2_YRI_CEU_6_Gut

3_DivMig_8_Sim

3_YRI_CEU_CHB_13_Gut

4_DivMig_11_Sim

4_DivNoMig_9_Sim

4_DivMig_18_Sim

5_DivNoMig_9_Sim

4_YRI_CEU_CHB_JPT_17_Jou

5_YRI_CEU_CHB_JPT_KHV_21_Jou

10 2

10 1

100

101

102

103

Ti
m

e 
(s

ec
on

ds
)

Evaluation time for data sets

Fig. 3: Evaluation times of log-likelihood by the moments tool for all used
datasets. Y-axis is in log-scale. Boxplots are colored according to median
value.

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.06.506809doi: bioRxiv preprint 

https://github.com/noscode/demographic_inference_data
https://doi.org/10.1101/2022.09.06.506809
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2022/9/6 — 17:41 — page 5 — #5 i
i

i
i

i
i

Bayesian optimization for demographic inference 5

3 Implementation
All Bayesian optimization pipelines discussed further below were
implemented as part of the open-source software GADMA available at
https://github.com/ctlab/GADMA.

We highlight several of the ready-to-use libraries implementing
Bayesian optimization: GPyOpt (authors, 2016), BOTorch (Balandat
et al., 2020) and SMAC (Hutter et al., 2011; Lindauer et al., 2022).
Unfortunately, GPyOpt is no longer supported since 2020. BOTorch is
actively developed and popular, but SMAC proved itself well in a number
of applications (Lago et al., 2018; Hewamalage et al., 2021; Wu et al.,
2022) and, importantly, supports the LogEI acquisition function (Hutter
et al., 2009) that will turn out to be a part of the best performing pipeline
later in the following section. Because of this, we use SMAC v0.13.1 to
implement Bayesian optimization pipelines within GADMA.

4 Approach and results
In this section we propose and compare different candidate Bayesian
optimization pipelines in the setting of demographic inference. After
choosing the most fitting pipeline we compare its performance to the
genetic algorithm implemented as part of GADMA and show that it is
able to attain unmatched log-likelihood values in one real data setting.

4.1 Overview

To evaluate the performance of different candidate pipelines we analyze
convergence plots compiling 64 independent optimization runs using the
datasets from Section 2.3 and the moments’ simulation engine. We use
moments because, while being one of the most popular demographic
inference tools alongside with ∂a∂i, it is not so time consuming as ∂a∂i,
making it easier to do experimental evaluation. For the latter we consistenly
use the same hardware (Intel® Xeon® Gold 6248).

Candidate pipelines are determined by the choice of prior and
acquisition function. We consider four zero mean Gaussian process priors
with kernels from Equations (11)–(14) and three acquisition functions
given by Equations (1)–(3), meaning that overall there are 12 candidates.
We denote the candidates by Acquisition + Kernel, for example
LogEI + Matern32. Initial design is always taken to be of size 2d

where d is the number of demographic model’s parameters. It consists
of pairs ti, yi with input locations ti sampled randomly from the same
distribution that GADMA uses for its genetic algorithm implementation.

First, we appeal to choosing the prior by comparing the leave-one-
out cross validation scores as it was described in Section 2.2.5. We use a
large collection (2,000) of points and evaluate the scores for 11 datasets
from Section 2.3. The setup and results are detailed in Section 4.2.

After this, we perform the most natural evaluation of the candidate
pipelines given the setting: we compare their convergence performance on
each of the datasets. This experiment is detailed in Section 4.3. We observe
Matern52 and RBF kernels with PI and LogEI acquisition functions to
show more or less equally good results, outperforming other candidates.

After this, we consider cross validation scores on initial design as a tool
for automatic prior selection, introducing additional candidate pipelines
denoted by Acquisition + Auto. We evaluated performance of
these for two acquisition functions that performed best on the previous
step. Both show equally good or better results compared to the four best
performers of the previous step. The details may be found in Section 4.4

Finally, we propose an ensemble pipeline denoted by Ensemble. On
each optimization iteration a coin is flipped. On heads the PI acquisition
is used, on tails — LogEI. The prior is chosen by comparing the cross
validation scores, but in this case only between Matern52 and RBF

which performed best in the previous experiments. This last candidate

shows better or equal performance compared to the previous champions
and is chosen as the final pipeline. See the detailed results in Section 4.5.

To conclude, we compare the final pipeline Ensemble to GADMA’s
genetic algorithm in terms of convergence speed as per iteration and
as per wall clock time, showing promising results that are presented
in Section 4.6. Immediately after, in Section 4.7, we show that Ensemble
can give better log-likelihood values then reported so far in the literature
for a real data case study.

4.2 Comparing cross validation scores to choose a prior

One popular way of selecting the prior is by comparing the leave-one-
out cross validation scores (LOO-CV) as described by Section 2.2.5.
In an attempt to do so, we evaluated LOO-CV on 2,000 points in 11

datasets from Section 2.3 and used those to compare four prior Gaussian
processes under consideration. For each dataset, evaluation points were
generated not-uniformly: the first 1,000 points were generated uniformly
within target function’s prescribed domain, but the second 1,000 points
were generated using the distribution used in initial design procedure.
Since the acquisition LogEI runs Gaussian process regression on the log
transformed data, we also evaluate the LOO-CV scores in this setting.

The results presened in Table S1 and S2 suggest that Exponential
usually has worst performance and Matern52 is most often the best.
However, there were outliers, for example the LOO-CV score for
4_DivMig_18_Sim dataset was best for Exponential. Overall,
there is no single clear champion among the priors in terms of the LOO-CV
score, however Matern52 comes closest.

4.3 Evaluating 12 basic candidates

The most comprehensive — although not very formal — way to evaluate
the performance of different optimization pipelines is by examining the
convergence plots, like the one given in Figure 4. The somewhat informal
criteria of comparison are: speed of convergence, interquartile distance
and, most importantly, the end result. Convergence plots for all datasets
and optimization running for 200 iterations can be found in Figures S1–S3.

Candidates with Exponential prior or EI acquisition showed poor
convergence for all of the 11 datasets. Matern32 usually showed equal
or worse performance compared to Matern52 (see e.g. Figure 4). As the
result, 4 candidates that combine Matern52 and RBF priors with PI and
LogEI acquisitions were considered the most fitting to our setting.

We should note that results of examining the convergence plots are not
very well aligned with the cross-validation scores discussed above. They

0 25 50 75 100 125 150 175 200
Iteration (number of log-likelihood evaluations)

50000

40000

30000

20000

10000

0

Di
st

an
ce

 to
 th

e 
op

tim
al

 v
al

ue
of

 lo
g-

lik
el

ih
oo

d

Comparison for 4_DivMig_11_Sim LogEI + RBF
PI + RBF
PI + Matern52
LogEI + Matern52
LogEI + Matern32
PI + Matern32
LogEI + Exponential
PI + Exponential
EI + Exponential
EI + Matern52
EI + Matern32
EI + RBF
Initial design

Fig. 4: Convergence plot of 12 basic Bayesian optimization pipelines
for the 4_DivMig_11_Sim dataset. For each candidate pipeline 64

optimization runs were independently performed. Solid lines of different
colors visualize the median of the sample of 64 values on each iteration,
while shaded regions visualize ranges between the first and third quartiles.
Grey area indicates the initial design, where random search is performed.
The labels in the legend are sorted according to the final median.

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.06.506809doi: bioRxiv preprint 

https://github.com/ctlab/GADMA
https://doi.org/10.1101/2022.09.06.506809
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2022/9/6 — 17:41 — page 6 — #6 i
i

i
i

i
i

6 Ekaterina Noskova and Viacheslav Borovitskiy

0

16

32

48

64

Gaussian process

1_Bot_4_Sim

2_ExpDivNoMig_5_Sim

2_DivMig_5_Sim

2_BotDivMig_8_Sim

2_YRI_CEU_6_Gut

3_DivMig_8_Sim

3_YRI_CEU_CHB_13_Gut

4_DivNoMig_9_Sim

4_DivMig_11_Sim

4_DivMig_18_Sim

5_DivNoMig_9_Sim
0

16

32

48

64

Log-transformed Gaussian process

RBF

Matern52

Matern32

Exponential

Fig. 5: Histograms of automatic prior selection frequencies. For each
dataset the top row corresponds to the PI + Auto pipeline, while the
second row corresponds to the LogEI + Auto pipeline.

agree in identifying Exponential as the worst choice, but disagree in
some other cases. For example, in cases where LOO-CV scores suggest
Exponential to be the best choice, convergence plots show the contrary.
As another example, in Figure 4 the PI + Matern32 candidate
performs worse than PI + RBF candidate although Matern32 prior
has better LOO-CV score than RBF prior (see Table S1).

4.4 Automatic prior selection

Because the results in Sections 4.2 and 4.3 suggest that different priors
fit different datasets, it is natural to consider automatic prior selection.
We thus consider the following two new candidate pipelines. They select
the prior that maximizes the LOO-CV score on initial design data (all 4
possible priors are considered) and use one of acquisition functions that
performed best in previous experiments, namely PI and LogEI.

We run these independently 64 times on 11 datasets from Section 2.3.
The histograms of prior selection frequencies are presented in Figure 5.
The plots of convergence on 200 iterations are presented in Supplementary
materials, in Figures S4–S6. According to the histograms, frequency of
prior selection differs among datasets, however, RBF and Matern52 are
clearly the most frequent choices.

Upon examining convergence plots it is clear that both new
candidates show equal or better performance than the previous champions.
For different datasets, especially corresponding to larger population
counts, there was no clear winner. For instance, for three datasets
3_DivMig_8_Sim, 4_DivNoMig_9_Sim and 4_DivMig_11_Sim
the pipeline LogEI + Auto shows better performance than PI +

Auto. However, for two datasets 3_YRI_CEU_CHB_13_Gut and
5_DivNoMig_9_Sim the results turned out the other way around.

4.5 Ensembling

Ensembling optimization techniques is a promising tool. By combining
(e.g. by simply alternating) several methods it is often able to give a
considerably more efficient technique. For example, an ensemble Bayesian
optimization technique named Squirrel (Awad et al., 2020) was one of the
prize winners of the Black-box Optimization Challenge in 2020.

Basing on these ideas, we propose yet another candidate pipeline.
First, basing on the results of Sections 4.2 and 4.3 and the frequencies of
automatic prior choice examined in Section 4.4, we narrow down the set of
priors toRBF andMatern52 and the set of acquisitions toPI andLogEI,
deeming them the most efficient. The pipeline starts by chosing the best of
the two priors based on the LOO-CV scores over the initial design. Then,
on each iteration, one of the two acquisitions is chosen randomly (with
equal probability). That is, on different iterations, different acquisition
strategies are used. This pipeline is denoted by Ensemble.

0 25 50 75 100 125 150 175 200
Iteration (number of log-likelihood evaluations)

100000

80000

60000

40000

20000

0

Di
st

an
ce

 to
 th

e 
op

tim
al

 v
al

ue
of

 lo
g-

lik
el

ih
oo

d

Comparison for 4_DivNoMig_9_Sim

LogEI + Auto
PI + Auto
Ensemble
Initial design

Fig. 6: Convergence plots of the previously considered best performers
and the new ensemble approach on the 4_DivNoMig_9_Sim dataset
showing superiority of the latter. The meaning of the colored solid lines,
shaded regions and the grey area on the left are the same as in Figure 4.

Comparing Ensemble to the previously mentioned best performers
by examining convergence plots (Figures S7–S9) shows that the former
has similar or better performance. This makes the new Ensemble

pipeline superior to all other considered candidates and naturally suggests
choosing it as the final solution. It shows significant improvements
on some datasets, e.g. on 4_DivNoMig_9_Sim (see Figure 6) and
4_DivMig_11_Sim (see Figure S4).

4.6 Comparison to the genetic algorithm

Finally, we compare the final champion pipeline Ensemble to the genetic
algorithm implemented in second version of GADMA (Noskova et al.,
2022). For this, besides the iteration-wise convergence plots used before,
we use the wall clock time convergence plots. These are important because,
in contrast to the genetic algorithm, Bayesian optimization has tangible
computational overhead arising from Gaussian process regression and
acquisition function optimization ran on each iteration.

Two additional datasets of modern human populations from Jouganous
et al. (2017) were included in this evaluation. The convergence plots for
thirteen datasets are presented in Figures S10–S14. An example of a wall-
clock time convergence plot is presented in Figure 7.

The final Bayesian optimization pipeline turns out to be superior to the
genetic algorithm on all datasets iteration-wise. However, as mentioned

0 3 days 6 days 9 days 12 days 15 days
Time

20000
17500
15000
12500
10000
7500
5000
2500

0

Di
st

an
ce

 to
 th

e 
op

tim
al

 v
al

ue
of

 lo
g-

lik
el

ih
oo

d

Comparison by time for 5_YRI_CEU_CHB_JPT_KHV_21_Jou

BO, Ensemble (400 evaluations)
GA, GADMA (500 evaluations)

Fig. 7: Wall clock time convergence of Ensemble pipeline (blue)
versus the genetic algorithm implementation from GADMA (green) on
the 5_YRI_CEU_CHB_JPT_KHV_21_Jou dataset. The meaning of the
colored solid lines and shaded regions are the same as in Figure 4.

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.06.506809doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506809
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2022/9/6 — 17:41 — page 7 — #7 i
i

i
i

i
i

Bayesian optimization for demographic inference 7

before, Bayesian optimization has overhead in terms of the wall clock
time, which makes the wall clock time results different. Here, the more
expensive-to-evaluate log-likelihood is, the better Bayesian optimization
compares to the genetic algorithm. As it was demonstrated in Figure 3, log-
likelihood evaluation time depends on the dataset, mainly on the number
of populations therein.

In the end, the genetic algorithm turns out to be superior in terms of
wall clock time in cases of one and two populations. In the case of three
populations two optimization approaches show comparable results. In the
case of four populations Bayesian optimization has faster convergence in
the beginning but then ties with the genetic algorithm. For five populations,
however, Bayesian optimization turns out to be superior with a margin.

4.7 Application to real data

Here, we pay closer attention to the additional datasets by Jouganous et al.
(2017) that extend the standard out-of-Africa model by Gutenkunst et al.
(2009) with three populations to the cases of four and five populations.6

Jouganous et al. (2017) performed demographic inference for these
datasets using the moments’ simulation engine and Powell’s method
with restarts reporting the resulting models and log-likelihood values.
Demographic inference for these can bring real insights into the history of
humankind and here we show that Ensemble is able to find new models
for them with higher log-likelihood values then ever previously observed.

The model for four populations has 17 parameters and the model
for five has 21: the same 17 ones and four additional ones. To reduce
computational time, Jouganous et al. (2017) optimized over 17 parameters
of the former model, then fixed those and optimized over the remaining
four parameters of the second model. We refer to the demographic histories
obtained by Jouganous et al. (2017) as the baseline histories.

First, to infer a history (17 parameters) for the four populations model,
we run Ensemble 64 times for 400 iterations followed by the BFGS
local search until convergence. The results are presented in Table S3. The
best result has higher log-likelihood compared to the baseline history. The
corresponding history is similar to the baseline but suggests exponential
decline of JPT population from 30, 000 to 15, 000 individuals in contrast
to the exponential growth from 4, 000 up to 230, 000 individuals in
the baseline history. Moreover, the new history suggests a much lower
migration rate between CHB and JPT populations. The second best history
is much more similar to the baseline but has better value of log-likelihood
and lower migration rate between CHB and JPT populations.

After this, we fix the 17 parameters of the five populations model
to the same values as in the baseline history, and run Ensemble for
200 iterations (followed by the local search) to infer the remaining four
parameters. Interestingly, it requires only 16± 7 iterations to overrun the
baseline log-likelihood. The results are presented in Table S4. The history
attaining best log-likelihood predicts migration rate between CHB and
KHV populations to be twice as large as in the baseline history. Moreover,
the split of CHB population that created KHV population is predicted
earlier: 590 generations ago, as opposed to 337 generations in the baseline.

Finally, we use Ensemble to infer a demographic history for five
populations from scratch, for the full 21 parameter model. We run
Ensemble for400 iterations followed by the local search, 64 independent
times. The results are presented in Table S4. The best result achieves higher
log-likelihood value than both the baseline history and the history inferred
by Ensemble with 17 parameters fixed. It suggests exponential decline
of the JPT population, similar to the best history for four populations.
This result is, however, hardly supported by other studies: the population
divergence times are estimated to be very early, implying the out-of-Africa

6 These are exactly the dataset 4_YRI_CEU_CHB_JPT_17_Jou and
the dataset 5_YRI_CEU_CHB_JPT_KHV_21_Jou, respectively.

event more than a million years ago. The second best model is much better
aligned with the contemporary knowledge. The differences in parameters
between this model and the baseline model concern mainly YRI and CEU
populations. It could be explained by the low number of samples from
these two populations in the dataset where allele frequency spectrum was
downsized to 5 chromosomes for YRI and CEU populations and down to
30 chromosomes for the other three populations.

5 Discussion
We proposed a Bayesian optimization pipeline suitable for demographic
inference with expensive log-likelihood evaluations and limited resources.
This pipeline was chosen as the single best performer in a series of
experiments comparing different Bayesian optimization pipelines. In terms
of the number of log-likelihood evaluations before attaining a good result,
it was superior to GADMA’s genetic algorithm on all datasets. In terms
of the wall-clock time, it was superior for optimizing the expensive-to-
evaluate log-likelihoods in cases of four and five populations, showing
that it can be used to save days and weeks of computations.

The following two paragraphs suggest practical considerations in using
the proposed approach, based on its properties and empirical observations.

It is widely presumed that fewer parameters to be optimized make
Bayesian optimization more efficient, with 20 being the critical value after
which Bayesian optimization is likely to fail (Frazier, 2018). Although
in our experiments with up to 21 parameters Bayesian optimization
performed well, the setting where 17 parameters were fixed and then only
four optimized is noteworthy. There, it took only around 20 log-likelihood
evaluations to overrun the best log-likelihood reported in the literature,
which is an impressive result. This suggests that iteratively optimizing
nested models whenever appropriate might be quite beneficial. We should
also note that adjusting the final result of Bayesian optimization by a local
search algorithm might be quite important to make the most out of it.

Bayesian optimization is best suited in scenarios with a priori fixed
budget, like time and number of computation cores. In our implementation,
a user should manually specify the number of iterations (equal to the
number of log-likelihood evaluations) that Bayesian optimization should
undertake. As noted above, Bayesian optimization could converge quite
fast, especially when the parameter count is low. Moreover, because of
Bayesian optimization’s own computational overhead (that increases with
time), it is not recommended to run it for too many iterations, even if
the target function is not expensive. We suggest to keep the number of
iterations under 1000, with 200 or 400 being good practical choices.

We note that for up to three populations, GADMA allows model
free demographic inference by considering more flexible demographic
structures (Noskova et al., 2020) instead of models. This requires
solving optimization problems that involve discrete parameters. Bayesian
optimization can be extended to handle these (in fact, the SMAC engine
already has this feature) which may in future allow model free demographic
inference for four and more populations, if an appropriate alternative to
demographic structures is proposed and implemented.

Funding
EN was supported by Systems Biology Program by Skoltech. VB was
supported by an ETH Zürich Postdoctoral Fellowship.

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.06.506809doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506809
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2022/9/6 — 17:41 — page 8 — #8 i
i

i
i

i
i

8 Ekaterina Noskova and Viacheslav Borovitskiy

References
authors, T. G. (2016). GPyOpt: A bayesian optimization framework in

python. http://github.com/SheffieldML/GPyOpt.
Awad, N. et al. (2020). Squirrel: A switching hyperparameter optimizer.

arXiv preprint arXiv:2012.08180.
Balandat, M. et al. (2020). BoTorch: A Framework for Efficient Monte-

Carlo Bayesian Optimization. In Advances in Neural Information
Processing Systems 33.

Berkenkamp, F. et al. (2021). Bayesian optimization with safety
constraints: safe and automatic parameter tuning in robotics. Machine
Learning, pages 1–35.

Chen, Y. et al. (2018). Bayesian optimization in alphago. arXiv preprint
arXiv:1812.06855.

Consortium, . G. P. et al. (2015). A global reference for human genetic
variation. Nature, 526(7571), 68.

DeWitt, W. S. et al. (2021). Nonparametric coalescent inference of
mutation spectrum history and demography. Proceedings of the National
Academy of Sciences, 118(21).

Excoffier, L. et al. (2013). Robust demographic inference from genomic
and snp data. PLoS genetics, 9(10), e1003905.

Excoffier, L. et al. (2021). fastsimcoal2: demographic inference under
complex evolutionary scenarios. Bioinformatics.

Frazier, P. I. (2018). A tutorial on bayesian optimization. arXiv preprint
arXiv:1807.02811.

Gradshteyn, I. S. and Ryzhik, I. M. (2014). Table of Integrals, Series, and
Products. Academic Press, 7 edition.

Gutenkunst, R. N. (2021). Dadi. cuda: accelerating population genetics
inference with graphics processing units. Molecular biology and
evolution, 38(5), 2177–2178.

Gutenkunst, R. N. et al. (2009). Inferring the joint demographic history of
multiple populations from multidimensional snp frequency data. PLoS
genetics, 5(10), e1000695.

Hewamalage, H. et al. (2021). Recurrent neural networks for time series
forecasting: Current status and future directions. International Journal
of Forecasting, 37(1), 388–427.

Hutter, F. et al. (2009). An experimental investigation of model-based
parameter optimisation: Spo and beyond. In Proceedings of the 11th
Annual conference on Genetic and evolutionary computation, pages
271–278.

Hutter, F. et al. (2011). Sequential model-based optimization for general
algorithm configuration. In International conference on learning and

intelligent optimization, pages 507–523. Springer.
Jaquier, N. et al. (2022). Geometry-aware bayesian optimization in

robotics using riemannian matérn kernels. In Conference on Robot
Learning, pages 794–805. PMLR.

Jouganous, J. et al. (2017). Inferring the joint demographic history of
multiple populations: beyond the diffusion approximation. Genetics,
206(3), 1549–1567.

Kamm, J. et al. (2020). Efficiently inferring the demographic history
of many populations with allele count data. Journal of the American
Statistical Association, 115(531), 1472–1487.

Lago, J. et al. (2018). Forecasting day-ahead electricity prices in europe:
The importance of considering market integration. Applied energy, 211,
890–903.

Lindauer, M. et al. (2022). Smac3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning
Research, 23(54), 1–9.

Noskova, E. et al. (2020). Gadma: Genetic algorithm for inferring
demographic history of multiple populations from allele frequency
spectrum data. GigaScience, 9(3), giaa005.

Noskova, E. et al. (2022). Gadma2: more efficient and flexible
demographic inference from genetic data. bioRxiv.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for
Machine Learning. MIT Press.

Shahriari, B. et al. (2015). Taking the human out of the loop: A review of
bayesian optimization. Proceedings of the IEEE, 104(1), 148–175.

Shields, B. J. et al. (2021). Bayesian reaction optimization as a tool for
chemical synthesis. Nature, 590(7844), 89–96.

Snoek, J. et al. (2012). Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25.

Stein, M. (2012). Interpolation of spatial data: some theory for kriging.
Springer Science & Business Media, New York.

Steinrücken, M. et al. (2019). Inference of complex population histories
using whole-genome sequences from multiple populations. Proceedings
of the National Academy of Sciences, 116(34), 17115–17120.

Sudmant, P. H. et al. (2015). An integrated map of structural variation in
2,504 human genomes. Nature, 526(7571), 75–81.

Wu, S. et al. (2022). Nflat: Non-flat-lattice transformer for chinese named
entity recognition. arXiv preprint arXiv:2205.05832.

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.06.506809doi: bioRxiv preprint 

http://github.com/SheffieldML/GPyOpt
https://doi.org/10.1101/2022.09.06.506809
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods and materials
	Bayesian optimization
	Gaussian process regression
	Gaussian processes
	Bayesian learning
	Regression
	Practical priors
	Cross-validation for prior selection

	Datasets

	Implementation
	Approach and results
	Overview
	Comparing cross validation scores to choose a prior
	Evaluating 12 basic candidates
	Automatic prior selection
	Ensembling
	Comparison to the genetic algorithm
	Application to real data

	Discussion

