New Results
Paired evaluation defines performance landscapes for machine learning models
View ORCID ProfileMaulik K. Nariya, View ORCID ProfileCaitlin E. Mills, View ORCID ProfilePeter K. Sorger, View ORCID ProfileArtem Sokolov
doi: https://doi.org/10.1101/2022.09.07.507020
Maulik K. Nariya
1Department of Systems Biology, Harvard Medical School, Boston, MA, USA
2Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
Caitlin E. Mills
2Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
Peter K. Sorger
1Department of Systems Biology, Harvard Medical School, Boston, MA, USA
2Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
Artem Sokolov
1Department of Systems Biology, Harvard Medical School, Boston, MA, USA
3Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
Posted September 12, 2022.
Paired evaluation defines performance landscapes for machine learning models
Maulik K. Nariya, Caitlin E. Mills, Peter K. Sorger, Artem Sokolov
bioRxiv 2022.09.07.507020; doi: https://doi.org/10.1101/2022.09.07.507020
Subject Area
Subject Areas
- Biochemistry (13747)
- Bioengineering (10483)
- Bioinformatics (33293)
- Biophysics (17168)
- Cancer Biology (14242)
- Cell Biology (20184)
- Clinical Trials (138)
- Developmental Biology (10900)
- Ecology (16077)
- Epidemiology (2067)
- Evolutionary Biology (20398)
- Genetics (13441)
- Genomics (18689)
- Immunology (13816)
- Microbiology (32255)
- Molecular Biology (13421)
- Neuroscience (70258)
- Paleontology (528)
- Pathology (2203)
- Pharmacology and Toxicology (3753)
- Physiology (5902)
- Plant Biology (12055)
- Synthetic Biology (3376)
- Systems Biology (8188)
- Zoology (1847)