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Abstract: 
 
 Single-cell transcriptomics suffers from lapses in coverage of the full transcriptome, 
providing an incomplete gene expression profile of the cell. Here, we introduce single-cell 
CRISPRclean (scCLEAN), an in vitro molecular method that can be universally inserted into any 
single-cell RNA-seq workflow to improve the sensitivity of the assay. Utilizing CRISPR/Cas9, 
scCLEAN works to selectively remove highly abundant uninformative molecules, redistributing 
~50% of reads to enrich for lowly expressed transcripts. Utilizing immune cells, we describe a 
validation of scCLEAN showing a 2.1-fold enrichment in library complexity with negligible off-
target effects. Subsequently, applying scCLEAN to single-cell iso-seq samples results in a 4.6-
fold improvement in unique isoform detection. Thus, demonstrating a benefit in short and long 
read sequencing applications. Finally, we illustrate the ability of scCLEAN to elucidate 
biological insights by applying it to two participant cohorts of cardiovascular samples, bringing 
to light novel molecular characteristics including inflammatory signatures.  
 
Keywords: single-cell RNA sequencing, CRISPR/Cas9, transcriptomics, single-cell isoform 
sequencing, computational biology  
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Introduction: 
 
 Full transcriptome analysis has brought many molecular mechanisms to the forefront of 
translational investigation of disease processes. Similarly, gene expression profiling at single-cell 
resolution has revolutionized scientists’ ability to investigate biology, enabling the examination 
of inter- and intra- population heterogeneity1, developmental transition states2, regulatory 
mechanisms3,4, and cell-cell communication networks5,6. Due to recent technological 
breakthroughs, single-cell RNA sequencing (scRNAseq) experimental scope can now encompass 
millions of cells, allowing for the generation of detailed atlases of human disease7–9.  
 

 However, while massively parallel scRNAseq has improved the scale of data collection, 
similar gains have not yet materialized in analytical pathways. In turn, an increase in quantity of 
data has not necessarily translated to a concomitant increase in quality. Data generated via 
scRNAseq suffers from higher levels of noise due to technical variation and batch effects, input 
material quantity, amplification bias, read dropouts, and gene expression stochasticity10–17. 
Collectively, a detection efficiency from 3% to 25% exists18–22. As a result, only a small fraction 
of the nascent mRNA is processed, potentially confounding biological interpretation and 
reproducibility. While computational approaches are being developed to combat this problem 
inherent to scRNAseq23–25, an effective molecular solution remains to be elucidated.  

 
 As scRNAseq utilizes relatively low input, a high number of PCR cycles are required26,27, 
and less abundant molecules are often outcompeted by more abundant species during 
amplification28–30. Thus, the ideal application for CRISPR/Cas9 guided improvement in 
scRNAseq lies in steps prior to library preparation, allowing capture of less abundant molecules 
more frequently. To overcome these current bottlenecks in scRNAseq, we present a molecular 
solution, termed single-cell CRISPRClean (scCLEAN), that functions inversely to capture-based 
enrichment by removing unwanted sequences of high abundance. Since scCLEAN is applied to 
fully prepared cDNA, it is a simple turnkey solution that can be incorporated into any single-cell 
RNA-seq protocol, supporting widespread application.  
 

Herein we demonstrate the utility and downstream analytical benefit of scCLEAN. We 
leveraged publicly available single-cell datasets to identify targets for depletion that could be 
applicable to most, if not all, source cell and tissue. After identification of candidate targets, we 
performed in silico modeling to validate the theoretical boost in sensitivity. Thereafter, we 
experimentally validated scCLEAN on peripheral blood mononuclear cells (PBMCs), a well 
characterized tissue with multiple distinct cell types31, demonstrating an improvement in cell 
type identification. Subsequently, to evaluate applicability to actionable transcriptome targets, 
scCLEAN was applied on PBMC derived single-cell iso-seq32,33. Finally, to highlight the ability 
of scCLEAN to enhance biological interpretation, we applied the approach to two separate 
cohorts of primary cells isolated from coronary and pulmonary artery locations: vascular smooth 
muscle cells (VSMCs) and vascular endothelial cells (VECs). In a notoriously difficult system to 
characterize due to the functional plasticity of smooth muscle cells34, scCLEAN enables a clear 
distinction between coronary and pulmonary arteries in addition to delineating key molecular 
differences in inflammatory signaling. 

 
Results: 
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Design and in silico Validation 
 

To establish a framework of candidate transcripts that could safely be removed from a 
scRNAseq analysis without influencing downstream analysis, we focused on the 10x Genomics 
Chromium platform due to its widespread use35. A cohort of 14 publicly available scRNAseq 
datasets generated with Chromium v3.1 technology were benchmarked to examine consistent 
trends in read distribution across a spectrum of human samples (Supplementary Table 1). We 
found that, despite mRNA selection via polyA priming in the Chromium workflow, many 
resulting reads are consistently dropped from analysis because they do not align to the 
transcriptome (Fig. 1a). Thus, creating an opportunity to employ CRISPR/Cas9 depletion to 
evaluate the impact on single-cell data.  

 
We constructed a single-guide RNA (sgRNA) library that targets two distinct categories 

of intervals: genomic and transcriptomic. Reads that align to the genome, but not the 
transcriptome, are ideal candidates for removal because they are computationally filtered before 
any downstream processing in the scRNAseq workflow. These targeted genomic regions consist 
of non-protein-coding rRNA and conserved genomic intervals, contributing 10% and 9% to the 
total aligned read count, respectively (Fig. 1b). In addition to genomic reads, 255 highly 
abundant protein-coding genes were also targeted for depletion given their expression varies 
little across different tissue types (see Supplementary Methods). Collectively, the 225 genes (90 
protein-coding ribosomal genes, 10 protein-coding mitochondrial genes, and 155 protein-coding 
non-variable genes) constitute 39% of aligned reads (Fig 1b).  
 
 By removing uninformative molecules, we aimed to maximize read allocation to lower 
expressed genes, which tend to have greater biological relevance. As an initial validation and 
proof of concept of read redistribution, we performed in silico modeling (see Supplementary 
Methods). To properly compare the boost in per cell sensitivity, the reads and UMIs associated 
with the 255 targeted genes were ignored (hereinafter referred to as uninformative molecules), 
resulting in an average boost in both informative median UMIs/cell (35%) as well as genes/cell 
(29%) (Fig. 1c). Thus, confirming that the selective removal of highly abundant molecules, not 
contributing to downstream analyses, is in fact, a valuable methodology to enhance single-cell 
sensitivity.  
 
Experimental Validation in PBMCs  
 
 As a proof-of-principle demonstration, scCLEAN was experimentally validated on a 
cohort of primary PBMCs prepared with the standard Chromium 3’ v3.1 workflow (10x-V3) 
(n=1) and scCLEAN-treated samples (scCLEAN) (n=3), each comprised of roughly 11,000 cells. 
scCLEAN redistributed 46% of reads to other molecules in the single-cell library, representing 
an aggregated depletion percentage of 85% (Fig. 1d). Alignment to the standard 10x 
transcriptome reference illustrates a 2.1-fold increase in the complexity of the library (Fig. 1e). 
For every 1,000 UMIs detected per cell, 310 genes were identified in the 10x-V3 condition, 
whereas 650 genes were identified as a result of scCLEAN (Fig. 1e). Furthermore, scCLEAN 
reconfigured the composition of reads per cell. Instead of the non-targeted genes (36,346) 
accounting for a mere 39% of all UMIs per cell, scCLEAN greater than doubled (2.4x) that 
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metric to 92% (Fig. 1f). In addition to a compositional change, scCLEAN statistically increased 
the total number of informative UMIs and genes identified per cell (Supplementary Fig. 1a). 
Collectively, scCLEAN achieves the same information as the standard Chromium workflow but 
with a 2-fold reduction in sequencing depth (Fig. 2a). 
 

Next, we sought to elucidate and quantify read redistribution at the gene level. Of the 
22,272 total genes detected, 19,703 (88%) exhibited an increase in median counts of genes/cell 
with scCLEAN (Supplementary Fig. 1c). Despite observation of a significant boost with 
scCLEAN, gene expression between scCLEAN and 10x-V3 remained in high concordance with 
a 0.95 coefficient of determination (Supplementary Fig. 1c). We subsequently performed 
differential expression analysis to gain a deeper insight into gene detection. Of the 6,101 genes 
expressed in at least 10% of cells, 4,896 genes (80%) were enriched in the scCLEAN condition 
and were expressed in ~24% more cells (Fig. 2b), consequently reducing gene dropout. No 
change was observed in 1,172 genes (19%), and 33 genes (1%) showed a significant enrichment 
in the 10x-V3 condition (Fig. 2c). While 33 genes passed the significance threshold, only 21 
were determined to be off-target and 18 were direct targets of scCLEAN guides (Supplementary 
Fig. 1d-e).  

 
Mitochondrial (MT) genes and the fraction of counts of MT genes per barcode is a 

standard quality control metric to identify dead or decaying cells in scRNAseq workflows36,37. 
However, analysis of the 14 datasets suggested that of these MT gene sets, 10 could be 
candidates for removal, and in turn reassignment of their reads in the scCLEAN protocol. We 
therefore aimed to verify that an MT-filtering based method could still confidently identify dead 
cells without substantial variation of QC metrics for scRNAseq analysis. A scRNAseq library 
representing PBMC cells consisting of a 30% dead cell population was generated. Subsequently, 
dead cell removal was performed on the sequencing data using standard and scCLEAN 
protocols, confirming the ability to filter the true dead cell population with up to 75% accuracy 
(Supplementary Fig. 2a-f).  
 

For the achieved benefit observed with increased transcript detection, a similar 
improvement in biologically relevant signal is necessary, effectively resulting in a boost of 
biological signal versus noise. Using random matrix theory to parse between signal and noise 
within the data we observe that scCLEAN maintains sample variance (signal) while 
simultaneously reducing the false discovery rate (noise) as more genes are included in secondary 
analysis (Supplementary Fig. 3a-b). Consequently, by reducing noise, scCLEAN improves 
single-cell analysis by affecting a crucial step of data interpretation: dimensionality reduction 
(DR)38,39. Using a statistically principled optimization algorithm, evaluation of DR performance 
indicated that irrespective of the technique (PCA, diffusion, or autoencoder), scCLEAN retains 
greater biological variance within the latent representation (Supplementary Fig. 3c-d). 
 
 Our results indicate that scCLEAN increases transcriptomic sensitivity, reduces read 
dropouts, and boosts signal to noise. However, the end benefit must be an improvement in 
biologically relevant data obtained through scRNAseq. Therefore, we next assessed the 
performance of scCLEAN on cell clustering and subsequent cell-type identification. At the 
optimized clustering resolution (Supplementary Fig. 1b), the scCLEAN condition identified four 
additional cell clusters (Fig. 2d-f), due to the recovery of cell markers that had negligent 
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expression within the 10x-V3 condition (Fig. 2g). These results were consistent across three 
replicates representing distinct samples of cells (Supplementary Fig. 1f). It is important to note 
that while the cells composing the four additional clusters existed within the 10x-V3 condition, 
given the resolution of analysis and decreased signal to noise ratio present, they simply couldn’t 
be transcriptionally distinguished as distinct clusters (Fig. 2e). Finally, using a fully unsupervised 
deep learning algorithm, to avoid any potential bias from the previous cell clustering, scCLEAN 
consistently identified more clusters facilitating additional characterization of heterogenous 
biology and rare cell type identification (Fig. 2h). To illustrate the improved characterization of 
cluster identity, genes were jointly embedded onto the latent space alongside cells. All four 
additional scCLEAN cell types had more closely associated genes in latent space according to 
Euclidean distance, revealing a potential explanation for improved characterization (Fig. 3a-b). 
For mucosal-associated invariant T (MAIT) cells, a cell type identified in both conditions, only 
12 genes passed a cell type specificity threshold in the 10x-V3 condition whereas 575 genes 
passed the same threshold with scCLEAN (Supplementary Fig. 4a-e). In addition, cell markers 
for all cell types in the scCLEAN condition display a statistically significant higher cell type 
specificity according to four separate metrics (Gini index, max value, standard deviation, and 
entropy) (Supplementary Fig. 1g), illustrating the enhanced ability to distinguish between cell 
types and states with scCLEAN.  
 

To highlight the biological benefit gained with scCLEAN, we further examined its role 
on the inference of cell-cell communication. scCLEAN increased the total number of ligand-
receptor (LR) interactions by 1.8x and the average strength of interaction by 1.9x (Fig. 3c), 
enhancing the resolution of cellular communication networks (Fig. 3d-e). We next determined 
the impact of enhanced interaction resolution on comprehensive signaling pathways and focused 
on classical monocytes considering they had the strongest inference probability in both 
conditions (Fig. 3e) and play an integral role in inflammatory cytokine communication40. 21 out 
of the total 26 (80%) identified signaling pathways were statistically enriched with scCLEAN 
(Fig. 3f). Interestingly, three pathways were only identifiable as a result of scCLEAN: CXCL, 
ICAM, and TGFb. The TGFb pathway requires the primary TGFB1 ligand, as well as both 
TGFBR1+TGFBR2 coreceptors, to be expressed for an interaction to occur. In the 10x-V3 
condition, there is insufficient expression levels of TGFBR2 (Fig. 3g-h). However, with 
scCLEAN, classical monocytes and natural killer cells have noticeable expression of TGFBR2 
(Fig. 3g-h). A communication pathway was identified because a lowly expressed cofactor in a 
heteromeric complex was detected above the statistical threshold only with scCLEAN.  
 
Single-cell Iso-Seq 
 

To investigate the broad applicability of the method, scCLEAN was next applied to 
PBMC derived single-cell iso-seq datasets. Despite similar quality control metrics 
(Supplementary Fig. 5a-c) and slightly fewer aligned reads in the scCLEAN condition (Fig. 4a), 
scCLEAN increased the total unique informative isoforms (not associated with the 255 targeted 
genes) from 17,131 (10x-V3) to 78,935 (scCLEAN). Novel isoform identification increased from 
4,575 (10x-V3) to 19,112 (scCLEAN) correlating with a 4.6- and 4.2-fold improvement, 
respectively (Fig. 4b). More importantly, as sequencing depth increased, unique isoform 
identification plateaued in the 10x-V3 condition (slope=0.02) but continued to scale linearly with 
scCLEAN (slope=0.15), fundamentally altering the rate at which unique isoforms are detected 
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(Fig. 4c). Given substantial increase in isoform detection, we next assessed whether the increase 
in throughput with scCLEAN also improves single-cell analysis.  

 
The increase in isoforms used for downstream analysis resulted in an increase in both the 

selection of highly variable genes (3.4-fold) (Fig. 4d and Supplementary Fig. 5d) as well as the 
captured variance along each PCA component (Supplementary Fig. 5e). Furthermore, 
scCLEAN-treated libraries drastically improved informative clustering performance (Fig. 4e-f). 
With scCLEAN, 16 clusters were identified, which is consistent with our short read analysis 
(Fig. 2d-e). In contrast, the 10x-V3 condition at the same resolution was sparsely clustered, 
identifying 77 unique clusters (Fig. 4e), rendering cell type identification un-interpretable.  
 

Due to the sparsity inherent within current iso-seq methods, clustering and cell type 
annotation remain challenging, as evidenced by the standard 10x-V3 condition. Nevertheless, we 
wanted to elucidate if marker, gene-based identification of cell types within the scCLEAN 
condition conveyed additional insight over scRNAseq. We found that plasmablasts were 
annotated with the highest confidence from all cell clusters (Fig. 4g), despite being a notoriously 
difficult rare cell type to characterize40. Analysis of our results found several genes of interest 
(JCHAIN, ITM2C, TXNDC5, and IGHA1) that are key markers for plasmablasts and are 
differentially expressed in a single cluster (16) (Fig. 4h and Supplementary Fig. 5f). 
Interestingly, we additionally found that key plasmablast marker genes suffer from intense 3’ 
bias in short-read libraries (Fig. 4i), resulting in inefficient read mapping to these transcriptomic 
regions, further contributing to poor plasmablast characterization. Whereas the full isoform 
alignment facilitated the annotation of a rare plasmablast cell population solely based on marker 
gene selection. Without enhanced scCLEAN resolution, plasmablasts would have been unable to 
be distinguished.  

 
Application To Homogeneous Cell Populations 
 
 While we have seen scCLEAN’s applicability to improve cell clustering and identity 
assignment both in heterogenous cell populations of PBMCs as well as full length isoforms, we 
wanted to evaluate the ability of scCLEAN to identify cell lineages from populations of 
relatively homogenous makeup but integral in the pathogenesis of disease state. To characterize 
the baseline of coronary artery predisposition toward atherosclerosis42, ~50,000 primary vascular 
smooth muscle cells (VSMCs) were isolated taken from two distinct vascular sites (coronary and 
pulmonary arteries) representing 49% and 51% of the total cell population (Fig. 5a). Validating 
the applicability to diverse tissue types, initial scCLEAN performance metrics compared 
similarly to those observed in PBMCs, successfully redistributing 35% of genomic aligned reads, 
increasing the number of informative transcriptomic reads by 58%, and increasing the proportion 
of informative UMIs from 66% to 95% (average across 8 samples) (Supplementary Fig. 6a-g).  
 

Given that VSMCs transition phenotypically between many functional states41–45, we 
performed pseudotime trajectory analysis, and selected for populations interacting in 
transcriptional transition. Between coronary and pulmonary, the density of cells remained 
comparably distributed across both conditions throughout the trajectory (Fig. 5b). We next 
sought to discern whether the cells followed the same trajectory or bifurcated into separate 
lineages. One lineage was identified in the 10x-V3 condition while two lineages were identified 
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with scCLEAN due to the distinction between two separate terminal states (Fig. 5c-d). 
According to the individual cell-fate potentials, 64% and 36% of cells in the scCLEAN condition 
associated with lineage 1 and 2, respectively (absorption probability > 0.5) (Fig. 5e).  
 

Since there was a roughly even split between each lineage in the scCLEAN analysis, we 
next sought to resolve if the tissue origin, either coronary or pulmonary artery, had any 
concordance to each lineage state transition. After comparing tissue identity with lineage 
absorption (Fig. 5f-g), it was evident that indeed each lineage was tissue specific. Receiver 
operating characteristic analysis confirmed the classification of lineage to artery identity with an 
AUC of 0.99 for both lineages (Fig. 5h). To validate correct lineage analysis and ensure the 
inability of the standard condition to classify tissue specificity, two lineages were forced in the 
10x-V3 condition, but discriminatory power was non-existent (AUC=0.51) (Supplementary Fig. 
7a-g). Consequently, by increasing signal to noise and capturing higher biological variance, 
scCLEAN enabled blind algorithmic classification of cell identity to lineage with outstanding 
accuracy, in a system that otherwise couldn’t be distinguished. Furthermore, as both populations 
of cells are VSMCs with only tissue origin differences, scCLEAN primes additional insights into 
the pathobiology of disease states.  
  
 Considering we could delineate between two tissue specific lineages and there was a 
strong association of genes to each lineage across pseudotime (Fig. 6a), we sought to gain a 
deeper understanding of how these lineages diverged by generating a principal tree with discrete 
branches and bifurcations (Fig. 6b). This enabled the distinction between lineage markers, genes 
whose pattern of expression across pseudotime are unique to either the coronary or pulmonary 
terminal state (Fig. 6c-e), and transition markers, genes responsible for initiating the separation 
(Fig. 6f). Two of the top pulmonary lineage markers were SERPINF1 (PEDF) and SFRP1 
(FRZA). The complete absence of expression of these markers within the coronary lineage is 
paired with the up-regulation of SERPINE1 (PAI-1) and SERPINE2 (Fig. 6a).  
 
 Providing evidence for accurate biological distinction, the top coronary transition 
markers (IL1A, IL1B, IL11, IL32, CCL2, CXCL5) are inflammatory markers (Fig. 6f). Gene-set 
enrichment analysis (GSEA) further confirmed the coronary specific inflammatory signatures, 
with considerable overlap with inflammatory response and TNF-alpha signaling via NF-kB (Fig. 
6g). Based on the observation of distinct transcript expression patterns seen so far, we sought to 
identify regulatory mechanisms associated with each coronary and pulmonary lineage to inform 
future exploration and potential avenues for therapeutic intervention. We found that nuclear 
factor erythroid 2-related factor 2 (NFE2L2) was activated in 91% of cells in the pulmonary 
lineage but only 1% of cells in the coronary lineage (Fig. 6h). 
 
 While scCLEAN enables novel lineage distinction in VSMCs with vital biological 
relevance, we sought to understand if similar results could be produced on a cohort of ~30,000 
primary vascular endothelial cells (VECs) derived from coronary and pulmonary arteries from 
two donors. As VSMCs and VECs are known to communicate to promote proper vessel wall 
formation and function48, it is plausible to suggest that coronary and pulmonary VECs would 
also have stark differences in gene expression profiling contributing to risk of the diseased state. 
Proceeding with trajectory inference in VECs, we surprisingly only classified a single terminal 
state of VECs under both 10x-V3 and scCLEAN conditions (Fig. 6i) suggesting that VECs do 
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not diverge to distinguishable lineages. This gives further credence that the divergent qualities 
found in VSMCs with scCLEAN are not due to technical or computational artifact.  
 
Discussion: 
  
  Herein we detail scCLEAN, a novel methodology to improve the performance of 
scRNAseq by removing highly abundant, uninformative molecules and subsequently transferring 
reads to lowly expressed genes in vitro. Instead of 0.7% of genes comprising 45% of 
transcriptomic reads in standard samples, scCLEAN harnesses CRISPR/Cas9 enabling 99.3% of 
genes to encompass 94% of transcriptomic reads. This complete overhaul in read composition 
translates to a significant boost in signal to noise, increasing the biological variance incorporated 
into the latent representation as validated in four distinct cellular applications. Overall, the 
benefits surpass the negligible offtarget effects representing 0.06% of the transcriptome.  
  
 Previous approaches to combat molecular dropout typically revolve around identifying 
relevant genes of interest and targeting them with some form of capture-based approach. While 
different iterations have been successfully applied to increase transcription factor resolution46, 
antigen receptor sensitivity47, and combinatorial perturbation scale48,49, the gene panel size is 
currently limited to roughly 1,500 genes, less than 5% of the transcriptome (1,500/36,601) (10x 
Genomic Reference). Consequently, only genes known a priori to be biologically relevant are 
likely to be considered, thus eliminating, novel unbiased identification of gene associations. 
Conversely, scCLEAN leverages 99% of the transcriptome. Furthermore, while CRISPR/Cas9 
has been previously integrated into multiple molecular methods to remove unwanted 
sequences50–53, scCLEAN drastically expands the scope of the application, enabling the 
enhancement of biological signal and downstream analysis. In addition, scCLEAN is the first 
application designed to remove multiple uninformative targets (not limited to rRNA) from 
polyA-captured scRNAseq libraries. 
 

The power of scRNAseq analysis lies in the ability to identify both large and minute 
contributions to the biology of the end result observed in health or disease. By improving 
carryover of the cellular heterogeneity incorporated into downstream analysis, the confidence 
and statistical power of biological inference is enhanced. The improved resolution enables 
nuanced transcriptomic distinction such as the characterization of rare cell types in PBMCs, the 
identification of cellular states through enhanced isoform detection, and the association of novel 
genetic signatures to coronary and pulmonary lineages within VSMCs. While these tissue 
specific lineages share considerable phenotypic similarity and are evenly distributed throughout 
the trajectory, it is comprehensible that there be some fundamental distinction considering 
pulmonary VSMCs are derived from the neural crest and coronary VSMCs are derived from the 
epicardium54. To the best of our knowledge, the results presented above characterize for the first 
time pre-symptomatic, basal level differences in how the two tissue lineages diverge 
transcriptionally, setting up a stark juxtaposition of relatively similar vascular beds.  
 

The ability to distinguish between coronary and pulmonary VSMC plasticity could be 
instrumental in the understanding of underlying predisposition to disease states (e.g. 
atherosclerosis), onset, and/or progression. Reassuringly, scCLEAN provides insights that are 
aligned with the field’s current disease characterization and novel discoveries. Coronary artery 
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specific inflammation, as validated by the top coronary lineage markers as well as GSEA, is 
considered a hallmark process of atherogenesis55. Furthermore, SERPINF1 (PEDF) and SFRP1 
(FRZA), top pulmonary lineage markers, exert anti-proliferative effects on smooth muscle cells 
both in vitro and in vivo, arresting cell-cycle progression56,57. These findings coincide with the 
up-regulation of SERPINE1 (PAI-1) and SERPINE2, top coronary lineage markers, which 
promote VSMC proliferation, migration, and vascular remodeling58,59. These findings allude to 
higher phenotypic switching from contractile to a proliferative state within coronary cells, laying 
the groundwork for the aberrant VSMC proliferative phenotype observed within 
atherosclerosis54.  

 
In addition to validating the biological relevance of each tissue lineage, scCLEAN 

facilitated original insights through regulon analysis. NFE2L2, which was exclusively identified 
in the pulmonary lineage, is pivotal in the regulation of antioxidant proteins that protect from 
injury and inflammatory induced oxidative damage60. This finding coincides with deficient 
SERPINF1 (PEDF) expression in the coronary lineage, since SERPINF1 quenches oxidative 
stress61. Considering oxidative stress contributes to the development of vascular diseases such as 
atherosclerosis60, the lack of NFE2L2 regulon activation in coronary cells may provide insight 
into early disease onset and warrants further investigation. Consequently, we further bring to 
light a novel distinction between the ability of each tissue to respond to oxidative stress, 
motivating the potential development of cell-mediating therapeutics to prevent the onset of 
atherosclerosis. Due to the ability of scCLEAN to derive biological insights previously obscured 
in noise, we envision widespread incorporation into existing high-throughput single-cell 
techniques.  
  

Potential limitations unaddressed in the scope of this study include the relative 
importance of the 255 genes removed with scCLEAN. For example, if aberrances in ribosomal 
gene expression are important for cancer specification in the sample type of interest due to a 
dysregulation in cell cycling62, the 90 ribosomal genes targeted in scCLEAN should not be 
included. In addition, while the 155 non-variable genes also targeted for removal were 
determined to be uninformative for cell state determination within 14 sample types, it is noted 
that they still in-part serve some context-dependent biological role. Furthermore, although one of 
the main benefits of scCLEAN is the flexibility to apply this method to any scRNAseq platform, 
the relative abundance of all targeted regions might vary according to method, potentially 
altering scCLEAN depletion performance and sensitivity improvement. For example, if a method 
has poor capture sensitivity and generates low complexity libraries, then scCLEAN has a higher 
probability of replacing highly abundant molecules with PCR duplicates, providing limited 
benefit. However, a large benefit in the methodology of scCLEAN is that it is customizable to fit 
a desired platform of interest, as well as target a desired gene cohort of disinterest.  
 

As evidenced by the easy transference of scCLEAN to enhance single-cell isoform 
detection, scCLEAN holds substantial potential to improve single-cell methodologies beyond 
RNA-seq, such as spatial transcriptomic assays that utilize NGS spatial barcoding63–67. In 
addition, we expect scCLEAN to impact single-cell multi-omic sequencing technologies, 
considering all existing combinations contain a transcriptomic component68. While providing 
comprehensive insights, combining modalities such as transcriptome, genome, epigenome, and 
proteome from a single cell only exacerbates the noise contributed by each technique. scCLEAN 
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provides a unique opportunity to address these additional bottlenecks and universally improve 
resolution.  
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Methods 
 
sgRNA Design and Generation 
 

We curated a set of 14 different scRNAseq datasets from SRA for various human sample 
types. Note that samples in each of these datasets were prepared in accordance with the 3’ 10x 
Chromium V3 technology (10X Genomics, Pleasanton, CA).  
 
Genomic Intervals  

While an average of 93% of the reads from these datasets aligned to the genome, only 
61% (average) of total reads aligned to the transcriptome, and as single-cell feature matrix files 
only compose of transcriptomic alignments, theoretically, 32% of reads are completely ignored 
in analyses and are ideal candidates for removal. For each sample, reads were aligned to a 
reference index built from Ensembl transcriptome (Homo_sapiens.GRCh38.cdna.all.fa) using the 
flag --twopassMode Basic to maximize the read alignment, revealing conserved intervals that 
can be targeted for removal. All reads that overlapped with a transcript interval were removed. 
The filtered bam files from each tissue were then used to calculate the coverage over 500bp 
intervals across the human genome using bedtools coverage, with assessment that no 
transcriptomic regions are targeted. 

 
scCLEAN guides that target genomic but not transcriptomic intervals consist of a 

combination of two cohorts: 500bp intervals with the highest shared coverage across all 14 
tissues, and the combination of the top 500bp tissue specific intervals. Interactive Genomic 
Viewer (IGV)69 was used to observe the interval location across tissues relative to the 
transcriptome and genome. Intervals fall into 3 distinct categories: intergenic regions, 
unannotated genomic deserts, and regions that are alongside annotated transcriptomic intervals.  
 
Non-Variable Genes (NVG) 

To identify a set of highly expressed protein coding genes that did not play a significant 
role in identifying cell state or type across a diverse set of human tissues, all 14 SRA datasets 
were aligned to the 10x transcriptome (refdata-gex-GRCh38-2020-A) using cellranger count and 
underwent standard secondary processing according to Pegasus (https://github.com/lilab-
bcb/pegasus)70. For each dataset, the top 5,000 highly variable genes were selected. A list of all 
remaining genes that were not the top 5,000 highly variable were then recorded for each dataset. 
Conserved genes that were not the top 5,000 and shared across all 14 datasets were then 
reviewed and the 155 NVG were then selected according to the rank of average expression 
across all datasets. The NVG were assessed for identity consistent with primarily housekeeping 
genes with PanglaoDB71. 73% of the 155 NVG directly overlapped with the top 1,000 genes 
according to the Ubiquitousness Index. In fact, for all 255 protein coding genes targeted with 
scCLEAN, 79% are within the top 1,000 most ubiquitous genes.  
 
PBMC Samples 
 
Sample Extraction 
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Blood was obtained from the Scripps Normal Blood Donor Service from anonymized 
donors and fully compliant with approved IRB protocols for human subjects. Blood was 
collected and prepared for downstream single-cell applications (see Supplementary Methods). 
 
Single-cell Library Generation 
 The cell suspension was then prepared for droplet generation according to the 
manufacturer’s suggested protocol (10X Genomics, CG00053 Rev C). Four channels aiming to 
recover 10,000 cells were loaded on the 10x Chromium Controller and the protocol was followed 
according to the manual Chromium Next GEM Single Cell 3ʹ Reagent Kits v3.1 (Dual Index) 
(CG000315 Rev C). Using the Chromium Next GEM Single Cell 3ʹ Kit v3.1 (16 rxns PN-
1000268), all four libraries were generated and carried forward. 120ng of cDNA from each 
channel was carried forward into step 3, through step 3.4, post ligation cleanup. Three libraries 
underwent scCLEAN depletion (see scCLEAN Depletion) while the control followed the 
standard 10x protocol. Both conditions underwent the same number of PCR cycles for single 
index sample PCR and were sequenced on a Nextseq 2000 (Illumina, La Jolla, CA) with the 
following sequencing schematic: R1 - 28, I1 - 8, R2 - 91. For all downstream analysis, all four 
libraries were down sampled to the exact same read depth of 310 million reads (~27k reads/cell) 
using seqtk with the appropriate flags.  
 
scCLEAN Depletion  
 The Chromium Next GEM Single Cell 3’ protocol v3.1 was followed per manufacturer’s 
suggested protocol until the end of Step 3.4 – Post Ligation Cleanup – SPRIselect. Immediately 
after Step 3.4, the scCLEAN depletion protocol was followed (detailed protocol see 
Supplemental Methods). Briefly, the library is eluted in 16 μL of CRISPRclean Nuclease Free 
Water. Next, 15ul of the library is then carried forward into Cas9-RNP incubation with the 
components in CRISPRclean Single Cell RNA Boost Kit (Jumpcode Genomics KIT1018, San 
Diego, CA). For each reaction, a RNP consisting of 1.0ul 10x Cas9 buffer, 1.0ul RNAse 
inhibitor, 3.9ul of 1ug/ul sgRNA library, and 2.3ul of Cas9 enzyme is mixed and left at room 
temperature for 10 minutes. The RNP, library from step 3.4, as well as an additional 1.5ul of 10x 
Cas9 buffer is mixed and incubated at 37°C for 60 minutes (total reaction volume ~25ul). After 
incubation, a 0.6x SPRI clean is performed using AMPure XP beads (Beckman Coulter A63881) 
to remove the cleaved fragments. The cleaned library is then eluted in 30ul of Nuclease-Free 
Water and the Chromium Next GEM Single Cell 3’ protocol v3.1 at Step 3.5 – Sample Index 
PCR was followed until completion of the libraries.  
  
scCLEAN Performance Evaluation 
 
QC Comparison 

To properly compare the change in library composition due to scCLEAN, both the 10x-
V3 control condition as well as the scCLEAN depleted condition were first down sampled to the 
exact same read depth using ‘seqtk sample’ with the appropriate flags. Next, they were each 
aligned to two separate indexes using ‘cellranger count.’ One index was the standard 10x 
transcriptome (refdata_gex_GRCh38_2020_A), and the second index was the same exact 
transcriptome except the index was built using a gtf file where the annotations associated with 
the 255 targeted protein coding genes were removed (Supplementary Methods). The filtered 
matrix files used for downstream processing were exclusively taken from the alignment to the 
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full, not-masked, standard transcriptome. All statistical comparisons between the distribution of 
quality metrics were performed using the Mann-Whitney U rank test with the Benjamini-
Hochberg correction with default thresholds. See supplementary methods for read-redistribution 
calculation.  
 
PBMC Secondary Analysis  
 
Unsupervised clustering 

Cell clustering was performed with Seurat v.4.1.1 R toolkit3. Genes expressed in less than 
3 cells were filtered from the data and cells with less than 200 genes and 500 UMIs. 
Additionally, cells in the 99th percentile of UMIs were filtered to remove homotypic doublet 
influence. The distribution of MT genes as a percentage of total contributing features was 
examined and cells within the top 5th percentile were removed. The “SCTransform” function 
was performed to normalize the count data prior to principal component analysis72. We used a 
residual variance cutoff of 1.3 to calculate the optimal number of variable features. Additionally, 
the percentage of MT genes and cell cycle scoring was regressed out in a second non-regularized 
linear regression using the argument “vars.to.regress.” The “RunPCA” function was used for 
principal component analysis using default settings and the first 50 PCs. The “FindNeighbors” 
and “RunUMAP” functions were used using default settings and dims parameter set to 30. The 
first 30 PCs were used to construct the shared-nearest neighbor (SNN) network graph followed 
by construction of the Uniform Manifold Approximation and Projection (UMAP) dimensionality 
reduction73. Clusters were identified using the “FindClusters” function using the Louvain 
algorithm with multilevel refinement and resolution set to 1.2. This resolution was used to first 
over-cluster the data for subsequent doublet removal.  
 
Doublet Removal 

The R package “scDblFinder” was used for the identification of heterotypic doublets 
using a cluster-based generation of artificial doublets74. Because “SCTransform” uses a binomial 
regression model for UMAP plot generation and 2D visualization, we used the “NormalizeData” 
function in Seurat to log-normalize the counts data for artificial doublet creation before doublet 
removal. Using the “scDblFinder” function, we set the cluster assignment to those calculated 
from Seurat v4.1. Additionally, we set the “nFeatures” parameter equal to the number of variable 
features calculated from the residual variance cutoff of “SCTransform.” We also set the 
argument “processing = normFeatures” to use normalized counts of genes in calculation of 
doublets. Additionally, the arguments “dims = 30” and “PCs=30” were used for the number of 
dimensions and principal components to be used, respectively. Once doublets were removed, we 
repeated the unsupervised clustering as described above. 
 
Clustering Resolution Selection 
 Semi-unsupervised/unbiased techniques for cell clustering were also utilized. Optimal 
clustering resolution for 2D visualization comparison between the control and scCLEAN 
conditions was determined using ROGUE R package75. The average ROGUE statistic across all 
cell clusters at a range of clustering resolutions (0.1 – 1.2) was first calculated in the standard 
condition. The optimal clustering resolution of 0.4 was chosen because the ROGUE statistic 
reached a maximum saturation of cell cluster purity at this given resolution (Supplementary Fig. 
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1b). For consistency and direct comparison of cell clustering efficiency, we also set the 
clustering resolution at 0.4 in the scCLEAN condition.  
 
Cell-cell communication inference 

The CellChat R toolkit was used to infer inter- and intra-cellular communications76. Each 
sample in its entirety was processed with default thresholds according to the tutorial. Next, the 
control and depleted conditions were subsetted to include cell clusters that are consistent in both 
cell numbers and cell-type annotations across both conditions. As a result, a total of 9 cell types 
were chosen to compare between conditions: CD4+ Memory T, Naïve Memory T, Classical 
Mono, Mature NK, MAIT, MEP, Naïve B, Memory B, and pDC. Additionally, geometric 
sketching using the geosketch package was employed to down sample each condition to 8,000 
cells77. We followed the workflow as outlined in the CellChat tutorial using default settings with 
Communication Probability population size = TRUE.  
 
Cluster marker analysis and cell type annotation 

Cell types were annotated with a combination of the R package CIPR (v.0.1.0), which 
leverages reference cell populations and complex multi-gene expression signatures, and 
canonical immune cell markers78. We first performed DEG analysis using the “FindAllMarkers” 
function in Seurat R package. The log-normalized gene expression counts were used as input and 
genes were quantified as upregulated with a log2 foldchange > 1 and adjusted p-value < 0.01. 
The output of “FindAllMarkers” was used as input into the CIPR package for cluster scoring and 
annotation. The reference database used was “hsrnaseq” which is a sorted human RNAseq 
dataset79. Additionally, some immune cell subtypes could not be effectively identified from 
CIPR. Thus, we employed the use of classical markers to annotate cell sub-types and verify 
CIPR annotated cell clusters. See supplementary methods for a full list of cell type identification 
markers.  
 
Differential Expressed Genes (DEGs) 

We performed DEG analysis using the “FindMarkers” function in Seurat R package. We 
compared the log-normalized expression values between 10x-V3 cell populations and scCLEAN 
depleted cell populations, respectively. The fold changes of the mean log-normalized expression 
values between the two cell populations were calculated. Only genes which were expressed in at 
least 10% of cells for each condition were considered. Genes significantly enriched had a Log2 
fold change threshold of 0.25 and have an adjusted p-value < 0.05.  

 
Orthogonal Validation 
 
Random Matrix Theory – Signal to Noise 
 For each sample, random matrix theory was used to distinguish between signal and 
noise80, and consequently compare between scCLEAN and 10x-V3. The python tool randomly 
(https://github.com/RabadanLab/randomly) was used with minimal filtering to accurately 
characterize the effect of scCLEAN on the signal to noise ratio. Data processing followed the 
randomly tutorial, initializing the randomly.Rm() model, and using the function preprocess with 
the following arguments: min_tp=1, min_genes_per_cell=1, min_cells_per_gene=1, 
refined=True. The model was then refined using the command refining with the flag 
min_trans_per_gene=1.  
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Deep Learning Unsupervised Clustering   
 To ensure that the identification of additional cell clusters with scCLEAN was not an 
artifact of hyperparameter tuning, deep embedding for single-cell clustering (DESC) 
(https://github.com/eleozzr/desc) was used, leveraging deep learning to identify cell clusters in 
an unsupervised fashion, and assign a confidence score of assigning each cell to a specific cluster 
following similar initial filtering described above81. Despite being an unsupervised method, the 
proper clustering resolution still had to be manually chosen, so to compare DESC outputs 
between scCLEAN and 10x-V3, a range of Louvain resolutions were selected (0.1, 0.2, 0.4, 0.6, 
0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0). For each resolution x, the model was trained using the function 
train with the following arguments: dims=[anndata.shape[1], 128, 32] tol=0.001, 
n_neighbors=10, batch_size=256, louvain_resolution=x, do_tsne=True, learning_rate=300, 
do_umap=True, num_Cores_tsne=4.  
 
Gene Mapping onto the Latent Space 

SIMBA (1.1) (https://github.com/pinellolab/simba) was used to embed individual genes 
alongside cells in feature space, enabling the characterization of cell type-gene specificity82. 
Cellranger output files filtered_feature_bc_matrix.h5 for each condition were input and 
consequently subset to only the cells that remained post filtering and were used for downstream 
analysis (see PBMC Secondary Analysis). The matrices were then processed according to the 
SIMBA tutorial and documentation. Data was then discretized using tl.discretize with n_bins set 
to 5. The graph was then generated with use_highly_variable set to True. The parameters to train 
the model were left on default settings. Cell type annotations were lifted over from the Seurat 
analysis (see Cluster marker analysis and cell type annotation). SIMBA UMAP plots were 
generated with n_neighbors=20, n_components=2, and random_state=10. All statistical 
comparisons between the distribution of specificity metrics were performed using the Mann-
Whitney U rank test with the Benjamini-Hochberg correction with default thresholds.  
 
 To illustrate the additional gene-cell type specificity in the scCLEAN versus 10x-V3 
condition, SIMBA was used to quantify genes within a certain radius of the densest point of a 
cell cluster. Within the scCLEAN condition, each of the four additional cell types that were 
identified were isolated and the mean x and y coordinates in UMAP space were calculated. If the 
cell type consisted of more than one cluster, the cluster with the largest density of cells was 
selected. From the central point, genes were queried using tl.query with use_radius=True and 
r=0.5 to identify genes within a radius of 0.5 in UMAP coordinate space. Considering, in the 
10x-V3 condition the four cell types were not identified, it is infeasible to directly calculate the 
center of the highest density cells pertaining to that cell type. As a proxy, 3 out of the 4 clusters 
could be visually distinguished in UMAP space due to the surrounding cell types as well as 
physical characteristics such as distensions of cells. For example, in the scCLEAN condition, an 
entirely isolated island of cells consists of two cell types, Mature Natural Killer cells and 
S100B+ Natural Killer cells. In the 10x-V3 condition, the same island exists, but only consists of 
Mature Natural Killer cells. Consequently, the radius in the 10x-V3 condition was selected to 
closely approximate the location of the S100B+ Natural Killer cells in the corresponding 
scCLEAN condition. Proliferating Natural Killer cells were the only cell cluster that could not be 
identified since an additional isolated cluster did not exist in the 10x-V3 condition. 
Consequently, comparative analysis performed for the four cell types uniquely found within the 
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scCLEAN condition were qualitative and should be interpreted for intuitive purposes 
exclusively.  
 
Single-Cell Iso-Seq 
 

PBMC samples were isolated from a donor and prepared using 10X Genomics Chromium 
Next GEM Single Cell 3’ Reagent Kit (v3.1) protocol (10X Genomics, CG000315 Rev C) as 
described above. 100ng input of GEM barcoded WTA (cDNA) was then treated with 
CRISPRclean Cas9/Single Cell Boost Guide RNA complexes for cleavage of targeted sequences. 
The ribonucleoprotein complex reaction was adjusted to target <2kb single-cell cDNA short 
transcripts, ensuring a 1:200:500 molar ratio of target to enzyme to guide. After CRISPR 
digestion, the cleaved targeted sequences were 1X magnetic bead-based size selected using the 
ProNex Purification System. The remaining desired un-cleaved cDNA samples were PCR re-
amplified alongside standard untreated cDNA samples from the same GEM channel cell 
population. The amplified cDNA samples were then 0.95X ProNex size selected for desired <2 
kb short transcripts.  
 

Following single-cell cDNA quantitative mass and qualitative size validation for desired 
small transcripts, SMRTbell libraries were generated following the “Single-Cell Iso-Seq 
SMRTbell Express Template Prep Kit 2.0 Procedure” as per the manufacturer’s protocol (PacBio 
PN 101-892-000 v1, Menlo Park, CA). Each library was sequenced individually on the PacBio 
Sequel II System targeting ~3 million full-length single-cell transcript reads per SMRT Cell 8M.  
 
Generation of CCS reads, Barcode Correction, and Deduplication 

Circular Consensus Sequencing (CCS) reads were generated from subreads files using 
the CCS bioconda package v6.4.0 with default parameters. Both CCS files were down sampled 
to 3.4 million reads using samtools v1.12 view command using the –s parameter set 
appropriately. Primers were removed using Lima v2.5.0 (–isoseq, –peek-guess) using the 10X 
Chromium Next GEM Single Cell 3’ (10X GEX 3’) primers as inputs. To identify and clip both 
UMIs and cell barcodes, the isoseq3 v3.7.0 tag command was used with the design parameter set 
to “T-12U-16B” to match the 10X GEX 3’ barcode schematic. Poly A selection and concatemer 
removal were performed using isoseq3 refine.  

 
Barcode correction was performed using the isoseq3 correct command using the 10X 

barcode whitelist (3M-february-2018.txt) obtained from the Cell Ranger v6.2.0 package. The 
refined, corrected reads were then sorted by corrected barcode using samtools (sort -t CB) to 
prepare for deduplication. We performed deduplication using the isoseq3 groupdedup command. 
 
Alignment of Deduplicated Reads to Genome 

Deduplicated reads were aligned to the RefSeq genome 
(GCF_000001405.39_GRCh38.p13_genomic.fa)83 using pbmm2 v1.8.0. pbmm2 was invoked 
using the parameters –preset ISOSEQ and –sort. To generate a gtf file containing unique 
isoforms, we used isoseq3 collapse on the mapped, deduplicated reads.  
 
Isoform Classification 
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Isoform classification was performed using the PacBio bioconda pigeon package v0.1.0. 
The RefSeq gtf and fasta file were indexed for compatibility with pigeon, using the pigeon index 
and samtools faidx commands respectively. Isoform classifications were obtained using the 
pigeon classify command with the –fl parameter to append unique molecule count to facilitate 
downstream filtering. Classified isoforms were then filtered for intra-priming and RT-switching 
using the pigeon filter command. We applied an additional filter by removing any isoform with 
less than 2 associated unique molecules (FL read column > 1).  

 
Exclusively to calculate the boost in informative isoforms, isoforms corresponding to the 

255 genes that were targeted by scCLEAN were removed from the total isoform metrics (Fig. 
4b-c). For all downstream biological processing, all isoforms were retained. Seurat compatible 
inputs were generated using the final, filtered isoforms (containing all genes) using the pigeon 
make-seurat command. 
 
Single-Cell Iso-Seq Analysis 

Cell clustering was performed with Seurat v.4.1.1 R toolkit with genes expressed in less 
than 3 cells and cells with less than 10 genes filtered from the data. Additionally, as an initial 
pass of low-quality cells filtering, those with less than 25 UMI’s detected were filtered from the 
data. The “SCTransform” function was performed to normalize read depth prior to principal 
component analysis. We used a residual variance cutoff of 1.3 to calculate the optimal number of 
variable features. The “RunPCA” function was used for principal component analysis using 
default settings and the first 50 PCs. The “FindNeighbors” and “RunUMAP” functions were ran 
using default settings and dims parameter set to 30. The first 30 PCs were used to construct the 
shared-nearest neighbor (SNN) network graph followed by construction of the Uniform 
Manifold Approximation and Projection (UMAP) dimensionality reduction. Clusters were 
identified using the “FindClusters” function using the Louvain algorithm with multilevel 
refinement and setting the maximum resolution to 0.6. This resolution was used to first over-
cluster the data for subsequent doublet removal (see doublet detection). In a second pass of low-
quality filtering, we filtered low-quality cells with low gene counts, relative to UMI counts (i.e., 
red blood cells). This was done by filtering cells in the bottom 0.01 quantile for gene counts to 
account for cells that pass the >25 UMI threshold but did not have the same relative proportion 
of unique gene counts. A second round of semi-supervised clustering was performed as 
previously described. The “FindClusters” function using the Louvain algorithm with a sequential 
number of clustering resolutions from 0.05 to 0.6 at 0.05 intervals. A final clustering resolution 
of 0.35 was subsequently chosen and applied to both the “10X-V3” and “scCLEAN” conditions. 
For cell annotation, we used a sorted scRNAseq dataset to identify the most significant genes 
expressed in plasmablasts (Log2 fold change >4 and FDR < 0.005)79, and CIPR was utilized with 
default thresholds to calculate identity score.  
 
Cardiovascular Samples 
 
Sample extraction and single-cell isolation 

Human coronary and pulmonary artery smooth muscle cells from healthy donors were 
obtained from Cell Applications (San Diego, CA). Specifically, cells were matched to the same 
original donor and utilized for scRNAseq at low passage (less than passage 3). A total of four 
distinct individual donors were used. Cells were cultured in growth medium (Cell Applications) 
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at 37 °C with 5% CO2 atmosphere in T25 flasks (Corning, Corning, NY) and were detached 
from cell culture flasks using Trypsin (Invitrogen) incubation at 37 °C for single-cell suspension. 
Cell viability was assessed using trypan blue staining (Invitrogen, Waltham, MA) and Countess 
II (Invitrogen) with samples having viability of >90% being used for scRNAseq.  
 

Human coronary and pulmonary artery vascular endothelial cells from healthy donors 
were obtained from Cell Applications (San Diego, CA) and prepared identically to VSMCs as 
detailed above. Except for VEC samples, two distinct individual donors were utilized, and 
growth medium was specific to endothelial cells (Cell Applications). Both VEC and VSMC 
samples then underwent scRNAseq and scCLEAN protocols (see PBMC Samples). Sequencing 
libraries were generated on a NovaSeq 6000 XP workflow (Illumina) with the following read 
parameters: R1-28, R2-92, I1-8, I2-8.  
 
Single-cell analysis  
 For every biological sample, a scCLEAN library and a 10x-V3 library were generated, 
representing the exact same cell population. Each tissue varied in sequencing depth, but both 
conditions for each tissue were down sampled to the exact same sequencing depth using ‘seqtk 
sample.’ For secondary analysis, a cell ranger index was generated using Ensembl sequence file 
Homo_sapiens.GRCh38.104.fasta and an annotation file using ‘cellranger mkref’ with the 
accompanying Ensembl Homo_sapiens.GRCh38.104.chr.gtf with the flag --
attribute=gene_biotype:protein_coding. The samples were then aligned using ‘cellranger count’ 
with default parameters.  
 
 Each sample UMI count matrix next underwent quality control filtering, removing cells 
with fewer then 200 genes and 500 UMIs. In addition, the cells representing the top 1% of UMI 
counts were removed as well as genes that were found in fewer than 3 cells. A MT threshold was 
set using the python implementation of miQC (see Supplementary Methods “Python miQC 
Filtering”) with a threshold adjustment of 10 median absolute deviations (see Supplementary 
Methods).  All samples from each condition were then aggregated into one anndata object using 
Pegasus (1.5.0) command ‘pegasus aggregate_matrix.’ Initial processing was performed 
according to the Pegasus analysis tutorial with default parameters. Doublets were inferred and 
removed using Pegasus ‘infer_doublets’ function.  with the following arguments: 
channel_attr=’Channel’, clust_attr=’louvain_labels’, expected_doublet_rate=0.001. ~7.5% of the 
total cells were predicted as doublets and were removed. After filtration, initial processing was 
repeated, and batch correction was performed using run_harmony with default parameters84. The 
Louvain clustering was calculated with the resolution 0.4. The diffusion map and force directed 
layout graph was generated using the function diffmap and fle, respectively. Identified clusters 
that were not connected to the main trajectory according to the force directed layout graph were 
removed from downstream analysis.   
 
Trajectory Inference 
 Cell Rank (https://github.com/theislab/cellrank)85 was used to identify trajectories. The 
CytoTRACEkernel was used to generate cell differentiation pseudotime86. The transition matrix 
was calculated using the function ‘compute_transition_matrix’ with the flags 
threshold_scheme=’soft’ and nu=0.3. To compute terminal states, and the associated fate 
probabilities, the Generalized Perron Cluster Cluster Analysis (GPCCA) estimator was utilized87. 
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To identify the top terminal states, schur decomposition was performed using the function 
compute_schur with n_components=25 and alpha=0.2. For both VSMC sample conditions, an 
eigengap was detected after 2 eigenvalues, so two macrostates (terminal states) were computed 
using compute_macrostates with n_states=2. Only the macrostates that had non-zero stationary 
distance (stationary distribution of coarse-grained transition matrix) were carried forward in 
analysis. Terminal states were established from the two macrostates, and fate probabilities were 
identified using compute_absorption_probabilities with time_to_absorption=‘all’. The top genes 
associated with each terminal state were identified using the function compute_lineage_drivers.  
 
 While Cell Rank was used to identify distinct terminal states, scFATES (0.8.0) 
(https://github.com/LouisFaure/scFates) was then utilized to characterize gene-lineage 
associations with respect to pseudotime, enabling the distinction between genes that drove the 
split between the two lineages as well as genes highly correlated with each88. The tutorial 
“Conversion from CellRank pipeline” was closely followed. The cell rank analysis was 
converted to a lineage tree using cellrank_to_tree with the flags time=’pseudotime’, Nodes=10, 
and seed=10. The single tip of the tree that was identified closest to the cells of earliest 
pseudotime was established as the root. scFATES principal graph was calculated using 
tl.pseudotime with n_map=100 and seed=42. The dendrogram was established using the function 
tl.dendrogram with default parameters. Genes significantly associated to each section of the 
principal tree were calculated using test_association and fitted to the trajectory using tl.fit. Genes 
associated with the Coronary and Pulmonary branch were identified using tl.test_fork with the 
root_milestones flag set to the “Coronary Root Cells” and the milestones flag set to the two 
terminal branches “Coronary Lineage” and “Late Pulmonary Lineage.” Markers were selected 
using the function branch_specific with the same root and milestones selected as above with 
effect=0.3. 91 genes were associated with the Late Pulmonary Lineage and 32 genes were 
associated with the Coronary Lineage. To identify gene’s specific to each module (lineage) at the 
point of bifurcation with respect to pseudotime inclusion, the function tl.module_inclusion was 
used with the same root and milestones selected as above in addition to n_map=50 and 
parallel_mode=’mappings.’ See supplementary methods for GSEA and regulon analysis.  
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Fig. 1: Evaluation of scCLEAN impact on single cell transcriptomic sensitivity

a,   Schematic representing the insertion of CRISPR/Cas9 depletion into the standard single cell 
RNAseq (scRNAseq) workflow. A sgRNA pool is designed targeting 4 distinct regions: genomic 
intervals, non-polyadenylated rRNA (rRNA), 90 ribosomal and 10 mitochondrial genes 
(Ribo/Mito), and 155 non-variable housekeeping genes (NVG), redistributing reads to 
informative molecules. b, Distribution of genomic aligned reads attributed to each of the 4 
targeted regions across 14 datasets. In total, 57% of aligned reads are targeted for 
redistribution. c, In silico modeling compares median genes per cell and median UMIs per cell  
as a function of sequencing depth. Uninformative molecules associated with the 255 targeted 
genes were ignored. d, Percent of genomic reads within PBMC samples (n=4) that aligned to 
each of the 4 targeted regions, on average depicting a read re-distribution of 46%. e, 
Distribution of cell complexity (gene/UMI), or the rate of gene recovery per unique molecule, 
for each of the 4 PBMC samples, quantifying a 2.1-fold boost in median complexity (med). f, 
Left, the ratio of transcriptome aligned reads per cell associated with the 255 targeted genes 
(tan) versus the remaining 36,346 genes in the transcriptome (blue), which increased from 
45% (10x-V3) to 94% (scCLEAN). Right, the ratio of median UMIs per cell associated with the 
255 targeted genes (tan) versus the remaining 36,346 genes in transcriptome (pink), which 
increased from 39% (10x-V3) to 92% (scCLEAN). 
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Fig. 2: Enhanced clustering resolution contributing to robust cell type characterization

a, Sequencing saturation as a function of read depth comparing scCLEAN (blue) and 10x-V3 
(red). Dotted line intersects the 10x-V3 condition at the gold standard sequencing depth of 
~25,000 reads per cell, crossing the scCLEAN condition at roughly half. b, Illustrates the effect 
of scCLEAN (blue) on gene dropout relative to 10x-V3 (red). Of the genes detected in both 
conditions, the percent change in the total number of cells where each gene was identified. 
Blue dotted line represents the average boost in gene detection (24%). c, Volcano plot of 
differential expression analysis performed on all genes found in at least 10% of cells. Genes 
that passed a p-value of 0.05 and log2 fold change of 0.25 associated with scCLEAN (blue) 
(4,896) and 10x-V3 (red) (33). d-f, Cell clustering at the entropy (ROGUE) optimized resolution 
utilizing automatic cell type identification (CIPR) representing d scCLEAN, e 10x-V3 (dotted 
circles denote the location of cell types identified with scCLEAN but not characterized with 
10x-V3), and f the clusters and cell types exclusively identified with scCLEAN (4 additional cell 
types). g, Expression of cell markers from a FACS sorted reference dataset for each of the 
PBMC cell types from each condition: 10x-V3 (top) and scCLEAN (bottom). Cell markers for the 
four additional cell types (*) annotated with a black line. f, Clustering output from an 
unsupervised deep learning algorithm (DESC) spanning the entire range of potential Louvain 
resolution inputs. Top, TSNE clustering plots from a chosen resolution (0.8) identifies 11 
clusters with 10x-V3 and 17 clusters with scCLEAN. Bottom, paired assignment probability 
representing the confidence of assigning each cell to a specific cluster.  
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Fig. 3: Increased cell type specificity improves cell to cell communication network clarity

a, Co-embedding of genes onto 10x-V3 latent space (SIMBA). Spatial proximity between genes 
and cell type quantifies specificity. Gene query with a radius of 0.5 UMAP coordinates from 
the spot of highest cell density according to where each cell type should be identified (spatial 
similarity with scCLEAN). The location of proliferating NK cells could not be determined. 
Average Euclidean distance to the center of each query. b, Co-embedding of genes onto 
scCLEAN latent space. Gene coloring represents a positive cell type identification. c, Top, total 
number of inferred cell to cell communication interactions between 10x-V3 (brown) (2,181 
interactions) and scCLEAN (green) (4,023 interactions). Bottom, average interaction strength 
(1.9-fold increase). d, Top, signal heat matrix of total interactions with cell type specificity 
comparing 10x-V3 (left) with scCLEAN (right). Bottom, signal heat matrix of interaction 
strength. e, Network diagram depicting cellular interactions from 10x-V3 (top) and scCLEAN 
(bottom). Edge weights calculated according to the total number of ligand-receptor 
interactions associated with each cell type. Node size is proportional to the sum of all inferred 
probabilities between cell types, or the strength of an interaction occurring. f, Relative 
information flow between 10x-V3 (brown) and scCLEAN (green) of biological pathways 
associated with classical monocytes. Colored pathways reflect passing a Wilcoxon signed-rank 
test (p<0.05). 21/26 pathways statistically enhanced with scCLEAN.  g, Network diagram 
depicting directional interactions of the TGFb signaling pathway between cell types of 10x-V3 
(top) and scCLEAN (bottom). h, Gene expression between 10x-V3 (brown) and scCLEAN (green) 
of the main TGFb ligand (TGFB1) as well as both co-receptors (TGFBR1 and TGFBR2) necessary 
for an interaction to be inferred. 
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Fig. 4: Application of scCLEAN on PBMC single cell iso-seq enables clear biological 
interpretation

a, Long read sequencing read filtration workflow. b, Isoform classification metrics comparing 
10x-V3 (purple) and scCLEAN (red). Out of the 17,131 unique isoforms identified in the 10x-V3 
condition, 4,575 were novel. Whereas within scCLEAN, 78,935 unique isoforms (4.6-fold 
increase) were detected with 19,112 being novel (4.2-fold increase). c, Saturation curve of 
unique isoform counts. d, Total number of highly variable genes identified (default mean 
variance = 1.3) between 10x-V3 (175) and scCLEAN (593). e-f, Single cell clustering (UMAP) 
identifying 77 clusters with e 10x-V3 and 16 clusters with f scCLEAN. g, Cell type identification 
(CIPR) of the 16 scCLEAN clusters. Identity score quantifies the confidence of assigning each 
cluster to cell-type. Plasmablast assigned to cluster 16 boxed in grey. h, scCLEAN feature plots 
(UMAP) of isoforms from the top 4 Plasmablast cell markers according to a FACS sorted 
database. i, IGV alignment diagrams of 3 Plasmablast cell markers (IGHA1, JCHAIN, ITM2C) 
comparing iso-seq data (blue) and short read scRNAseq data (green) from scCLEAN depleted 
PBMCs. 
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Fig. 5: Trajectory classification of vascular smooth muscle cells with stark delineation 
between coronary and pulmonary artery 

a, Schematic figure of experimental workflow. ~50,000 VSMCs were isolated from 4 patients 
and 2 tissue locations, coronary and pulmonary artery. Both scCLEAN and 10x-V3 represent 
the same population of cells. b, Density of cells along the force directed layout (FLE) trajectory  
according to their tissue of origin comparing 10x-V3 (top) with scCLEAN (bottom). c, Each cells 
transcriptional change along pseudotime (CytoTRACE) mapped onto the FLE embedding. All 
detected genes are utilized to automatically calculate early pseudotime (black) to late 
pseudotime (yellow). d, The total number of terminal states identified using Cell Rank 
comparing 10x-V3 (left) (1 lineage) with scCLEAN (right) (2 lineages). Optimal terminal states 
identified using Schur decomposition (gap in the real portion of eigenvalues) and then refined 
according to stationary distance of the coarse-grained Markov transition matrix (non-zero 
distance). e, Probability of each cell belonging to each scCLEAN lineage (absorption 
probability) and thus differentiating along pseudotime into either of the 2 terminal states, 
corresponding with lineage 1 (top) and lineage 2 (bottom). Yellow represents a 100% 
probability of that cell belonging to that lineage. f, Left, scCLEAN lineage absorption 
probability (lineage 1 = top, lineage 2 = bottom) plotted as a function of each cells position 
along the differentiation trajectory (ct pseudotime). Coloring reflects whether the cell was 
derived from a coronary or pulmonary artery. Right, absorption probabilities compressed 
along pseudotime. g, Heat matrix illustrating the probability of each cell belonging to each 
lineage paired side by side with the identity of that cell belonging to each tissue. h, Receiver 
operating characteristic (ROC) depicting the classification performance of identifying each 
tissue to each lineage (both pulmonary and coronary lineage AUC=0.99). 
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Fig. 6: Lineage characterization reveals basal transcriptional states informing the basis of 
coronary cardiovascular disease

a, Genes with the highest correlation associated with each terminal state. Average gene 
expression sampled from 200 cells with a probability > 0.5 associated with each lineage 
(pulmonary lineage = top, coronary lineage = bottom) and mapped along pseudotime. b, 
Dendrograms representing the principal graph (scFATES) inferred from scCLEAN terminal 
states. Left, blue represents early pseudotime and yellow represents late pseudotime. Middle, 
cells colored according to tissue of origin (coronary = red, pulmonary = grey). Right, 4 distinct 
nodes of the principal graph labeled according to tissue proportion. c, Tree diagram 
highlighting onset of characteristic gene signatures (red) associated with pulmonary lineage 
(top) and coronary lineage (bottom). d, Gene expression matrix of highest specificity 
(effect>0.3) depicting early coronary root cells (left), coronary lineage (middle) (32 genes), and 
late pulmonary lineage (right) (91 genes). The top 15 genes according to correlation were 
annotated. e, Feature plots (FLE) comparing expression of 3 lineage markers to the pulmonary 
lineage (top) and 3 lineage markers to the coronary lineage (bottom). f,  Genes responsible for 
pulmonary lineage (top) and coronary lineage (bottom) bifurcation in order to reflect early 
decision-making processes prior to separation. Matrix contains inclusion timing for each gene 
in each probabilistic lineage projection. g, Gene set enrichment analysis (GSEA) determined 
from all lineage specific genes with a correlation greater than 0.3. Combined score 
incorporates gene overlap and statistical significance. Coronary lineage genes uniquely overlap 
with inflammatory response and TNF-alpha signaling. h, Regulon activation per cell (SCENIC) 
(black = on, white = off) calculated from the top 5,000 coronary lineage cells and the top 5,000 
pulmonary lineage cells. The top transcription factors ranked according to the average 
difference between lineages. NFE2L2 turned on in 91% of cells derived from the pulmonary 
lineage but only 1% of cells derived from the coronary lineage. i, Vascular endothelial cell 
(VEC) trajectories (FLE) representing ~30,000 cells and 2 donors. Comparison of terminal states 
between 10x-V3 (top) and scCLEAN (bottom). 
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Supplementary Fig. 1: Clustering performance and offtarget analysis

a, Comparison of informative UMIs (left) and genes (right) per cell between PBMC samples 
derived from 10x-V3 (yellow) and scCLEAN (blue) conditions. Due to broad immune cell 
heterogeneity, cells were separated according to size (3 equivalent sized bins according to 
metric). b, Entropy based ROGUE metric output spanning a range of Louvain resolutions 
calculated from the standard 10x-V3 sample. The proper clustering resolution (arrow) was 
selected at the point of saturation and was used to analyze both the 10x-V3 and scCLEAN 
downstream single cell analysis. c, Gene correlation mapping the normalized expression 
between 10x-V3 and scCLEAN (r2 = 0.948). 19,703 genes (88%) increased in expression due to 
scCLEAN (blue) while 2,569 genes (12%) have higher expression in 10x-V3. d, Distinguishing 
between genes that are a product of random sampling from two libraries of fundamentally 
different composition and true off-target effects. Genes that don’t follow a linear trend in log2 
fold change reduction (negative values represent a decrease in scCLEAN expression relative to 
10x-V3) are considered offtarget (n=21) and are automatically detected by a knee bend 
algorithm. e, Quantifying whether the 21 selected genes in this hierarchical selection process 
are targets of scCLEAN guides or overlap with regions of on-target genes (18/21). f, Proportion 
of identified cell types comparing 10x-V3 to three scCLEAN replicates. 2 replicates identified all 
4 additional cell types while 1 replicate only identified 3 out of the 4, omitting proliferating NK 
cells (labeled with *).  g, Cell specificity scores (entropy, Gini index, max value, standard 
deviation) calculated after co-embedding genes onto the latent space within each condition 
(10x-V3 = yellow, scCLEAN = blue). Top 10% of genes according to each metric were included in 
analysis and statistical significance was calculated using the Mann-Whitney U rank test with 
Benjamini-Hochberg correction. 
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Supplementary Fig. 2: Filtering dead cells using mitochondrial gene expression

a, Distribution of cell density according to the percent of mitochondrial (MT) reads comparing 
a PBMC sample with a 30% ground truth dead cell population (trypan blue staining) prepared 
with standard 10x-V3 processing (left) and scCLEAN depletion (right). b, Violin plots 
representing the population of dead and alive cells in each condition (10x-V3 = top, scCLEAN = 
bottom) by setting a threshold removing the top 10% of cells according to MT percentage. c, 
Results of filtering dead cells by using miQC, which is a mixed linear regression model plotting 
% MT as a function of total number of unique genes. Yellow represents cells classified as dead 
and subsequently removed. d, Represents the same principle as c, except models the 2 cell 
populations as a gaussian mixture. The population with low gene count and high % MT are 
classified as dead. e, Each multivariate normal distribution is plotted (alive = orange, blue = 
dead) with a 2-sigma confidence region. A proper MT threshold was established by calculating 
5 median absolute deviations above the median live cell distribution. f, Efficacy of various 
dead cell filtering techniques. scCLEAN and 10x-V3 samples represent the same cell population 
so % barcode similarity was calculated to quantify the degree to which the same cells were 
removed in both conditions according to each filtering technique (scCLEAN filtered 
barcodes/10x-V3 filtered barcodes). 
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Supplementary Fig. 3: Increased signal to noise enhances dimensionality reduction

a, Random matrix theory (RMT) to calculate the change in normalized sample variance as 
more genes are included in secondary analysis (10x-V3 = gray, scCLEAN = blue). b, RMT to plot 
the false discovery rate as a function of gene inclusion (10x-V3 = gray, scCLEAN = purple). c, 
Comparing the optimized dimensionality reduction (DR) across various techniques (columns) 
between 10x-V3 (top row) and scCLEAN (bottom row). The optimal key parameter for each 
technique was determined using molecular cross validation (MCV loss). Left, standard 
principal component analysis demonstrates increased variance incorporated through DR 
performance by increasing the number of principal components from 18 (10x-V3) to 20 
(scCLEAN). Middle, optimized size of the bottleneck layer for a denoising autoencoder for 
single cell count data. At the optimal bottleneck width, scCLEAN (64) incorporates more signal 
due to a wider layer than 10x-V3 (16). Right, proper diffusion parameter t for the standard 
diffusion-based DR algorithm (MAGIC) illustrates a significantly decreased optimized value 
from 15 (10x-V3) to 1 (scCLEAN). The larger the value, the greater the genetic heterogeneity is 
smoothed over in an attempt to reduce noise. d, DR performance comparison using a different 
diffusion-based algorithm (PHATE) and a separate optimization algorithm based on Von 
Neuman Entropy. The diffusion component is reduced from 47 (10x-V3) to 27 (scCLEAN).  
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Supplementary Fig. 4: Enhanced specificity of a shared cell type

a, Co-embedding of genes onto the 10x-V3 UMAP projection, illustrating cell-type markers for 
MAIT cells. Center of query automatically selected as point of highest cluster density with a 
search radius of 0.5 (4 genes identified with an average distance to center of 0.38). b, Results 
of same analysis as a but on scCLEAN dataset, identifying 9 genes associated with MAIT cell 
population with an average distance to center of 0.18 in coordinate space. c, Top 6 cell 
markers identified in scCLEAN for MAIT cells. Plotting the barcodes (colored by cell type, MAIT 
= light blue) most closely associated (softmax transformation) with each gene. Red dotted line 
indicates default threshold for gene to cell type specificity. None of the marker genes passed 
the specificity threshold with 10x-V3. d, All 10x-V3 detected genes (yellow) plotted according 
to MAIT specificity (standard deviation and max value). 12 genes pass a cutoff threshold (std = 
0.3 and max=0.4). e, For the same cutoff threshold, 575 genes (48-fold increase) are identified 
as MAIT specific within scCLEAN (blue). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2022. ; https://doi.org/10.1101/2022.09.06.506867doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506867
http://creativecommons.org/licenses/by-nc-nd/4.0/


a b c

d e f

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2022. ; https://doi.org/10.1101/2022.09.06.506867doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506867
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Fig. 5: Single cell Iso-seq comparison 

a-f, Generated from data with isoforms associated with the 255 targeted genes retained. a, 
PBMC iso-seq distribution of the number of UMIs detected per cell (10x-V3 = grey, scCLEAN = 
pink). b, same as a except cell density according to number of unique isoforms per cell. c, 
Scatter plot of cell complexity, unique isoforms as a function of UMIs, comparing 10x-V3 
(purple) to scCLEAN (red). d, Highly variable gene selection identifying 593 genes with 
scCLEAN (left) and 175 genes with 10x-V3 (right) (3.4-fold increase). e, scCLEAN (red) captures 
higher biological variance with every principal component in comparison to 10x-V3 (purple). 
Dashed line indicates the number of scCLEAN principal components incorporated into 
downstream clustering. f, 10x-V3 feature plots (UMAP) depicting 4 Plasmablast cell markers. 
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Supplementary Fig. 6: scCLEAN performance evaluation on cohort of vascular smooth muscle 
cells 

a, Read re-distribution of 4 targeted regions for removal (Ribo-Mito, NVG, Genomic Intervals, 
rRNA) within coronary samples (left) and pulmonary samples (right) across 4 patients. b, For 
all samples, alignment rates to the full transcriptome (dark grey) or the informative 
transcriptome (lime green) corresponding to the exclusion of the 255 targeted un-informative 
genes. c, Median informative UMIs detected per cell across all patient samples comparing 10x-
V3 (black) to scCLEAN (light blue). d, Ratio of all UMIs per cell corresponding with the 255 
targeted genes (tan) and the remaining transcriptome (36,346 genes) (green). e, Box and 
whisker plot illustrating the boost in complexity and sequencing saturation with scCLEAN 
(blue) relative to 10x-V3 (yellow). f, Sequencing saturation as a function of sequencing depth 
comparing scCLEAN (red) and 10x-V3 (brown) illustrating representative coronary (left) and 
pulmonary (right) samples. g, Saturation curves depicting informative gene detection across 
sequencing depth between scCLEAN (yellow) and 10x-V3 (brown) illustrating representative 
coronary (left) and pulmonary (right) samples.
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Supplementary Fig. 7: Orthogonal validation of cardiovascular trajectory analysis

a-g, Trajectory analysis workflow depicting 10x-V3 (left of line divide) and scCLEAN (right of 
line divide). a, Pseudotime projected on force directed layout plot (FLE), calculated using all 
genes detected and depicting the transition from early cells (black) to terminal cells (yellow). 
b, Schur decomposition plotting the real components of the top 25 eigenvalues. A gap was 
calculated after 2 values motivating the calculation of 2 terminal states. c, Location of 2 
terminal states on FLE projection. d, Stationary distance from coarse-grained Markov 
transition matrix associated with each lineage. For the second lineage identified in both 
conditions, 10x-V3 cannot identify any transition distance (0) while scCLEAN identifies a 
relative distance of 0.11. e, Probability of each cell belonging to each lineage (absorption 
probability). Yellow illustrates 100% probability of cell-lineage association while dark blue 
represents 0%. Greater than 99% of cells within 10x-V3 (left) belong to lineage 1, while in 
scCLEAN (right), 64% of cells correspond to lineage 1 and 36% of cells correspond to lineage 2 
(absorption probability > 0.5). f, Each cells lineage absorption probability (lineage 1 = left, 
lineage 2 = right) plotted as a function of each cells position along the differentiation 
trajectory (ct pseudotime). Coloring reflects whether the cell was derived from a coronary or 
pulmonary artery. g, First, heat matrix illustrating the probability of each cell belonging to each 
lineage (lineage 1 = left, lineage 2 =right) paired side by side with the identity of that cell 
belonging to each tissue. Second, receiver operating characteristic (ROC) depicting the 
classification performance of identifying each tissue to each lineage. Both lineages of 10x-V3 
(left of line divide) have an AUC of 0.51 while the corresponding lineages identified with 
scCLEAN (right of line divide) have an AUC of 0.99. 
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