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Figure S1. Polymorphic codon bias and mRNA secondary structure stability (mF) are each 
associated with protein expression as measured by the square-root of protein molecules 
per RNA molecule. A, Fixed effects slope of each codon bias measure (codon adaption index 
(CAI), length normalized codon adaptation index (nlCAI), tRNA adaptation index (tAI), 
normalized tRNA adaptation index (ntAI)) as the predictor of square root protein per RNA 
(sqrtPPR) in a linear mixed effects regression model. Models were computed using the full set 
of 1620 genes and for the 185 genes with synonymous and no non-synonymous polymorphisms. 
B, Fixed effects slope of each mF measure (minimum free energy ΔG (mfe ΔG), ensemble ΔG, 
and mean base-pair probability) as the predictor of logPPR in a linear mixed effects regression 
model. Models were computed using the full set of 1458 genes and for the 176 genes with 
synonymous and no non-synonymous polymorphisms. Error bars represent 95% confidence 
intervals. 
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Figure S2. Polymorphic codon bias and mRNA secondary structure stability (mF) interact 
in association with protein expression as measured by the square-root of protein molecules 
per RNA molecule. A, Fixed effects slope of codon bias tRNA adaptation index (tAI) as the 
predictor of square root protein per RNA (sqrtPPR) in a linear mixed effects regression model 
for the bottom and top half of genes split by median (across alleles) mF ensemble ΔG. B, Fixed 
effects slope of ensemble ΔG as the predictor of sqrtPPR in a linear mixed effects regression 
model for the bottom and top half of genes split by median (across alleles) tAI. C, Fixed effects 
slope of tAI, ensemble ΔG, and tAI:ensemble ΔG interaction as the predictors of sqrtPPR in a 
linear mixed effects regression model. Error bars represent 95% confidence intervals. 
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Figure S3. The effects of codon bias on square root protein molecules per RNA molecule 
(sqrtPPR) are largely due to polymorphisms localized to domain encoding and 3’ coding 
regions while the effects of mRNA folding stability (mF) on sqrtPPR are strongest in the 
CDS. To determine the localized effects of codon bias, we split coding sequences up into two 
regions: 5’ coding (AUG up to first domain) plus linker (sequences between domains) and 
domain plus 3’ coding (past last domain to stop codon). A, Fixed effects slope of 5’ coding plus 
linker region codon bias tAI, whole transcript mF ensemble ΔG, and 5’ coding plus linker region 
tAI:whole transcript ensemble ΔG interaction as predictors of square root protein molecules per 
RNA molecule (sqrtPPR) in a linear mixed effects regression model. B, Fixed effects slope of 
domain plus 3’ coding region tAI, whole transcript ensemble ΔG, and domain plus 3’ coding 
region tAI:whole transcript ensemble ΔG interaction as predictors of sqrtPPR in a linear mixed 
effects regression model. To determine the localized effects of mF, we calculated proportional 
sum of minimum free energy (psmfe) ΔG values for substructures spanning the 5’ UTR, CDS, 
and 3’ UTR. C, Fixed effects slope of CDS tAI, 5’ UTR, CDS, and 3’ UTR mF psmfe ΔG, and 
CDS tAI:5’ UTR, CDS, and 3’ UTR psmfe ΔG as predictors of sqrtPPR in a linear mixed effects 
regression model. Error bars represent 95% confidence intervals. 
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Figure S4. No evidence of fine-scale effects of mRNA folding stability (mF) on protein 
synthesis. To determine the fine-scale localized effects of mF, we calculated proportional sum 
of minimum free energy (psmfe) ΔG values for substructures spanning the 5’ cap (+1 to +10), 
just before and including the start codon (-9 to +3), just after the start codon (+4 to +10), and 
just after and including the stop codon (+1 to +18). A & E, Fixed effects slope of CDS tAI, 5’ 
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cap, -9 to +3 start, +4 to +10 start, and +1 to +10 stop mF psmfe ΔG, and CDS tAI:5’ cap, -9 to 
+3 start, +4 to +10 start, and +1 to +10 stop mF psmfe ΔG as predictors of logPPR (A) or 
sqrtPPR (E) in a linear mixed effects regression model. To evaluate our power to detect small-
scale effects we sampled 40 bp regions located at 25%, 50%, and 75% of the total CDS length 
and calculated psmfe ΔG values for these regions. Fixed effects slope of CDS tAI, 25% (B & 
F), 50% (C & G), and 75% (D & H) CDS mF psmfe ΔG, and CDS tAI:25%, 50%, and 75% 
CDS mF psmfe ΔG as predictors of logPPR (B-D) or sqrtPPR (F-H) in a linear mixed effects 
regression model. Error bars represent 95% confidence intervals. 
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Figure S5. Codon Table Values. Lineplot showing how CAI codon table values change in 
response to the number of high expressing genes in the CAI training set. Datapoints are taken 
for training sets containing 6179 or 2i (where i [1,12]) of the most highly expressed genes (as 
ranked by median transcript abundance acros our 22 yeast isolates). For each amino acid, the 
most common synonymous codon among training set genes has a value of 1. A sibling 
synonymous codon appearing 60% as often would have a value of 0.6. Each subplot 
corresponds to an amino acid and its synonymous codons. Codon color is based on %GC 
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content: red (0% GC), orange (33% GC), green (67% GC), and blue (100% GC). For 
reference, we also present each codon’s codon table value from Carbone and colleagues 
(Carbone et al., 2003) as well as each codon’s tAI codon table value.  
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