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Abstract 23 
 24 
Codon bias and mRNA folding strength (mF) are hypothesized molecular mechanisms by which 25 
polymorphisms in genes modify protein expression. Natural patterns of codon bias and mF 26 
across genes as well as effects of altering codon bias and mF suggest the influence of these two 27 
mechanisms may vary depending on the specific location of polymorphisms within a transcript. 28 
Despite the central role codon bias and mF may play in natural trait variation within populations, 29 
systematic studies of how polymorphic codon bias and mF relate to protein expression variation 30 
are lacking. To address this need, we analyzed genomic, transcriptomic, and proteomic data for 31 
22 Saccharomyces cerevisiae isolates, estimated protein accumulation for each allele of 1620 32 
genes as the log of protein molecules per RNA molecule (logPPR), and built linear mixed effects 33 
models associating allelic variation in codon bias and mF with allelic variation in logPPR. We 34 
found codon bias and mF interact synergistically in a positive association with logPPR and this 35 
interaction explains almost all the effect of codon bias and mF. We examined how the locations 36 
of polymorphisms within transcripts influence their effects and found that codon bias primarily 37 
acts through polymorphisms in domain encoding and 3’ coding sequences while mF acts most 38 
significantly through coding sequences with weaker effects from UTRs. Our results present the 39 
most comprehensive characterization to date of how polymorphisms in transcripts influence 40 
protein expression. 41 
 42 
 43 
 44 
  45 
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Introduction 46 
 47 
Decades of research efforts have established that heritable variation in protein expression is a major 48 
driver of higher-order trait variation (Chan et al., 2010; Skelly et al., 2009; Stern and Orgogozo, 49 
2008). Advances in nucleic acid quantification technologies have facilitated numerous studies 50 
probing the effects of molecular polymorphisms on mRNA abundance variation (Brem et al., 2002; 51 
Pai et al., 2012; Rockman and Kruglyak, 2006). This work established that the genetic architecture 52 
of gene expression is divided into two parts: a modest number of polymorphisms act in trans on 53 
the expression of many genes, and a large number act allele-specifically in cis. More recent studies 54 
have focused on protein abundances and found that genetic variation commonly acts specifically 55 
at the protein level, modifying either protein synthesis or decay rates (Albert et al., 2014; Foss et 56 
al., 2011; Gygi et al., 1999; Parts et al., 2014; Pollard et al., 2016; Straub, 2011; Torabi and 57 
Kruglyak, 2011). Despite enormous progress establishing that polymorphisms act in both cis and 58 
trans as well as at the mRNA-level and protein-level, the diversity of molecular mechanisms by 59 
which polymorphisms act on protein expression abundances remains poorly resolved (Courtier-60 
Orgogozo et al., 2020; Nieuwkoop et al., 2020). 61 
 62 
Codon bias and mRNA folding stability (mF) are two hypothesized mechanisms by which 63 
polymorphisms act in cis on protein expression (Hanson and Coller, 2018; Tuller et al., 2011). 64 
Both mechanisms have been studied using various approaches. This includes comparing the codon 65 
bias and mF of different genes within a genome (Dana and Tuller, 2014; Zur and Tuller, 2012), 66 
comparing them between species (LaBella et al., 2019; Park et al., 2013), engineering alleles with 67 
artificially modified codon bias and mF (Babendure et al., 2006; Gooch et al., 2008), and 68 
computationally modeling their impact on protein expression (Mao et al., 2014; Tuller et al., 2011).  69 
 70 
To our knowledge, no study has systematically investigated how natural polymorphic variation in 71 
codon bias and mF relate to variation in protein expression. Investigating these factors in a 72 
population context is important for several reasons. Comparisons amongst alleles of the same gene, 73 
instead of comparisons across genes within the genome of an individual, minimizes potential 74 
confounding effects. Because standing allelic variation is typically comprised of complex 75 
combinations of genetic differences, population studies can reveal effects that are distinct from 76 
those seen from traditional single perturbation mutagenesis experiments (Greenspan, 2004). 77 
Furthermore, population studies have direct relevance for understanding human population 78 
variation and for the broader goal of characterizing molecular evolutionary mechanisms. 79 
 80 
Uneven synonymous codon usage is referred to as codon bias and the overall pattern of codon bias 81 
in a species’ genome is understood to be the result of two factors (Hershberg and Petrov, 2008; 82 
LaBella et al., 2019; Plotkin and Kudla, 2011; Trotta, 2013; Wallace et al., 2013). First, species-83 
specific mutational biases produce codons at different rates; yeast DNA, for example, mutates to 84 
AT nucleotides at approximately twice the rate as GC nucleotides (Lynch et al., 2008). Second, 85 
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natural selection appears to favor specific codons over others (LaBella et al., 2019). For instance, 86 
codon usage in highly expressed genes is unique relative to that of the whole genome. Their most 87 
frequently used codons tend to be those with high abundances of cognate tRNAs, presumably 88 
because the ribosome translates these codons fastest and with the most precision (Dana and Tuller, 89 
2014; Ikemura, 1982; LaBella et al., 2019; Sharp et al., 1986); we refer to these codons as 90 
translationally optimal codons. This mechanistic model is supported by the observed upregulation 91 
of genes with codons well matched to a characteristic fluctuation in tRNA supply (Quax et al., 92 
2015) (e.g. as occurs during the cell-cycle (Frenkel-Morgenstern et al., 2012), circadian rhythms 93 
(Xu et al., 2013), cell proliferation/differentiation (Gingold et al., 2014), and stress (Torrent et al., 94 
2018)). 95 
 96 
Protein abundances can be altered by engineering genes with either favored or unfavored codons 97 
(Burgess-Brown et al., 2008; Gooch et al., 2008), however, the impact of polymorphisms that alter 98 
codon bias in natural populations remains unexplored. We expect that polymorphisms that increase 99 
codon bias would, on average, result in alleles that are more quickly synthesized into protein (see 100 
Table 1). 101 
 102 
Codons with lowly 103 
abundant cognate 104 
tRNAs, which we refer 105 
to as translationally 106 
suboptimal codons, are 107 
most commonly found in the 5’ coding region and in the regions encoding inter-domain linkers 108 
(Tuller et al., 2010, 2011; Weinberg et al., 2016). The first 30-50 codons of mRNA, the 5’ coding 109 
region, harbor a high density of ribosomes - nearly three times that of any other mRNA region 110 
(Ingolia et al., 2009). This pattern is attributed to selection that either slows translation initiation 111 
or spreads-out ribosomes such that sufficient spacing between ribosomes avoids downstream 112 
collisions and traffic jams that can result in premature translation termination and lower protein 113 
synthesis rates (Chu et al., 2014; Doma and Parker, 2006; Tuller et al., 2010). The inter-domain 114 
linkers lie in-between protein domains and are some of the most mildly structured protein regions. 115 
The slow translation of these areas could facilitate the proper co-translational folding of preceding 116 
protein domains, maintaining high levels of stable protein (Makhoul and Trifonov, 2002; 117 
Pechmann and Frydman, 2013; Thanaraj and Argos, 1996). We hypothesize that the maintenance 118 
of these patterns would constrain selection for high codon bias in these regions. Thus, amongst the 119 
alleles of a gene in a natural population, we expect to see a weak association between translation 120 
rates and codon bias in these regions (see Table 1). 121 
 122 
Translationally optimal codons are typically found in regions encoding protein domains and in the 123 
3’ coding region. This 3’coding region is bordered by the 3’-most domain-encoding region and 124 
the translation stop codon. It has the highest proportion of optimal codons of all regions of the 125 
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CDS (Tuller et al., 2010). Such levels of bias are thought to protect against ribosome collisions 126 
and the ensuing interruptions in protein synthesis, such as premature translation termination. It is 127 
especially costly in terms of expended energy and resources if a ribosome terminates prematurely 128 
this far past the start codon (Plotkin and Kudla, 2011; Tuller et al., 2010). Domain-encoding 129 
regions show this pattern presumably because selection for high codon bias is unconstrained and 130 
perhaps because selection to maintain domain function additionally selects for the high bias codons 131 
that tend to be translated more accurately (Drummond and Wilke, 2009; Geiler-Samerotte et al., 132 
2011; Kramer and Farabaugh, 2007; Kramer et al., 2010; Zhou et al., 2015, 2009). We expect that 133 
polymorphisms that increase codon bias in domains and in 3’coding regions would be associated 134 
with faster translation rates in a population (see Table 1). 135 
 136 
The stability of folding for mRNA secondary structures (mF) broadly influences the processing, 137 
translation, and decay of mRNA (Andrzejewska et al., 2020; Bevilacqua et al., 2016). Ribosomes 138 
transiently unwind mRNA secondary structures so codons can be read in single-stranded form 139 
(Mustoe et al., 2018; Takyar et al., 2005). Greater mF has been associated with longer ribosome 140 
pausing in vitro (Wen et al., 2008) and lower translation efficiency in bacteria (Burkhardt et al., 141 
2017). It thus came as a surprise when it was discovered that across genes in yeast, mF is positively 142 
correlated with protein abundance (R = 0.68 from (Tuller et al., 2011; Zur and Tuller, 2012)), and 143 
appears to be selected for in highly expressed genes (Park et al., 2013). 144 
 145 
The positive association between mF and protein abundance is not well understood but several 146 
mechanistic models have been proposed to explain how mF can both cause longer ribosome 147 
pausing and greater protein expression. Based on their simulation of yeast translation, Mao and 148 
colleagues suggest that the first few ribosomes to translate an mRNA move slowly as they unwind 149 
the secondary structures, and if those ribosomes are sufficiently slowed by the structures, then 150 
initiation rates will allow for subsequent ribosomes to pack in behind, preventing the mRNA from 151 
refolding (Mao et al., 2014). Once the mRNA is linearized and occupied by a high density of 152 
ribosomes, then relatively high quantities of protein can be produced. However, if mRNA 153 
secondary structure is weak, then elongating ribosomes proceed before subsequent ribosomes 154 
catch up, allowing the mRNA to refold between ribosomes. This results in overall slower-moving 155 
and more spaced-out ribosomes because each one must unfold the mRNA as it goes, lowering 156 
translation rates. Additionally, Zur and Tuller propose that high mF mRNAs are less prone to 157 
homodimerize and/or aggregate (Zur and Tuller, 2012). They suggest that in general, any negative 158 
effects associated with homodimerization and aggregation may well-outweigh those imparted by 159 
stable folding. Finally, Lai and colleagues observe that high mF maintains a short distance between 160 
5’ and 3’ mRNA termini, thereby preserving favorable entropy for mRNA circularization (Lai et 161 
al., 2018). Such a looped arrangement is known to mediate translation initiation and ribosome 162 
recycling which can increase translation rates (Paek et al., 2015). 163 
 164 
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Based on the correlation of mF and protein abundance across genes and the proposed mechanistic 165 
models, we expect that polymorphisms that increase mF would be associated with higher 166 
translation rates (Table 2). 167 
 168 
It has been appreciated for several decades that stable stem-loop structures have differential 169 
impacts on protein synthesis depending on their location in an mRNA transcript (Kozak, 1986, 170 
1989, 1990) More recent genomic approaches have revealed consensus patterns of mF across the 171 
length of mRNA transcripts and mF diversity amongst genes and taxa (Bevilacqua et al., 2016; 172 
Gebert et al., 2019). 173 
 174 
Across all genes, the coding sequence (CDS) of yeast mRNA is more structured than either the 5’ 175 
or the 3’ untranslated region (UTR) (Kertesz et al., 2010; Wan et al., 2012). This hallmark is both 176 
selected for (Katz and Burge, 2003) and positively correlated with gene expression (Zur and Tuller, 177 
2012). The high mF in coding sequences may boost protein expression by facilitating co-178 
translational protein folding (Faure et al., 2016) or inhibiting unproductive translation initiation 179 
within the CDS. (Kertesz et al., 2010) We hypothesize that polymorphisms that increase mF in the 180 
CDS would therefore be associated with higher translation rates. Further, because they tend to be 181 
less structured, we hypothesize that both UTRs would show weak associations between mF and 182 
translation rates (Table 2). 183 

 184 
In addition to the 185 
CDS and UTRs, 186 
more fine-scale 187 
regions in 188 
transcripts show 189 
mF signatures 190 
across genes and 191 
have impacts on 192 
protein synthesis. 193 
In yeast genes, 194 

high mF is associated with increased protein yield when located +1 to +10 bases from the 5’cap 195 
(Cuperus et al., 2017; Kertesz et al., 2010). The mechanism for this association is not known and 196 
the association is in contrast with observations from mammalian mRNAs (Babendure et al., 2006; 197 
Kozak, 1989). Similarly, high mF is typically seen within the region +4 to +10 bases from the 198 
start codon (Kertesz et al., 2010; Shabalina et al., 2006) and is hypothesized to act as a ‘speed 199 
bump’ to improve the efficiency of start codon recognition, especially in genes with suboptimal 200 
start codon contexts (Kozak, 1990). Therefore, for both the 5’ cap region and +4 to +10 bases 201 
from the start codon, we hypothesize that polymorphisms that increase mF would be associated 202 
with faster translation rates (Table 2). 203 
 204 
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In contrast, mF tends to be quite low within -9 to +3 bases from the start codon and the region 205 
from the stop codon into the 3’ UTR (Kertesz et al., 2010; Shabalina et al., 2006; Wan et al., 2012). 206 
Further, stable stem-loop structures located in these regions can inhibit translation (Kozak, 1986; 207 
Lamping et al., 2013; Niepel et al., 1999; Sherman and Baim, 1988; Vega Laso et al., 1993). We 208 
hypothesize that keeping the region -9 to +3 bases from the start codon and the region slightly 209 
downstream and including the stop codon free from strong mF would constrain selection for high 210 
mF across the transcript, resulting in a weak association between mF and protein synthesis rates 211 
in these regions (Table 2). 212 
 213 
If and how codon bias and mF interact with each other to influence protein translation rates is not 214 
well understood. A simulation study (Mao et al., 2014) concluded that codon bias has the biggest 215 
impact on translation rate when mF is high because that is the scenario where ribosomes are so 216 
densely packed that the mRNA molecule becomes linearized, leaving codon bias as the rate 217 
limiting factor. Based on their results, we hypothesize that polymorphic codon bias will be most 218 
strongly associated with translation rate when mF is high. 219 
 220 
We tested our above hypotheses by examining how allelic variation in codon bias and predicted 221 
mF each affect protein expression for 1620 genes across 22 genetically diverse Saccharomyces 222 
cerevisiae isolates (Skelly et al, 2013). S. cerevisiae is known to have strong translational 223 
selection, making this a particularly good species in which to study these factors (LaBella et al., 224 
2019). Our findings confirm the association between codon bias and protein expression, and the 225 
association between mF and protein expression, and we extend this significance to natural 226 
variation in a single species. Most strikingly, we find that the effects of codon bias and mF are 227 
largely the consequence of their interaction, and that this interaction is more pronounced in 228 
specific regions of transcripts.  229 

 230 
Results 231 
 232 
Association of Codon Bias and Protein Expression Across 22 Yeast Isolates for 1620 Genes 233 
 234 
To evaluate the association of codon bias and protein expression, we acquired the genome 235 
sequences, transcriptomes, and proteomes of 22 genetically diverse S. cerevisiae isolates 236 
sampled from six continents and 12 types of microenvironments (e.g. bee hairs, throat sputum, 237 
fermenting palm sap, leavening bread, and forest soil) (Skelly et al., 2013). Transcriptome and 238 
proteome data were measured during vegetative growth for each haploid isolate. We analyzed 239 
the 1620 genes (26.22% of 6179 total genes in S. cerevisiae) for which proteomic data was 240 
available in all 22 isolates. Not surprisingly, these genes are mildly enriched for housekeeping 241 
biological functions (See Methods). For each isolate’s allele of each gene, we estimated protein 242 
accumulation, independent of RNA abundance, as the natural log of the ratio of protein 243 
molecules per RNA molecule and refer to it as ‘logPPR’ (see Methods). Protein expression 244 
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normalized by RNA expression is often referred to as translational efficiency and most 245 
mechanistic models connect codon bias and mF with protein synthesis rates, however, logPPR 246 
captures their effects on both protein synthesis and protein stability. We therefore refrain from 247 
using the term translational efficiency and instead use protein expression or accumulation to 248 
refer to logPPR. 249 
 250 
Using the original measure of codon bias, the codon adaptation index (CAI) (see Methods), and 251 
logPPR, we generated a linear mixed effects regression model with logPPR as the response 252 
variable, CAI as a fixed effect explanatory variable, and gene as a random effect. By treating gene 253 
as a random effect in the mixed model, we can evaluate how allelic variation in CAI relates to 254 
logPPR for a typical gene. Over our dataset for 1620 genes, we found allelic variation in CAI to 255 
have a highly significant and positive association with logPPR (log-likelihood ratio test: G = 256 
72.977, df = 1, p = 1.31e-17) (Figure 1A). Our model shows that alleles with higher codon bias 257 
tend to have higher logPPR. 258 
 259 
We next examined the robustness of this result. The residuals from our model showed some 260 
heteroskedasticity (dependence on the independent variable – logPPR in this case) so we 261 
repeated our analysis using the square-root of protein molecules per RNA (sqrtPPR) as our 262 
estimate of protein accumulation. Taking the square root of a ratio is considerably less 263 
conventional than taking the log and results in a relatively compressed left tail of the distribution. 264 
This transformation eliminated the heteroskedasticity and the association between CAI and 265 
sqrtPPR was significant (log-likelihood ratio test: G = 44.135, df = 1, p = 3.06e-11) (Figure 266 
S1A). We note that we observed the same pattern of heteroskedasticity for logPPR and 267 
homoskedasticity for sqrtPPR for all models used throughout this study and will present logPPR 268 
results while noting differences and reporting sqrtPPR results in the supplemental figures. 269 
 270 
Most of the genes in our study have both synonymous and non-synonymous polymorphisms. 271 
Because non-synonymous polymorphisms are known to influence logPPR through mechanisms 272 
besides codon bias, we repeated our analysis on the 185 genes that lack non-synonymous 273 
polymorphisms. Again, we found a significant and positive association between CAI and logPPR 274 
(log-likelihood ratio test: G = 11.324, df = 1, p = 7.65e-04) (Figures 1A & S1A). 275 
 276 
The lengths of the 61 genes used in our CAI training set vary, such that some genes contribute 277 
more to the estimation of codon bias than others. To give each gene equal weight, we normalized 278 
codon frequencies across training set genes to calculate a normalized length CAI (nlCAI). This 279 
association between nlCAI and logPPR (log-likelihood ratio test: G = 70.982, df = 1, p = 3.60e-280 
17) is negligibly different from the association between CAI and logPPR (Figures 1A & S1A). 281 
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To further 282 
evaluate if the 283 
association 284 
between codon 285 
bias and logPPR 286 
is robust to the 287 
method used to 288 
calculate codon 289 
bias, we 290 
examined two 291 
additional 292 
measures of 293 
codon bias. The 294 
tRNA Adaptation 295 
Index (tAI) 296 
measures codon 297 
bias based on 298 
tRNA gene copy 299 
number as an 300 
estimate of tRNA 301 
supply (dos Reis 302 
et al., 2003) (see 303 
Methods). The 304 
normalized tRNA 305 
Adaptation Index 306 
(ntAI) modifies 307 
tAI to also 308 
account for the 309 
demand on tRNAs by the cognate codons in the pool of mRNA (Pechmann and Frydman, 2013) 310 
(see Methods). For both our full set of 1620 genes and the synonymous-only set of 185 genes, the 311 
associations between tAI and logPPR and ntAI and logPPR are significant and positive (log-312 
likelihood ratio tests: 1620 genes tAI G = 95.587, df = 1, p = 1.42e-22; 185 genes tAI G = 18.607, 313 
df = 1, p = 1.61e-05; 1620 genes ntAI G = 52.268, df = 1, p = 4.84e-13; 185 genes ntAI G = 6.1489, 314 
df = 1, p = 1.32e-02) (Figures 1A & S1A). 315 
 316 
Thus, the relationship between codon bias and protein expression is robust to the method used to 317 
measure codon bias as well as to the presence or absence of non-synonymous polymorphisms. The 318 
association between tAI and logPPR using the full set of 1620 genes was the most significant of 319 
those evaluated, suggesting tRNA gene copy number is capturing the most information about the 320 
effects of codon bias on protein expression. 321 

 
Figure 1. Polymorphic codon bias and mRNA secondary structure 
stability (mF) are each associated with protein synthesis rates. A, Linear 
mixed effects regression was used to evaluate the typical association 
between measures of codon bias and log protein per RNA (logPPR). Fixed 
effects slope of each codon bias measure (codon adaption index (CAI), 
length normalized codon adaptation index (nlCAI), tRNA adaptation index 
(tAI), normalized tRNA adaptation index (ntAI)) is shown as the predictor 
of logPPR. Models were computed using the full set of 1620 genes and for 
the 185 genes with synonymous and no non-synonymous polymorphisms. 
B, Fixed effects slope of each mF measure (minimum free energy ΔG (mfe 
ΔG), ensemble ΔG, and mean base-pair probability) as the predictor of 
logPPR in a linear mixed effects regression model. Models were computed 
using the full set of 1458 genes and for the 176 genes with synonymous and 
no non-synonymous polymorphisms. Error bars represent 95% confidence 
intervals. 
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 322 
Association of Polymorphic mRNA Folding Strength and Protein Expression  323 
 324 
With the 325 
relationship 326 
between codon 327 
bias and logPPR 328 
established, we 329 
next 330 
investigated the 331 
association 332 
between mRNA 333 
folding strength 334 
(mF) and 335 
protein 336 
expression 337 
across the same 338 
22 isolates of S. 339 
cerevisiae. A 340 
growing body of 341 
evidence has 342 
shown the 343 
counter-344 
intuitive pattern 345 
that genes with 346 
more structured 347 
mRNAs 348 
produce more 349 
protein (see 350 
Introduction). 351 
For each 352 
isolate’s allele 353 
of each gene in 354 
our dataset, we calculated three measures of mF (see Methods): minimum free energy (mfe) ΔG 355 
is an estimate of the change in Gibbs free energy an mRNA experiences after folding into its most 356 
energetically stable configuration, ensemble ΔG is a Boltzmann-weighted sum of estimated ΔG 357 
values, and mean base-pair probability is the mean chance that a nucleotide is base-paired, given 358 
the weighted set of ensemble configurations.   We found 1458 genes have allelic variation for these 359 
mF measures and we used these 1458 genes to evaluate the association between mF and logPPR. 360 
All three measures of mF are significantly and positively associated withlogPPR (Figures 1B & 361 

 
Figure 2. The interaction between polymorphiccodon bias and mRNA 
secondary structure stability (mF) is associated with protein synthesis 
rates. A, Fixed effects slope of codon bias tRNA adaptation index (tAI) as 
the predictor of log protein per RNA (logPPR) in a linear mixed effects 
regression model for the bottom and top half of genes split by median (across 
alleles) mF ensemble ΔG. B, Fixed effects slope of ensemble ΔG as the 
predictor of logPPR in a linear mixed effects regression model for the bottom 
and top half of genes split by median (across alleles) tAI. C, Fixed effects 
slope of tAI, ensemble ΔG, and tAI:ensemble ΔG interaction as the predictors 
of logPPR in a linear mixed effects regression model. D, Distribution across 
genes of the partial derivative of logPPR with respect to tAI and ensemble 
ΔG from the model with tAI, ensemble ΔG, and tAI:ensemble ΔG interaction 
as the predictors of logPPR. Error bars represent 95% confidence intervals. 
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S1B).We note that because more negative ΔG represents more stable structures, we will describe 362 
a negative slope for ΔG vs logPPR as a positive association between mF and logPPR. Ensemble 363 
ΔG shows the most significant association with logPPR (log-likelihood ratio test: G = 51.861, df 364 
= 1, p = 5.96e-13); mfe ΔG shows nearly as significant an association (log-likelihood ratio test: G 365 
= 44.507, df = 1, p = 2.53e-11); mean base-pair probability shows a less significant association 366 
(log-likelihood ratio test: G = 8.2598, df = 1, p = 4.05e-03). To control for potential impacts of 367 
non-synonymous polymorphisms, we repeated this analysis on the 176 genes that have variation 368 
in mF and lack non-synonymous polymorphisms. We found ensemble ΔG and mfe ΔG are 369 
significantly associated with logPPR while mean base-pair probability is not (log-likelihood ratio 370 
tests: ensemble ΔG G = 11.204, df = 1, p = 8.16e-04; mfe ΔG G = 6.8558, df = 1, p = 8.84e-03; 371 
mean base-pair probability G = 0.0141, df = 1, p = 0.9056) (Figures 1B & S1B). Thus, we conclude 372 
that the pattern of positive association between mF and protein abundance across genes is also true 373 
for allelic variation within genes. 374 
 375 
Protein Expression is Predicted by an Interaction Between Polymorphic Codon Bias and 376 
mRNA Folding Strength 377 
 378 
We next examined the interaction of polymorphic codon bias and mF. To test Mao and colleagues’ 379 
prediction that for more stable mRNA structures, codon bias plays a larger role in determining 380 
final translation elongation rates (Mao et al., 2014), we analyzed the 1447 genes polymorphic for 381 
both codon bias and mF. We used tAI to quantify codon bias and ensemble ΔG for mF because 382 
they were found to be the most significant predictors of logPPR. We computed the overall mF of 383 
a single gene as the median ensemble ΔG across alleles of the gene. We found that indeed, the top 384 
half of genes, ranked from most stable overall mF to least stable, show a much stronger relationship 385 
between polymorphic tAI and logPPR (Figures 2A & S2A). Although not a stated prediction of 386 
Mao and colleagues, for completeness we examined if the reciprocal interaction was occurring. 387 
Specifically, we wanted to determine whether highly biased genes showed a stronger relationship 388 
between mF and logPPR. We measured the overall codon bias of each gene as the median tAI 389 
across its alleles. Interestingly, we found that the top half of genes, ranked from highest overall 390 
codon bias to lowest, show a much stronger relationship between polymorphic ensemble ΔG and 391 
logPPR (Figures 2B & S2B). This pair of results suggests that codon bias and mF interact 392 
synergistically. 393 
 394 
To evaluate the interplay of individual effects and synergistic effects, we ran a linear mixed effects 395 
model with independent terms for tAI and ensemble ΔG and an interaction term between tAI and 396 
ensemble ΔG. Consistent with codon bias and mF working synergistically, the interaction term has 397 
a significant negative slope and including the interaction term significantly improves the fit of the 398 
model (log-likelihood test: G = 27.273, df = 1, p = 1.77e-07) (Figures 2C & S2C). Thus, stable mF 399 
and high codon bias together associate with high logPPR. 400 
 401 
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Although the term for ensemble ΔG has a weakly significant positive slope with logPPR as the 402 
independent variable, it is not significant in the model with sqrtPPR as the response variable. If 403 
increased mF inhibits protein expression, that effect is quite small compared to its effects 404 
promoting protein expression in interaction with codon bias. Indeed, the partial derivative of 405 
logPPR with respect to ensemble ΔG is negative for most genes (Figure 2D), consistent with the 406 
synergistic interaction dominating the effects. 407 
 408 
Role of Region-Specific Codon Bias and mRNA Folding Strength 409 
 410 
Comparisons across genes have revealed that codon bias is strongest in domain encoding regions 411 
and in the 3’ coding regions and weakest in 5’ coding regions and inter-domain linker regions 412 
(see Introduction). As such, for the alleles of each gene, we separated those codons that fell into 413 
domain encoding and 3’ coding sequences (“domain + 3’ coding”) from those that fell into the 5’ 414 
coding and linker sequences (“5’ + linker coding”). We hypothesized that the synergistic 415 
interaction between codon bias and mF in their association with logPPR may differ between 416 
these groups. Of the 1620 genes in our dataset, 1458 have polymorphisms that alter mF. Of 417 
those, 983 have codon bias-altering polymorphisms in both domain + 3’ coding and 5’ + linker 418 
coding sequences. For these 983 genes, we ran a linear mixed effects regression model on 419 
logPPR vs. domain + 3’ coding tAI, whole transcript ΔG, and the interaction of those terms. This 420 
model confirmed that indeed, protein expression is associated with whole transcript mF and the 421 
codon bias in domain + 3’ coding sequences (Figures 3B & S3B), similar to how whole CDS tAI 422 
synergizes with whole transcript mF (Figures 2C & S3C).  In contrast, the regression model of 423 
logPPR vs. 5’ + linker tAI, whole transcript ΔG, and the interaction of those terms shows no 424 
associations (Figure 3A & S3A). Thus, the interaction between codon bias and mF affects 425 
protein expression, and this is heavily driven by polymorphisms that alter codon bias in the 426 
protein domain and 3’ coding sequences. 427 
 428 
Similar to codon bias, mF varies across transcript regions (see Introduction). This led us to 429 
hypothesize that allelic differences in mF may have different effects on protein expression 430 
depending on which region’s mF they affect. We first examined the fine-scale differences in mF 431 
effects between the regions at the 5’ cap (+1 to +10 bases of 5’ cap), upstream and including the 432 
start codon (-9 to +3 bases of translation start), downstream of the start codon (+4 to +10 bases 433 
of translation start), and downstream of the stop codon (+1 to +18 bases of translation stop). In 434 
contrast with how polymorphisms act on codon bias, polymorphisms can act across a transcript 435 
to influence the mF of a distant region. Therefore, instead of categorizing polymorphisms based 436 
on their location, we looked to see how mF in each region changes across alleles. To do this we 437 
used a proportional sum of the minimum free energy (psmfe) ΔG values for individual  438 
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substructures 439 
spanning a region 440 
to estimate the 441 
local mF (see 442 
Methods). For all 443 
four regions, we 444 
uncovered no 445 
significant 446 
associations 447 
between logPPR 448 
and the 449 
interaction of 450 
codon bias and 451 
mF (Figure S4A). 452 
These four 453 
regions are all 454 
quite small (<18 455 
bp) so we looked 456 
to see if any small 457 
(40 bp) regions 458 
have significant 459 
associations and 460 
found none 461 
(Figures S4B-D), 462 
suggesting a lack 463 
of power at this 464 
scale. Next, we 465 
looked at the 466 
course-scale 467 
differences in mF 468 
effects between 469 
CDS, 5’ UTR, 470 
and 3’ UTR.  471 
Using the 1312 472 
genes with 473 
polymorphic CDS tAI and polymorphic CDS, 5’ UTR, and 3’ UTR psmfe ΔG, we ran a linear 474 
mixed-effects model with logPPR as a function of CDS tAI, psmfe ΔG for CDS, 5’ UTR, and 3’ 475 
UTR, and the interactions between tAI and each ΔG term. This revealed that the interaction 476 
between codon bias and mF as well as the independent effects of mF on protein expression are 477 
strongest in the CDS and are weaker in the UTRs (Figures 3C & S3C). This pattern mirrors 478 

 
Figure 3.  The effects of codon bias are largely due to polymorphisms 
localized to domain encoding and 3’ coding regions while the effects of 
mRNA folding stability (mF) are strongest in the CDS.  A, To determine 
the localized effects of codon bias, we split coding sequences up into two 
regions: 5’ coding (AUG up to first domain) plus linker (sequences between 
domains) and domain plus 3’ coding (past last domain to stop codon). Fixed 
effects slope of 5’ coding plus linker region codon bias tAI, whole transcript 
mF ensemble ΔG, and their interaction as predictors of logPPR in a linear 
mixed effects regression model. B, Fixed effects slope of domain plus 3’ 
coding region tAI, whole transcript ensemble ΔG, and domain plus 3’ 
coding region tAI:whole transcript ensemble ΔG interaction as predictors 
of logPPR in a linear mixed effects regression model.  C, To determine the 
localized effects of mF, we calculated proportional sum of minimum free 
energy (psmfe) ΔG values for substructures spanning the 5’ UTR, CDS, and 
3’ UTR. Fixed effects slope of CDS tAI, 5’ UTR, CDS, and 3’ UTR mF 
psmfe ΔG, and CDS tAI:5’ UTR, CDS, and 3’ UTR psmfe ΔG as predictors 
of logPPR in a linear mixed effects regression model. Error bars represent 
95% confidence intervals. 
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previous observations that mF tends to be higher in CDS regions relative to UTRs (Kertesz et al., 479 
2010; Wan et al., 2012). 480 
 481 
Discussion 482 
 483 
In this study, we investigated the association of allelic variation in codon bias and mRNA folding 484 
strength (mF) with allelic variation in protein expression in S. cerevisiae. We leveraged a 485 
published dataset of genome sequences, transcriptome abundances, and proteome abundances for 486 
22 yeast isolates (Skelly et al., 2013), calculated codon bias and mF from genome sequence data 487 
and measured protein expression as the log of the ratio of protein levels to mRNA levels 488 
(logPPR). We removed the potential allelic effects of codon bias and mF on RNA levels and 489 
stability by focusing on the amount of protein per RNA molecule.  490 
 491 
By using linear mixed effects models, we estimated the expected slope of the response of logPPR 492 
as a function of allelic variation in codon bias and/or mF while controlling for gene-to-gene 493 
differences in levels and effects. Although linear mixed effects models are generally robust to the 494 
assumption of homoscedasticity (model fit is consistent across values of the independent 495 
variable), logPPR did show some heteroscedasticity (model fit was better for larger values of 496 
logPPR). Reanalysis using square-root of protein per RNA (sqrtPPR) demonstrated that our 497 
results are nearly all robust to the assumption of homoscedasticity (Figures S1-3). 498 
 499 
Previous work on codon bias and mF showed that they are each correlated with protein levels, 500 
selected for across species, and capable of altering protein levels when manipulated (Babendure 501 
et al., 2006; Dana and Tuller, 2014; Gooch et al., 2008; Hanson and Coller, 2018; LaBella et al., 502 
2019; Mao et al., 2014; Park et al., 2013; Tuller et al., 2011; Zur and Tuller, 2012). Our study 503 
shows the most comprehensive evidence to date that allelic variation in codon bias and mF in a 504 
population are both significantly associated with the amount of protein per RNA produced 505 
(Figures 1 & S1). These associations in the context of previous work motivate a deeper 506 
investigation of codon bias and mF as important cis-acting mechanisms of protein expression 507 
variation. 508 
 509 
Our findings on codon bias agree with previous studies for how codon bias alone acts on protein 510 
expression. We found that tAI, which is solely based on tRNA supply estimated from tRNA gene 511 
copy numbers, had the most significant association with logPPR (Figures 1A & S1A). Other 512 
measures of codon bias (CAI, nlCAI, and ntAI) which incorporate genomic usage of codons, 513 
were also significantly associated with logPPR, though to a lesser extent than tAI. This implies 514 
that tRNA supply is the most important aspect of codon bias in S. cerevisiae. 515 
 516 
Our refined understanding of the mechanisms by which codon bias acts alone on protein 517 
expression is in sharp contrast with our speculative understanding of how mF has the 518 
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counterintuitive relationship of more stable structures associating with higher protein production 519 
(Zur and Tuller, 2012). We are aware of three possible mechanistic models to explain this 520 
counterintuitive association: RNA homodimerization/aggregation avoidance, ribosome recycling 521 
via RNA circularization, and RNA structure refolding avoidance (see Introduction). Evidence 522 
exists that each could play a role, however systematic evidence is lacking. 523 
 524 
Our result that polymorphic mF is indeed positively associated with logPPR (Figure 1B) was an 525 
important confirmation of the relationship of mF alone with protein levels. However, our 526 
examination of the interaction between codon bias and mF reframes the question about the 527 
mechanism of mF. We found that codon bias and mF act synergistically in their positive 528 
association with logPPR, that codon bias has no significant independent effects, and the 529 
independent effects of mF are negative (positive slope for ensemble ΔG vs logPPR) but only 530 
weakly significant and inconsistently so between logPPR and sqrtPPR models (Figures 2, 3, S2, 531 
& S3). Thus, the question of the mechanism of mF is more specifically a question about the 532 
mechanism by which codon bias and mF synergistically act to promote protein expression. This 533 
question remains unresolved. We have tRNA supply as an explanation for codon bias alone 534 
being positively associated with protein production and we have several possible models for mF 535 
being positively associated with protein production. However, we lack mechanistic models that 536 
explain strong synergy between codon bias and mF – strong enough that codon bias and mF have 537 
little to no independent effects. 538 
 539 
It is noteworthy that the RNA structure refolding avoidance model described by Mao and 540 
colleagues (Mao et al., 2014) is the only model we are aware of that explicitly predicts an 541 
interaction between codon bias and mF. Their simulations concluded that codon bias is expected 542 
to have a larger effect on protein synthesis rates when mF is high but do not predict that mF has 543 
larger effects when codon bias is high. Specifically, they predict that codon bias becomes the 544 
most important factor when mF is large enough to result in a high density of ribosomes that 545 
prevents RNA secondary structure from reforming between adjacent ribosomes. Furthermore, 546 
they predict that mF at the 3’ end of transcripts would result in the biggest interaction between 547 
codon bias and mF. Although we did observe that codon bias has a larger effect when mF is high 548 
(Figures 2B & S2B), our results differed from Mao and colleagues’ in that we found mF has a 549 
larger effect when codon bias is high (Figures 2B & S2B), that the interaction between codon 550 
bias and mF is bidirectional (Figures 2C & S2C), and the regional effect of mF is highest in the 551 
CDS, not the 3’ end of the transcript (Figures 3C & S3C). Our findings suggest that either codon 552 
bias or mF could play the role of the rate limiting factor on protein expression. They also imply 553 
additional complexity in the role mF plays across the transcript than what was assumed in Mao 554 
and colleagues’ simulations. Our study will hopefully motivate future work in this area. 555 
 556 
 557 
 558 
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Methods 559 
 560 
Data Collection and Processing 561 
 562 
From the supplemental files associated with Skelly and colleagues’ manuscript (Skelly et al., 563 
2013), we downloaded genome sequence, mRNA abundance, and peptide abundance data for the 564 
following 22 yeast isolates: 273614N, 378604X, BC187, DBVPG1106, DBVPG1373, 565 
DBVPG6765, L_1374, NCYC361, SK1, UWOPS05_217_3, UWOPS05_227_2, 566 
UWOPS83_787_3, UWOPS87_2421, Y12, Y55, YJM975, YJM978, YJM981, YPS128, YPS406, 567 
YS2, and YS9. These abundance data span the set of 1636 genes across isolates. 568 
 569 
For each gene in each strain, we expressed protein abundance as a sum of peptide levels (Michael 570 
J. MacCoss, personal communication, July 2018); we defined the coding sequence (CDS) based 571 
on coordinates supplied by Skelly and colleagues’ supplemental general feature format (.gff) file 572 
(Skelly et al., 2013); and we defined 5’UTR and 3’UTR sequences based on UTR length 573 
specifications from Tuller and colleagues’ supplemental file (Tuller et al., 2009). The whole 574 
mRNA sequence was then the concatenation of 5’UTR, CDS, and 3’UTR sequences. 575 
 576 
Measuring Protein Expression with logPPR and sqrtPPR 577 
 578 
Gene-by-gene in every strain, we measured protein expression as the steady-state ratio of protein 579 
abundance to mRNA abundance (protein per mRNA, or PPR). Before we calculated this ratio, for 580 
each isolate, we normalized mRNA abundance and protein abundance measurements by estimates 581 
of actual cell-wide mRNA and protein molecule counts (von der Haar, 2008; Miura et al., 2008). 582 
After this normalization step, rather than PPR being in arbitrary units, it is approximately in units 583 
of protein molecules per mRNA molecule. After computing PPR, we log transformed it or square 584 
root transformed it. 585 
 586 
Approximating Global Codon Bias with CAI, nlCAI, tAI, and ntAI 587 
 588 
Three classic methods of estimating codon bias are the Codon Adaptation Index (CAI), the tRNA 589 
Adaptation Index (tAI), and the normalized tRNA Adaptation Index (ntAI). Each relies on its own 590 
respective codon table, where every codon maps to one value in the range (0, 1]. A gene’s CAI, 591 
tAI, or ntAI equals the geometric mean of values assigned to its comprising codons by the requisite 592 
table. 593 
 594 
CAI quantifies a gene’s tendency to use the synonymous codons most favored by a pre-defined 595 
training set of genes (Sharp and Li, 1987). A CAI value of 1 indicates total usage of these codons, 596 
while a CAI value approaching 0 indicates complete avoidance.  One approach to selecting a 597 
training set of genes is to select an arbitrary number of highly expressed genes that are presumed 598 
to reflect the strongest codon bias in the genome (Sharp et al., 1988). Ranking all genes with 599 
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mRNA abundance data by their median transcript abundance (across isolates) we systematically 600 
investigated how codon usage changes as a function of selecting the 2i highest expressed genes 601 
(where I ∈ [1, 12]) (Figure S5). The three sets with the largest number (1024-4096) of genes 602 
showed high frequencies of A/T rich codons, consistent with the two-fold mutational bias for A/T 603 
nucleotides over G/C nucleotides in S. cerevisiae (Lynch et al., 2008). The nine sets with the 604 
smallest number (2-512) of genes showed usage of codons consistent with tRNA supplies for all 605 
amino acids except cysteine and glycine. A systematic approach to choosing a training set involves 606 
algorithmically identifying the dominant codon usage bias in the genome, independent of any 607 
expression information (Carbone et al., 2003; Sharp et al., 1988). The training set of 61 genes 608 
identified by the Carbone et al. algorithm for S. cerevisiae has codon usage similar to the most 609 
highly expressed genes and is consistent with tRNA supplies (Figure S2). We used this training 610 
set to calculate one CAI codon table per isolate. We then computed a single median CAI codon 611 
table across isolates. This is the table we use to measure the CAI of the coding sequence (CDS) of 612 
each gene. 613 

Normalized-by-length CAI (nlCAI) is our slightly modified version of CAI. Longer training set 614 
genes contribute more to the CAI codon table, and because all genes have their own intrinsic biases 615 
(Quax et al., 2015), these large contributions may misrepresent the dominant genomic level codon 616 
bias. Instead of computing the CAI codon table based on each gene’s synonymous codon counts, 617 
we compute it based on each gene’s synonymous codon percent abundances. Specifically, we 618 
calculate the fraction of codons that are codon i in each gene, and add up all such fractions across 619 
genes. This gives a 61-element array, where each value matches to a sense codon. For each group 620 
of synonymous codons, we divide their corresponding array values by the maximum array value 621 
within that group. In this way, we compute a single nlCAI codon table for each isolate, and then 622 
take their median table for nlCAI calculations. 623 

 624 
tAI estimates how often a gene uses synonymous codons with high supplies of cognate/near-625 
cognate tRNAs (dos Reis et al., 2003). A gene always using such codons has a tAI near 1, and a 626 
gene never using such codons has a tAI near 0. This measure accounts for cases in which one 627 
tRNA recognizes more than one codon (wobble) (Crick, 1966), and it approximates tRNA supply 628 
by tRNA gene copy number in the genome (dos Reis et al., 2004). The high positive correlation (r 629 
= 0.76) between tRNA gene copy number and tRNA abundance (in yeast) suggests that this is a 630 
reasonable approximation for our study (Tuller et al., 2010). Based on the approach by dos Reis 631 
colleagues, we compute a single tAI codon table and use it for tAI calculations in all strains (dos 632 
Reis et al., 2003). 633 

 634 
ntAI considers both the abundance of tRNAs (as measured by tRNA gene copy number) and the 635 
abundance of codons competing for them (as measured by the sum of codon translation frequencies 636 
across all mRNAs) (Pechmann and Frydman, 2013). From this view, a codon optimal for fast 637 
translation is one whose tRNA species are high in abundance and low in demand. A gene always 638 
using such synonymous codons has a ntAI value near 1, while a gene never using such values has 639 
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a ntAI value near 0. We use the Pechmann & Frydman approach (Pechmann and Frydman, 2013) 640 
to calculate an individual ntAI codon table per isolate. For each isolate, we compute ntAI with the 641 
isolate’s corresponding table. 642 
 643 
Each measure was computed with Python (version 3.7.1). 644 
 645 
Approximating Local Codon Bias with tAI 646 
 647 
We downloaded domain coordinates, as predicted by Pfam, from the Saccharomyces Genome 648 
Database (SGD) (date of access: February, 2019). For each gene in each isolate, we concatenated 649 
the sequences encoding Pfam-defined protein domains with the 3’ coding region (i.e. the region 650 
downstream of the 3’-most domain-encoding sequence and upstream of the translation stop 651 
codon). This is the “domain+3’ coding” mRNA region. For the “linker+5’ coding” mRNA region, 652 
we concatenated the sequences encoding any inter-domain linkers with the 5’ coding sequence 653 
(i.e. the region downstream of the start codon and upstream of the 5’most domain-encoding 654 
sequence). Using Python (version 3.7.1), we then computed tAI, our chosen measure of codon 655 
bias, for domain + 3’coding and linker + 5’coding regions. 656 
 657 
Approximating Global mRNA Folding with Mean Base-Pair Probability, mfe ΔG, and 658 
Ensemble ΔG 659 
 660 
Three gauges of mRNA folding are mean base-pair probability, minimum free energy (mfe) ΔG, 661 
and thermodynamic ensemble ΔG. All are predicted for entire mRNA transcripts (at 30°C) with 662 
the RNAfold algorithm (version 2.4.14) from the ViennaRNA Package (Lorenz et al., 2011). 663 
 664 
Mean base-pair probability is the arithmetic mean of nucleotide pairing probabilities. One such 665 
pairing probability represents the chance that a given nucleotide is in a base-paired configuration, 666 
given the weighted set of thermodynamic ensemble configurations. It is calculated via the partition 667 
function (McCaskill, 1990). A mean base-pair probability near 1 suggests that an mRNA’s folded 668 
form is highly structured and stable. 669 

 670 
Minimum free energy (mfe) ΔG represents the change in Gibbs free energy an mRNA experiences 671 
after folding into its most energetically stable (mfe) configuration, as predicted by RNAfold. A 672 
negative ΔG value of large magnitude indicates spontaneous formation of a highly stable structure. 673 

 674 
Ensemble ΔG is a Boltzmann-weighted sum of ΔG values; one ΔG value per mRNA structure in 675 
the mRNA’s thermodynamic ensemble. Because mfe structure is only a best-guess prediction and 676 
because mRNA folding is far from static (Crothers et al., 1974), ensemble ΔG is expected to be a 677 
more accurate measure of overall mRNA folding strength. 678 
 679 
 680 
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Proportional Sum Mean Free-Energy ΔG 681 
 682 
To calculate mF for regions within a transcript, we used the RNAeval tool from the ViennaRNA 683 
Package (version 2.4.14) (Lorenz et al., 2011) we obtained a detailed thermodynamic description 684 
of each gene’s mfe structure at 30°C. Specifically, the algorithm reports a ΔG approximation for 685 
all substructures that fully describe an mRNA’s overall folding shape: multi loops, external loops, 686 
interior loops, and hairpin loops. To compute the ΔG of an mRNA region (e.g. the CDS), we first 687 
summed the ΔGs of all substructures completely enclosed within it. Then, for any partially 688 
enclosed substructure, we 1) calculated what fraction of the substructure is built by nucleotides 689 
from our region, 2) multiplied this value by the substructure’s ΔG, and 3) added the result to our 690 
existing sum. We called this value the proportional sum mean free-energy (psmfe) ΔG. 691 
 692 
Gene Criteria and GO Term Enrichment Analyses 693 
 694 
Limitations in the availability of data and which genes contained variation across isolates for the 695 
explanatory variables in our models required us to compute our models with different sets of genes. 696 
Here, we explain how these gene sets were selected and we summarize the results of their Gene 697 
Ontology (GO) term enrichment analyses. 698 
 699 

i. Of the 1636 genes with mRNA and protein abundance data across isolates, 1620 show one or 700 
more SNPs across isolates. Of these, 185 show only synonymous SNPs. To obtain the latter 701 
information, we translated the 1636 coding sequences from each isolate via the translate tool 702 
from the SeqIO Biopython package (Cock et al., 2009). For each gene, we then aligned the 703 
corresponding set of amino acid sequences (one sequence from each isolate) via the MUltiple 704 
Sequence Comparison by Log-Expectation (MUSCLE) algorithm (Edgar, 2004). Those genes 705 
with 100% amino acid identity scores and SNP(s) across isolates were used in our 185 gene 706 
analyses. In considering model results based on this smaller set of genes, we were able to 707 
discount any effect amino acid substitutions may have on translation rates. 708 
 709 

ii. We used 1458 of 1620 genes in our models of global mF. These genes have available length 710 
data for the 5’UTR and the 3’UTR, and they have one or more SNPs in their concatenated 711 
5’UTR, CDS, and 3’UTR sequences. Of these 1458, 176 have 100% amino acid identity for 712 
our synonymous gene set. 713 
 714 

iii. The intersection of the 1620-gene set and the 1458-gene set defines the set of 1447 genes we 715 
used in our analyses of the synchronous actions of codon bias and mF. We ranked these 1447 716 
genes by their median tAI across isolates, chose the bottom 723 genes as our ‘low tAI’ group 717 
and the top 724 genes as our ‘high tAI’ group. This process is repeated for ensemble ΔG in 718 
place of tAI. 719 
 720 
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iv. In the models pertaining to regional codon bias, we considered a 983 gene subset of the 1447 721 
genes defined above. Each gene belonging to this subset is characterized by an absence of 722 
premature stop codons, available protein domain region prediction data from Pfam, and SNP(s) 723 
in both the domain + 3’ coding sequence and the linker + 5’coding sequence. 724 

 725 
v. To arrive at a subset of genes suitable for regional structure models, we filtered the 1447-726 

gene set defined above by the following criteria to generate an 779-gene set: genes must have 727 
variation (across isolates) in local mfe ΔG within the 5’UTR, the CDS, the 3’UTR, +1 to 728 
+10 from the 5’cap, -9 to +3 from translation start, +4 to +10 of translation start, and +1 to 729 
+18 from translation stop. Additional criteria were 5’UTRs at least 19 nucleotides in length 730 
and 3’UTRs at least one nucleotide in length. 731 

 732 
With few exceptions, our GO-term enrichment analyses show that genes in every set are most 733 
enriched for GO-terms related to 1) general metabolism, 2) nucleotide synthesis and metabolism 734 
(purine’s especially), 3) peptide biosynthesis and metabolism, 4) amino acid synthesis and 735 
metabolism, 5) ATP metabolism, and 6) translation. This result was not unexpected as all isolates 736 
were grown at a steady-state temperature of 30°C in nutrient rich broth, they were all sampled at 737 
log-phase growth, and mass spectrometry most reliably detects highly expressed proteins. GO-738 
term enrichment results were generated by the PANTHER overrepresentation test (released April, 739 
2020) via the GO biological process complete annotation for S. cerevisiae (version 2020-03-23). 740 
 741 
The Linear Mixed Effects Regression Model 742 
 743 
We computed all linear mixed effects regression models and log-likelihood ratio tests with the 744 
lme4 package (version 1.1.21; Bates et al, 2015) from R (version 3.6.0). Each computed model 745 
has one explanatory variable with ‘gene’ as the random effect (both slope and intercept). 746 

g 747 
Data Availability 748 
 749 
Data files and analysis scripts are available at https://github.com/anastacia9/bias_mF. 750 
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Supplemental Files 765 
 766 

 
 
Figure S1. Polymorphic codon bias and mRNA secondary structure stability (mF) are each 
associated with protein expression as measured by the square-root of protein molecules 
per RNA molecule. A, Fixed effects slope of each codon bias measure (codon adaption index 
(CAI), length normalized codon adaptation index (nlCAI), tRNA adaptation index (tAI), 
normalized tRNA adaptation index (ntAI)) as the predictor of square root protein per RNA 
(sqrtPPR) in a linear mixed effects regression model. Models were computed using the full set 
of 1620 genes and for the 185 genes with synonymous and no non-synonymous polymorphisms. 
B, Fixed effects slope of each mF measure (minimum free energy ΔG (mfe ΔG), ensemble ΔG, 
and mean base-pair probability) as the predictor of logPPR in a linear mixed effects regression 
model. Models were computed using the full set of 1458 genes and for the 176 genes with 
synonymous and no non-synonymous polymorphisms. Error bars represent 95% confidence 
intervals. 
 

 767 
 768 
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Figure S2. Polymorphic codon bias and mRNA secondary structure stability (mF) interact 
in association with protein expression as measured by the square-root of protein molecules 
per RNA molecule. A, Fixed effects slope of codon bias tRNA adaptation index (tAI) as the 
predictor of square root protein per RNA (sqrtPPR) in a linear mixed effects regression model 
for the bottom and top half of genes split by median (across alleles) mF ensemble ΔG. B, Fixed 
effects slope of ensemble ΔG as the predictor of sqrtPPR in a linear mixed effects regression 
model for the bottom and top half of genes split by median (across alleles) tAI. C, Fixed effects 
slope of tAI, ensemble ΔG, and tAI:ensemble ΔG interaction as the predictors of sqrtPPR in a 
linear mixed effects regression model. Error bars represent 95% confidence intervals. 

 769 
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Figure S3. The effects of codon bias on square root protein molecules per RNA molecule 
(sqrtPPR) are largely due to polymorphisms localized to domain encoding and 3’ coding 
regions while the effects of mRNA folding stability (mF) on sqrtPPR are strongest in the 
CDS. To determine the localized effects of codon bias, we split coding sequences up into two 
regions: 5’ coding (AUG up to first domain) plus linker (sequences between domains) and 
domain plus 3’ coding (past last domain to stop codon). A, Fixed effects slope of 5’ coding plus 
linker region codon bias tAI, whole transcript mF ensemble ΔG, and 5’ coding plus linker region 
tAI:whole transcript ensemble ΔG interaction as predictors of square root protein molecules per 
RNA molecule (sqrtPPR) in a linear mixed effects regression model. B, Fixed effects slope of 
domain plus 3’ coding region tAI, whole transcript ensemble ΔG, and domain plus 3’ coding 
region tAI:whole transcript ensemble ΔG interaction as predictors of sqrtPPR in a linear mixed 
effects regression model. To determine the localized effects of mF, we calculated proportional 
sum of minimum free energy (psmfe) ΔG values for substructures spanning the 5’ UTR, CDS, 
and 3’ UTR. C, Fixed effects slope of CDS tAI, 5’ UTR, CDS, and 3’ UTR mF psmfe ΔG, and 
CDS tAI:5’ UTR, CDS, and 3’ UTR psmfe ΔG as predictors of sqrtPPR in a linear mixed effects 
regression model. Error bars represent 95% confidence intervals. 
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Figure S4. No evidence of fine-scale effects of mRNA folding stability (mF) on protein 
synthesis. To determine the fine-scale localized effects of mF, we calculated proportional sum 
of minimum free energy (psmfe) ΔG values for substructures spanning the 5’ cap (+1 to +10), 
just before and including the start codon (-9 to +3), just after the start codon (+4 to +10), and 
just after and including the stop codon (+1 to +18). A & E, Fixed effects slope of CDS tAI, 5’ 
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cap, -9 to +3 start, +4 to +10 start, and +1 to +10 stop mF psmfe ΔG, and CDS tAI:5’ cap, -9 to 
+3 start, +4 to +10 start, and +1 to +10 stop mF psmfe ΔG as predictors of logPPR (A) or 
sqrtPPR (E) in a linear mixed effects regression model. To evaluate our power to detect small-
scale effects we sampled 40 bp regions located at 25%, 50%, and 75% of the total CDS length 
and calculated psmfe ΔG values for these regions. Fixed effects slope of CDS tAI, 25% (B & 
F), 50% (C & G), and 75% (D & H) CDS mF psmfe ΔG, and CDS tAI:25%, 50%, and 75% 
CDS mF psmfe ΔG as predictors of logPPR (B-D) or sqrtPPR (F-H) in a linear mixed effects 
regression model. Error bars represent 95% confidence intervals. 

 772 
 773 

 
Figure S5. Codon Table Values. Lineplot showing how CAI codon table values change in 
response to the number of high expressing genes in the CAI training set. Datapoints are taken 
for training sets containing 6179 or 2i (where i [1,12]) of the most highly expressed genes (as 
ranked by median transcript abundance acros our 22 yeast isolates). For each amino acid, the 
most common synonymous codon among training set genes has a value of 1. A sibling 
synonymous codon appearing 60% as often would have a value of 0.6. Each subplot 
corresponds to an amino acid and its synonymous codons. Codon color is based on %GC 
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content: red (0% GC), orange (33% GC), green (67% GC), and blue (100% GC). For 
reference, we also present each codon’s codon table value from Carbone and colleagues 
(Carbone et al., 2003) as well as each codon’s tAI codon table value.  

 774 
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