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Figure 2. Comparison of the three scEP models for making cell population-specific predictions. a)
Schematic overview of the experiment. b) Boxplot showing the models’ performance on the cell
population-specific task. Every point in the boxplot is the performance of a model on one cell population in that
tissue (median Pearson correlation across the 20 folds). ¢) Similarity between a cell population and
corresponding tissue (Pearson correlation between the true pseudobulk expression values) vs. the increase in
performance (median Pearson correlation of scEP,, - sCEP,,,). d-f) Comparing the predictions made by the
lung-model and the B cell-model. Genes where the lung-model predicts a too high value are plotted in orange.
d-e) True expression of the B cells vs. predicted expression by the d) lung-model and e) B cell-model. f) True
expression of the lung cells vs. predicted expression of the lung model.
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Some of the Tabula Muris datasets contain similar cell populations. For instance, B cells,
macrophages, and T cells are measured in four, three, and three tissues, respectively. We
hypothesized that if our models are cell population-specific, they should accurately predict the
expression of a cell population in one tissue with a model trained on the same cell population but from
another tissue. A cell’s tissue will of course slightly change the expression for (some) genes, but we
will ignore these differences for now. Therefore, we predicted the expression for common cell
populations using three different types of models: 1) scEP, ,, trained on the same cell population, but
from a different tissue, 2) scEP,,, trained on a different cell population, but from the same tissue, 3)
scEP,,, trained on the same tissue (Figure 3A). Again, the cell population-specific models outperform
the tissue-specific models, even though they are predicting either a different dataset or a different cell
population than they were trained on (Figure 3B, S11-12). This indicates that if you want to train a
model for a cell population from a specific tissue where no single-cell data is available, you can better
use a model trained on a similar cell population from a different tissue than relying on a tissue-specific
model. Whether the model trained on a different cell population and the same dataset or vice versa
performs better, differs per dataset and cell population. When predicting the expression of B cells in
the limb muscle, the models trained on B cells in the marrow and lung even outperform the model
trained on B cells in the limb muscle itself (Figure 3C). The models trained on different cell
populations within the limb muscle perform variably when predicting B cells (Figure 3D). The models
trained on immune populations, e.g. T cells or macrophages, perform similarly, but the muscle-specific
populations perform worse. This difference between the B cell and the endothelial, mesenchymal
stem cell, and skeletal muscle satellite cell models might seem small but is significant across the 20
folds (p-value = 9.5e-07 for all three populations, one-sided Wilcoxon rank sum test).
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Figure 3. Predictions of scEP are cell population-specific. a) Schematic overview of the experiment. b)
Performance (Pearson correlation) of three different types of models on different cell populations (rows) in
different tissues (columns). Every dot is the median correlation of one model across the 20 folds. Since there are
no T cells and macrophages defined in respectively the Marrow and Lung dataset, these boxes are missing. c)
Pearson correlation of different models when predicting the expression of B cells in different tissues. The rows
indicate on which tissue scEP,,, is trained, and the columns indicate for which tissue the expression of the B
cells is predicted. d) Pearson correlation of different scEP,, ,, when predicting the expression of B cells in the limb
muscle. Again the rows indicate which model is used.
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scEP learns expression patterns across human brain cell populations

Next, we applied scEP to a human brain dataset of the motor cortex [5]. This dataset is annotated at
different resolutions including a class (GABAergic, glutamatergic, and non-neuronal) and subclass (20
subclasses) level. Again, we trained models of different resolutions: a tissue-, class-, and
subclass-specific model (scEP,, scEP,, and scEP,, respectively). We used the trained models to
predict the subclass-specific expression values (Figure 4A). Since scEP; was trained on the
tissue-specific pseudobulk expression, it predicts the same expression for all subclasses. The
class-specific model, on the contrary, is a multitask model. Here, we use the predictions of the parent
class of each subclass (e.g. the non-neuronal predictions for astrocytes) (Figure S13). Similar to the
Tabula Muris, we can conclude that increasing the resolution increases the performance: scEP,
outperforms scEP,, and scEP,, outperforms scEP, (Figure 4B). For some subclasses, e.g. L2/3 IT, the
performance barely improves when comparing scEP_,and scEP,.. Similar to the Tabula Muris, the true
expression values of the subclass and corresponding class of such cases are strongly correlated
(Figure S14).

Another advantage of increasing the resolution is that we can test whether scEP,, learns the correct
pattern for a gene across the subclasses. For every gene, we calculate the Pearson correlation
between the true and prediction expression across the subclasses. If the expression of a gene shows
some variance across the subclasses, scEP, learns the pattern correctly (Figure 4C). Genes that are
variable across the subclasses are most interesting to study. For these genes, it is most important that
we predict the pattern correctly. An example is CACNA1I, a gene coding for a subtype of
voltage-gated calcium channel which has been associated with schizophrenia [15,19-22]. Here
scEP, correctly learns that the expression in neuronal populations is higher than in non-neuronal (r =
0.91) (Figure 4D).

In-silico mutagenesis reveals the most interesting GWAS variants

Since scEP can predict expression from the DNA sequence, we expect that it can also predict how
the expression changes when the sequence mutates. Therefore, we applied in-silico mutagenesis
(ISM) to the sequence of CACNA1/ and evaluated the predicted change in gene expression. When
comparing all possible mutations for the Sst Chodl subclass, scEP,, predicts that mutations in the
region around the TSS affect expression the most (Figure 4E). We did not input this location into the
model, so the model learned correctly that this is the most important region for transcriptional
regulation. No other regions were found that affect the expression that strongly.

Besides visualizing the mutation pattern for one subclass, we can also visualize how ISM affects two
subclasses differently. Here, we compared Sst Chodl and L2/3 IT (Figure S15). The Sst Chodl
subclass is more sensitive to mutations than the L2/3 IT class for CACNA1/, which might be explained
by the fact that CACNA1/ is also higher expressed in Sst Chodl cells.

ISM can, for instance, be used to prioritize variants of interest for diseases. As an example, we
focused on CACNAT1I, which is linked to 18 Schizophrenia-associated variants according to the
NHGRI-EBI Catalog [23]. Two of these variants, rs7288455 and rs5757730, fall within our input region
(7kb upstream and 3.5kb downstream of the CACNA1/ TSS). Mutating the reference A allele with the
C or G variant at the position of rs7288455 increases the predicted expression for all cell populations
(Figure 4F). The disease-associated variant, the A allele, is expected to decrease the expression
[15,23], which is in line with our predictions. In general, the increase in expression is not related to the
class a subclass belongs to. Our model suggests that the expression of CACNA1/ increases the most
in Sst Chodl cells. For the Sst Chodl subclass, this is a big increase compared to all other induced
mutations (top 0.5% mutations with the strongest effect) (Figure S16). For the other variant,
rs5757730, which lies in an intronic region, we see no difference in expression (Figure S17).
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Supporting our predictions, rs7288455, but not rs5757730, overlaps with an ENCODE candidate
cis-regulatory element. These results show that scEP can be used to prioritize GWAS hits.

In total, there are 3,971 GWAS variants associated with Schizophrenia [23]. Here, we focused on the
genes that have two or more variants in the input region (20 genes, 49 variants) (Table S3). For these
variants, we predicted the effect of all possible substitutions to prioritize the variants similarly to
CACNA1I (Figure S18). For most genes, scEP predicts a profound effect for only one of the variants.
Considering HLA-B rs2507989, for instance, substituting ‘A’ with ‘C’ decreases the expression, while
none of the mutations at rs139099016 and rs1131275 are predicted to affect the expression. For
some genes, however, all variants seem to barely affect the expression.

Next, we checked if we can interpret the model predictions by characterizing the genomic sequences
identified by scEP to have a strong effect on gene expression. For MROH-6 rs10866912, two
substitutions are predicted to create an opposite effect. Substituting the reference ‘T" with a ‘C’ is
predicted to decrease the expression while mutating with a ‘G’ is predicted to increase the expression
(Figure 4G). This variant is part of a binding site for the transcription factor INSM1, a transcriptional
repressor [24] (Figure 4H). Substituting the ‘T' with a ‘C’, the sequence of the reference genome
becomes more similar to the consensus motif, while substituting with a ‘G’ makes the two sequences
more dissimilar. This supports the predictions from scEP.
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Figure 4. Performance of scEP on the human motor cortex. a) Schematic overview of the experiment. We
train a tissue-, class-, and subclass-specific model (scEP, scEP.,, scEP,. respectively) to predict the
subclass-specific expression levels. b) Boxplots showing the Pearson correlation between the true and predicted
values. Every point in the boxplot is the performance on a fold (n=20). ¢) Scatterplot showing the relation
between the variance of a gene across the pseudobulk values of the subclasses and the Pearson correlation
between the true and predicted values across the subclasses. Every dot is a gene. d) True and predicted
expression for CACNA1I. Every dot is the expression in a subclass. Dots are colored according to their class. e)
Mutation profile for CACNA1/ for the Sst Chodl subclass. For every position, we calculated the difference in
expression for all three possible substitutions and visualized the substitution with the highest absolute predicted
effect. Mutations that are predicted to increase or decrease the expression are plotted in blue and orange
respectively. The grey rectangles indicate the position of candidate cis-Regulatory Elements (cCREs) derived
from ENCODE data [25]. f-g) Predicted effect of the three substitutions for f) rs7288455 on CACNA 1/ expression,
and g) rs10866912 on MROH6 expression. Every dot is one subclass and the dots are colored according to the
class. h) Sequence logo and the consensus sequence for the INSM1 transcription factor motif together with the
sequence of the reference genome.
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Discussion

We presented scEP, a model to predict cell population-specific gene expression using the genomic
sequence only. To our knowledge, this is the first model that leverages single-cell data for this task,
which allows us to predict gene expression at an unprecedented resolution. We showed that sceEP
outperforms tissue-specific bulk and pseudobulk models especially when the expression profile of a
cell population is dissimilar to that of the corresponding tissue. This emphasizes the importance of
using single-cell data for heterogeneous tissues such as the brain.

We showed that it is possible to prioritize GWAS variants using scEP. Considering the expression of
CACNA1I, we noticed that one variant, which also overlaps with an ENCODE cis-regulatory element,
is predicted to have a big effect, while the other has a negligible effect. It could be that the latter
affects splicing given that it is an intronic variant. Alternatively, this variant could have been identified
during a GWAS study because it is in a linkage disequilibrium block with other (associating) variants,
or the variant could affect a completely different gene. GWAS variants are usually linked to the closest
gene, but this is not always the correct gene. For instance, the variant rs1421085 was always thought
to affect FTO, but due to long-range interactions, it affects /IRX3, a gene a half megabase further
[26-28].

Using our model, it is difficult to test whether a variant affects another far away gene since we have a
limited input region. Hence, we could only test two variants related to Schizophrenia for CACNA1/, out
of the 18 variants associated with CACNA1/ [23]. |deally, we would increase the length of the input
sequence. Using CNNs, however, it is not easy to learn long-range interactions. The Enformer model,
which uses a 200kb sequence as input, tackles this problem by combining transformers and CNNs
[11]. The Enformer model predicts reads instead of expression values, so we cannot directly extend it
or use it for single-cell data. An alternative approach might be to use their well-trained model to get an
embedding for every input sequence and to use this embedding to make cell population-specific
expression predictions.

All scEP models reach a Pearson correlation of approximately 0.7 regardless of the cell population or
tissue trained on. This somewhat low performance raises the question of whether the predictions of
these models are trustworthy enough. On the one hand, looking at individual scatterplots (Figure
2D-F, S8), we see for many genes still a relatively high absolute error. Furthermore, it is doubtful how
cell population-specific the models are since most cell populations are affected similarly during ISM.
On the other hand, we have shown that the model learned the importance of the region around the
TSS, the transcription factor binding motif for INSM1, and the pattern of most genes correctly among
the different subclasses in the motor cortex.

Two future enhancements we envision to improve the performance of our model are concerning the
half-life time features and the output of the model. Currently, we extract five features from the mRNA
sequence to approximate the half-life time. Recently, a new model, Saluki, was developed that could
predict mRNA degradation rates directly based on the sequence of the gene [29]. Replacing these
features with the output of Saluki or combining the models directly might improve the predictions.
Furthermore, the current output of scEP is the pseudobulk expression for every cell population. By
averaging over all cells from that population, however, the variance within a population is lost. Ideally,
we might want to predict a distribution for each gene for each population instead of just one
aggregated value.

In summary, we provide scEP, a model to predict cell population-specific gene expression by
leveraging the resolution of single-cell data. Since this is the first model that uses single-cell data this
opens the way for many new developments in this area because have shown now that it is possible.
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We envision that our method will be useful for discovering cell population-specific regulatory elements
and prioritizing GWAS variants.

Methods

Architecture of scéP

scEP is a one-dimensional convolutional neural network (CNN) adapted from the Xpresso model [9]
(Figure 1A, S1). The input to the CNN is four channels with the one-hot encoded sequence around
the transcription start site (TSS) (7kb upstream and 3.5kb downstream). Every channel represents
one of the four nucleotides (A, C, T, G). For some positions, the exact nucleotide is not known (e.g.
any nucleic acid (N) or a purine nucleotide (R)). The exact coding scheme for such positions is shown
in Table S4. The CNN consists of two convolutional layers. The output of the convolutional layers is
flattened and concatenated with the half-life time features. This is inputted to a fully connected (FC)
layer. For the multitask model (used for the cell population-specific predictions), we have only one FC
layer. For the other models, we use two FC layers. The output of the FC layers is the aggregated
expression per tissue or cell population. Compared to Xpresso, we designed scEP as a multitask
model so that it can predict the expression of multiple cell populations simultaneously. Furthermore,
we decreased the number of half-life time features that we input into the model from eight to five. The
three features we removed (5’ UTR, ORF, and 3° UTR GC content) correlated less with half-life time,
so we removed them to make the model less complex [30,31].

Training sceP

We split the genes into a train, validation, and test dataset and do 20-fold cross-validation. These sets
are the same across all experiments (i.e. one train, validation, and test set for mouse genes and one
for human genes) such that the results of different models can be compared. We update the weights
of scEP using the Adam optimizer based on the loss on the training set. The initial learning rate is set
to 0.0005 and if the loss on the validation set is not improved from 5 epochs, the learning rate is
reduced by a factor of 10. We train the model for 40 epochs and evaluate the performance using the
mean squared error. The model with the lowest loss on the validation set is used for evaluation on the
test dataset. Since there is always some stochasticity when training a CNN, we always train 5 models
and average the predictions. We used the following software packages for training the model: Pytorch
(version 1.9.0) [32], CUDA (version 11.1), cuDNN (version 8.0.5.39), and python (version 3.6.8).

Datasets

Tabula Muris

The single-cell Tabula Muris data [33] for the five different tissues (gland, spleen, lung, limb muscle,
and bone marrow) and two different protocols (10X and FACS-sorted Smart-seq2) were downloaded
from:

https://figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of 20_organs_and_tissu
es_from_Mus_musculus_at_single_cell_resolution/27733. To extract input features, we downloaded
the reference genome (MM10-PLUS) that was wused during the alignment from:
https://s3.console.aws.amazon.com/s3/object/czb-tabula-muris-senis?region=us-west-2&prefix=refere
nce-genome/MM10-PLUS.tgz.

The four bulk datasets (spleen, lung, limb muscle, and bone marrow) from the Tabula Muris were
downloaded from https://www.ncbi.nlm.nih.gov. r .cai?acc=GSE132040. For the input
features, we used the same reference genome as for the single-cell data.
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Human motor cortex data

The human motor cortex data from the Allen institute [5] was downloaded from the Cytosplore
Comparison Viewer. We downloaded the reference genome (version GRCh38.p2) and corresponding
GTF file with information about the location of transcription start sites of the genes here:
(https://www.gencodegenes.org/human/release 22.html)

Aggregated expression values

For the single-cell datasets, we used the annotations defined by the authors to aggregate the
expression values per tissue or per cell population using 1og10(mean(x)) (without pseudocount) into

pseudobulk values. The advantage of not adding a pseudocount to the normalization is that the
distribution looks more like a normal distribution, which makes it easier to train the model (Figure
S19). A limitation, however, is that we could not calculate the exact value for genes that were not
expressed in any of the cells. For these genes, we replaced the pseudobulk values with -4, since this
extrapolated well (Figure S19). For the bulk data, we aggregated over the samples instead of the
cells. Here, we set the genes that are not expressed in any of the cells to -3. We standardize the
expression values before running the model such that the average expression in each cell population
or tissue is zero and the standard deviation is one. Before analyzing the results and comparing the
predictions across cell populations, we undo the z-score normalization, but keep the
log-normalization.

Input features

Sequence around the transcription start site

Before extracting the sequences around the transcription start site, we remove genes that are
transgenes, ERCC spike-ins, genes without a coding region, and genes on the Y chromosome. This
resulted in 20,467 mouse genes and 18,138 human genes. Some genes had multiple transcripts. We
downloaded a list with canonical transcripts for each gene from biomart and we used the transcript
and transcription start site belonging to the canonical transcript. If the canonical transcript was not
defined, we used the transcript that had the longest coding region. After having defined the
transcription start site for each gene, we used seqkit [34] to extract sequences from the FASTA file
containing the reference genome.

Half-life time features

For every gene we extracted five half-life time features: 5° UTR length, 3’ UTR length, ORF length,
intron length, and exon junction density (—i2

Tength ORF. * 1000). All features are log-normalized using
lOgm (x + 0.1).

Evaluating the predictions

We did 20-fold cross-validation and trained all models five times since there is some randomness
when training a deep learning model. For every gene in the test dataset, we averaged the predictions
of the five models. We evaluated the performance for every cell population by calculating the Pearson
correlation between the true and predicted expression of the genes in the test set. o evaluate the
increase in performance between the tissue-specific and cell population-specific model on the Tabula
Muris datasets, we calculate:

Acpt = median Pearson correlation (scEPcppb) — median Pearson correlation (scEPtpb). On the

motor cortex dataset, we also evaluated the performance of each gene by calculating the Pearson
correlation between the true and predicted expression per cell population.
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In-silico mutagenesis

For CACNA1I, we mutated all positions in-silico, which means we tested all possible substitutions at
every position. We undid the z-score normalization and calculated the difference in expression
between the original prediction and the mutated prediction. The models used during these
experiments were the models where CACNA1/ itself was originally in the test set. For every position,
we only plotted one predicted difference in expression in Figure 4E. This is the substitution that was
predicted to have the biggest absolute effect. We downloaded the locations of the candidate
cis-regulatory elements using screen registry v3 (release date 2021) [25]. When plotting the difference
between two cell populations, we ignored the positions where one is positive and the other predicts a
negative effect. This rarely happened and if it was the case, the predicted effect was very small.

Code and data availability

The pseudobulk expression values, trained models, and predictions are available on Zenodo:
https://doi.org/10.5281/zenodo.7044908.

The code to reproduce the figures, train your own models, look at the effect of variants, and do
in-silico mutagenesis is on GitHub: https://github.com/Icmmichielsen/scEP.
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