SUMMARY
Cell size and the cell cycle are intrinsically coupled and abnormal increases in cell size are associated with senescence. The mechanism by which overgrowth primes cells to exit the cell cycle remains unclear. We investigate this using CDK4/6 inhibitors that arrest cell cycle progression in G0/G1 and are used to treat ER+/HER2-metastatic breast cancer. We demonstrate that long-term CDK4/6 inhibition promotes cellular overgrowth during the G0/G1 arrest, causing widespread proteome remodeling and p38-p53-p21-dependent cell cycle exit. Cell cycle exit is triggered by two waves of p21 induction. First, overgrowth during a G0/G1 arrest induces an osmotic stress response, producing the first wave of p21 induction. Second, when CDK4/6 inhibitors are removed, a fraction of cells escape G0/G1 arrest and enter S-phase where overgrowth-driven replication stress results in a second wave of p21 induction that causes cell cycle withdrawal from G2, or the subsequent G1. This could explain why cellular hypertrophy is associated with senescence and why CDK4/6 inhibitors have long-lasting anti-proliferative effects in patients.
Competing Interest Statement
The authors have declared no competing interest.