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 16 
Abstract 17 
 18 
Organisms process sensory information in the context of their own moving bodies, an 19 
idea referred to as embodiment. This idea is important for developmental neuroscience, 20 
and increasingly plays a role in robotics and systems neuroscience. The mechanisms that 21 
support such embodiment are unknown, but a manifestation could be the observation in 22 
mice of brain-wide neuromodulation, including in the primary visual cortex, driven by task-23 
irrelevant spontaneous body movements. Here we tested this hypothesis in macaque 24 
monkeys, a primate model for human vision, by simultaneously recording visual cortex 25 
activity and facial and body movements. Activity in the visual cortex (V1, V2, V3/V3A) was 26 
associated with the animals’ own movements, but this modulation was largely explained 27 
by the impact of the movements on the retinal image. These results suggest that 28 
embodiment in primate vision may be realized by input provided by the eyes themselves. 29 
  30 
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Organisms process sensory information not in isolation but within the context of a moving 31 
body that is interacting with the environment, a phenomenon whose importance is 32 
underscored in developmental neuroscience1, and in robotics and artificial intelligence2, 33 
from vacuum-cleaning robots to self-driving cars3 (see also Fei-Fei, L, Montreal AI Debate 34 
2: https://www.youtube.com/watch?v=XY1VTLRIsNo). A longstanding question in 35 
systems neuroscience is the degree to which this embodiment influences sensory 36 
processing4–6. In mice, locomotion affects neural activity in primary visual cortex (V1)7–18 37 
and spontaneous movements are associated with pronounced brain-wide activity, 38 
including in V119–21. The work in mice suggests that embodiment plays a crucial role in 39 
shaping processing in the visual cortex, although it is unclear whether similar phenomena 40 
are observed in other species22–24. The degree to which such movements influence 41 
responses in the primate visual cortex is of interest for several reasons. First, it could be 42 
a direct observation of embodiment that can be dissected into mechanisms and probed 43 
to understand its computational principles. Second, it addresses a fundamental question 44 
about the functional organization and degree of modularity of the primate cerebral 45 
cortex23. And third, it could have far-reaching implications for the interpretation of past 46 
neurophysiological studies of the primate visual system, in which the animals’ 47 
spontaneous body movements were not monitored.  48 
 49 
Here, we ask whether the animal’s own body movements are associated with modulations 50 
of neural activity in visual cortex of macaque monkeys. We mirrored the experimental 51 
approaches used in studies in mice to facilitate the comparison between the data in mice 52 
and the data in primates: we used videography to monitor the animals’ movements19,20, 53 
and statistical modeling20,21 to relate the movements to neural spiking activity recorded in 54 
visual cortex (V1, V2, V3/V3A). Consistent with the results observed in mice, we found 55 
activity associated with the animals’ own spontaneous body movements. But when 56 
accounting for the fact that some of these movements also changed the retinal input to 57 
the neurons in visual cortex, this movement-related activity largely disappeared. As a 58 
model-free approach we also compared the modulation by spatial attention with the 59 
modulation by the animals’ own movements. The modulation by movement was an order 60 
of magnitude smaller than that by attention, and not associated with the modulation by 61 
attention. We conclude that in macaque early and mid-level visual cortex, activity is 62 
minimally driven by the animal’s own spontaneous body movements. 63 
 64 
Results 65 
The macaque monkeys move spontaneously while performing visual tasks 66 
We used multichannel extracellular recordings targeting V1, V2 and V3/V3A combined 67 
with video-based monitoring of the body and face, in two alert macaque monkeys. The 68 
animals performed a visual fixation task or visual discrimination task (Fig. 1). They fixated 69 
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a spot on the center of the display during stimulus presentation epochs, which allowed us 70 
to reconstruct the stimulus in retinal coordinates. Outside of the stimulus-presentation 71 
epochs, the animals freely moved their eyes. Like the mice in the previous studies19–21, 72 
the monkeys were head-fixed, but otherwise free to move their arms, legs, and bodies 73 
throughout and in between stimulus presentations while seated. As the videography 74 
confirmed, the animals often fidgeted and moved spontaneously throughout the recording 75 
sessions (Fig. 1B, Supplementary movie S1). To identify the animals’ movement patterns 76 
from the videos we used singular value decomposition (SVD), analogous to previous work 77 
in mice19 (Fig. 1B). From these data, we could directly ask to what extent the animals’ 78 
own spontaneous face and body movements predict neural activity in the primate visual 79 
cortex. 80 
 81 

 82 
Fig. 1 Monitoring spontaneous body movements during task performance in macaque 83 
monkeys.  (A) The setup. The animals performed a visual task while extracellular activity in their 84 
visual cortex was recorded and the animals’ body, face, and eye movements were monitored via 85 
video, with one camera directed at the body, one at the face, and a video-based eye tracker. (B) 86 
Movements recorded by video (example from M2) were decomposed (singular value 87 
decomposition, SVD) generating multiple components of face and body movement that map onto, 88 
e.g., movements of the mouth (face component 1, f1), eye blinks (f2), combinations of face parts 89 
(f8, f9), and combinations of hand, arm, leg and body movement (body components b1, b3, b4, 90 
b18; outline of the monkey body shown in b1; grayscale shows normalized components; traces 91 
show normalized temporal profiles of the video projected onto the components); middle panels 92 
show eye positions and stimulus ON/OFF periods. Gray bands in eye position traces indicate 93 
interrupted eye signals due to blinks or eccentric eye positions. Bottom: Sample spike-rasters of 94 
simultaneously recorded units in the left and right hemisphere of V2 and V3/V3a. In each row 95 
spike times from one unit are shown as vertical ticks. (C) Animal M1 performed a visual fixation 96 
task. Animal M2 performed a visual discrimination task combined with block-wise manipulation of 97 
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spatial attention. The retinal input was controlled during periods (orange bar) when the animals 98 
fixated on a fixation point (FP) at the center of the screen. 99 
  100 
 101 
Spontaneous movements predict neural activity when the retinal input is 102 
uncontrolled 103 
We analyzed the data using a linear encoding model20,21, to predict the neural activity 104 
using a set of “predictors” (Fig. 2A). The predictors include controlled variables in the 105 
experiment related to the task and the stimulus, and uncontrolled but observable variables 106 
such as the temporal profiles of the movement components (Fig. 2A, labels on left of the 107 
panel), as well as temporally shifted versions of these predictors. The model successfully 108 
captures the stimulus-aligned response: the predicted firing rate at 16ms resolution and 109 
the peristimulus spike density function (SDF) over all trials are closely matched (Fig. 2A, 110 
right, 2C). Such peristimulus SDF- based validation, however, obscures the effects of 111 
spontaneous movements on both the model and the data, because the movements are 112 
not necessarily time-locked to times in the trial. Indeed, while some movements were 113 
aligned with the trial events, there was substantial movement variability throughout the 114 
trial, including the stimulus presentation period, when the animals maintained visual 115 
fixation on a small dot in the center of the screen (Fig. 2B). Thus, to capture trial-to-trial 116 
variability that included the potential role of the animal’s own body movements we 117 
evaluated model performance on an individual trial level (percent variance explained: 118 
%VE, see Methods), for each of the 900 units across both animals and all areas (Fig. 2D). 119 
 120 
To address our central question of whether neural activity can be explained by the 121 
animal’s spontaneous movements, we compared two models: first, the full model, with all 122 
the predictors (Fig. 2D, full model; green), and second, a “task-only” model (Fig. 2D, 123 
brown), which was the full model but with the contribution of the movement predictors 124 
removed (see Methods). The difference in variance explained between these two models 125 
– which is equivalent to the “unique variance”20 of face/body movement components that 126 
we consider below – is a measure of the amount of variance that can be explained 127 
uniquely by knowing the animals’ own movements (Fig. 2D, bottom). The results show 128 
that activity in the primate visual cortex was predictable from the animal’s own 129 
movements, although the size of this contribution in the macaques was smaller compared 130 
with that seen in mouse visual cortex20,21. 131 
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 132 
Fig. 2 Body and face movement of the macaque monkey has minimal impact on neural 133 
activity in its visual cortex. (A) Linear encoding model predicts neural firing in visual cortex (the 134 
predictors, labels left, are for the task used in M2. For M1, see Supplementary Fig. S2. The three 135 
traces show the peristimulus SDFs for sample units in V1, V2, and V3/V3A (left) and the model 136 
predictions (right). (B) Mean variance (left) and absolute mean (right) of the top 30 face and body 137 
movement components across trials (M1, top; M2, bottom). Shaded error bars, standard deviation 138 
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across sessions; shaded area: epochs during which the animals maintained visual fixation 139 
(controlled retinal input). (C) Histogram showing the distribution of cross validated variance 140 
explained (%VE, mean=94%, n=900 units from both animals) of the SDF by the model predictions 141 
across units. (D) Top: Variance explained across all timepoints by the model with (green), and 142 
without (brown) movement predictors for all units (%VE, mean = 9.8% and 9.67% respectively). 143 
Triangles show the example units from (A) (differences in %VE in (A) and (D) largely result from 144 
spike count variability at these high time resolutions). Bottom: Difference in variance explained by 145 
the two models, reflecting the %VE by movements. Units are ranked by their variance explained 146 
by the full model. (E) Same as (D), but separately for epochs when retinal input was controlled 147 
(left, shaded interval in B), and not controlled (right). (F) Mean unique variance explained by 148 
different covariates towards the full model, for units across all areas (left; including 44 units for 149 
which the area could not be assigned) and separated by area (right). Error bars, standard error 150 
of mean across units. (G) Mean unique variance explained by movement covariates towards the 151 
full model, separately for controlled and uncontrolled retinal input epochs, for units across all 152 
areas (left), and separated by area (right). Note the smaller y-scale compared to F. Error bars, 153 
standard error of mean across units; ***, p < 0.001. 154 
 155 
  156 
To better understand how the monkeys’ own movements could impact neural activity in 157 
the visual cortex, we examined the amount of unique variance during different epochs of 158 
the trial: when the retinal input was controlled because the animal maintained visual 159 
fixation (orange bar, Fig. 1C), and when the retinal input was uncontrolled. In the first type 160 
of epoch, the retinal image (gray screen or the stimulus) is known, and the corresponding 161 
predictors can contribute systematically to the model predictions. In the second type of 162 
epoch the retinal image is not known and thus could drive activity in a way that is predicted 163 
by movements causing these changes in retinal input. For each unit, we applied a 164 
threshold to determine if the neural activity of the unit was associated with face or body 165 
movement (threshold: unique variance >0.1%VE). Despite the fact that the animals 166 
moved spontaneously during both kinds of epochs (Fig. 2B), the contribution of the model 167 
attributed to the movement almost completely disappeared when the retinal image could 168 
be inferred (Fig. 2E left, 5% of units crossed the threshold; V1: 15/293, V2: 16/251, 169 
V3/V3A: 13/312), compared to when the retinal input was uncontrolled (Fig. 2E right, 67% 170 
of units crossed the threshold, V1: 246/293, V2: 131/251, V3/V3A: 191/312). This result 171 
was robust for different thresholds of unique variance (table S1), and the increase in 172 
unique variance explained by movements when the retinal input was uncontrolled was 173 
significant (p<0.001 for each area and combined across areas, permutation test; Fig. 2G; 174 
similar in each animal individually, Fig. S3). These results suggest that the larger unique 175 
contribution of the animal’s own movements when the retinal image was uncontrolled was 176 
the result of changes in the retinal image associated with these movements.  177 
  178 
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Retinal input control reduces activity predicted by spontaneous movements 179 
To validate this explanation, we compared the unique variance explained by movements 180 
inferred from the face view versus the body view. The explanation predicts that face 181 
movements, such as blinks or eye movements, are more likely than body movements to 182 
modulate neural activity. Consistent with this prediction, the increase in unique variance 183 
during epochs when the retinal input was uncontrolled was only significant for movements 184 
of the face (p<0.001 for each area and combined across areas, permutation test; Fig. 185 
2G). Moreover, removing the region of the eye from the face view reduced the increase 186 
in unique variance for retinal-input-uncontrolled epochs (p < 0.001 for each area and 187 
combined across areas, permutation test). Conversely, the contribution by body 188 
movements was small throughout all epochs (Fig. 2G, unique variance due to body 189 
covariates: mean across epochs and units =-0.005 %VE,  p=0.07), mirroring previous 190 
findings in mice20. 191 
  192 
The data presented here suggest that accounting for retinal input removes the variability 193 
of neural responses that was predictable from the monkey’s own movements. To further 194 
test this idea, we analyzed the time-points during which the retinal input was uncontrolled, 195 
i.e., when the animals could move their eyes freely. We classified these time-points into 196 
two subsets. The first subset are times when the retinal input to the receptive fields of the 197 
recorded neurons could be inferred from the eye position, i.e., when the receptive fields 198 
were on a blank gray screen. The second subset are times when the retinal input to the 199 
receptive fields could not be inferred, e.g., when the gaze of the animal took receptive 200 
fields off the screen, and they likely included visual structure from the room. If the absence 201 
of retinal image control can explain the apparent neural modulation by body/face 202 
components, then the neural modulation by the animal’s movements should be higher in 203 
the latter case: when the retinal image is not known. This is exactly what we found 204 
(supplementary Fig. S4). Together, these results support a relationship between 205 
spontaneous movements in primates and visual cortical activity because of their 206 
correlation with changes in the retinal input.  207 
 208 
Attentional modulation is not associated with modulation by movements 209 
Modulation by locomotion in mice shows parallels to the modulation by spatial attention 210 
in primates25,26. To therefore test for a potential relationship between neural modulation 211 
by spontaneous movements and by attention, we trained one animal to perform a visual 212 
discrimination task while manipulating spatial attention and monitoring the animal’s own 213 
movements. We observed the characteristic27 increase in neural response when the 214 
animal’s attention was directed to the receptive fields, including modest modulation by 215 
spatial attention in V128 (Fig. 3A), but this attentional modulation was not correlated with 216 
spontaneous body movements (Fig. 3B, p>0.3 for all areas; neural modulation by spatial 217 
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attention was also not correlated with the absolute value of the neural modulation by 218 
face/body movements, p>0.2 for all areas). The analysis in Fig. 3B is model free, and 219 
shows that modulation by the animal’s own movement was about an order of magnitude 220 
smaller than the modulation by spatial attention (mean±standard deviation MI= 221 
0.007±0.016, 0.009±0.03, 0.009±0.04; AI = 0.05±0.05, 0.11±0.07, 0.11±0.09 for V1, V2, 222 
V3/V3A, respectively; the distributions for MI versus AI differed significantly in all areas,  223 
p=0.003, p=10-36, p=10-24, for V1, V2, V3/V3A, respectively, t-tests, corrected for multiple 224 
comparisons). These findings corroborate our model-based results and provide evidence 225 
against an association in macaques between a modulation by an animal’s own 226 
movements and the modulation by spatial attention. 227 
 228 

 229 
Fig 3 Modulation by spatial attention is not associated with modulation by movement. (A) 230 
Average stimulus-driven responses across all units (n=248, left; peristimulus SDF; right: rates 231 
predicted by the full model) separated by attention and the presence or absence of the animals’ 232 
spontaneous movements. (B) Modulation indices for attention (AI) are not correlated with those 233 
for movement (MI) in V1, V2 and V3/V3A.   234 
 235 
 236 
Discussion 237 
The present results show that in macaque monkeys, spontaneous body and face 238 
movements accounted for very little of the variability of single-trial neural dynamics in 239 
macaque V1, V2 and V3/V3A. This contrasts with results in mice, where substantial 240 
modulation of visual cortical activity is associated with the animal’s own spontaneous 241 
movements19–21. The difference in results across species cannot be attributed to a 242 
difference in analysis methods: the present analysis was designed to replicate the 243 
approach used in mice (see Methods), and, when retinal input in the macaque monkeys 244 
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was uncontrolled, spontaneous movements did account for appreciable neural variability, 245 
as in mice. Moreover, the neural measurements used presently recovered the expected 246 
modest levels of neural modulation caused by spatial attention27,28, even in V1, implying 247 
sufficient sensitivity of the neural recordings, and the present results parallel recent 248 
observations in marmosets of a quantitative difference in the neural modulation in visual 249 
cortex with locomotion between primates and rodents29. 250 

Our results are also consistent with previously observed modulations by eye-movements, 251 
including microsaccades30–37, or gaze position38 but reveal that these are small (Fig. 2, 252 
Fig. S4) compared to the overall response variability in the macaque visual cortex, in line 253 
with early reports39,40. The results here, combined with the findings in marmosets29, 254 
therefore suggest that decades of neurophysiological research on the primate visual 255 
system need not be revisited in light of the pronounced modulations by spontaneous 256 
movements observed in mice. 257 

While the results here raise the possibility that some fraction of the neural modulation 258 
associated with movement observed in mice is related to uncontrolled retinal input, there 259 
are good reasons to suspect genuine differences in the mechanisms of embodiment 260 
between mice and monkeys. Primates and rodents differ not only in body anatomy, but 261 
also in behavior and brain organization. Primary visual cortex in mouse receives 262 
substantial direct projections from premotor areas41 but does not in monkey42, and the 263 
neuromodulatory system in visual cortex also differs in the two species43. A direct 264 
modulation of visual cortical responses by movement may be evident in higher visual 265 
areas in primates, which are perhaps a closer analogue of primary visual cortex in 266 
rodents44–46. The difference in results between mice and primates may therefore reflect 267 
corresponding differences in anatomy and behavior47. Primates must make sense of the 268 
statistics of their visual input and how that input is shaped not only by their body’s own 269 
locomotion48 but also prominently by their eye movements49–51. These demands may 270 
have selected mechanisms to emphasize embodiment that exploit input provided by the 271 
eyes themselves.  272 
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Supplementary Information 395 

 396 

Materials and Methods 397 

Animals 398 
Two adult male rhesus monkeys (Macaca mulatta) were used as subjects (animal 1 (M1); 399 
animal 2 (M2); each 9 kg). All protocols were approved by the National Eye Institute 400 
Animal Care and Use Committee (M1) or by the relevant local authority (M2), the 401 
Regierungspräsidium Tübingen, Germany, and all experimental procedures were 402 
performed in compliance with the US Public Health Service Policy on humane care and 403 
use of laboratory animals. Under general anesthesia, the monkeys were surgically 404 
implanted with a titanium head post, and in a subsequent procedure with a recording 405 
chamber (19 mm inner diameter, cilux, Crist Instrument, Hagerstown, MD) over right 406 
hemispheric V1 (M1), and with two titanium recording chambers (25mm inner diameter) 407 
over the operculum of V1 on both hemispheres (M2), guided by structural MRI scans of 408 
the brain. 409 

Behavioral tasks 410 
Visual Fixation: Animal M1 was required to fixate on a small spot (Fixation Point (FP), 411 
0.3° diameter) at the center of the screen for about 2sec to receive a liquid reward, while 412 
a drifting sinusoidal luminance grating was flashed four times (450 ms duration each 413 
separated by an interval of approximately 50ms of a blank screen) over the receptive 414 
fields (RFs) of the recorded units (left panel of Fig. 1B). In addition to visual fixation, 415 
animal M2 also performed a visual discrimination task. 416 
Disparity Discrimination: Animal M2 performed a disparity discrimination task (right panel 417 
of Fig. 1B) previously described in detail52. Briefly, once the animal fixated on a FP (0.1° 418 
diameter), two circular dynamic random-dot stereograms (RDSs, for details see Visual 419 
Stimuli), consisting of a disparity-varying center surrounded by an annulus fixed at zero 420 
disparity, were presented, one in each visual hemifield. Stimuli presented in one hemifield 421 
were task-relevant. The animal had to judge whether the center disparity of the relevant 422 
RDS was protruding (‘near’; negative disparity) or receding (‘far’; positive disparity) 423 
relative to a surrounding annulus. After two seconds, the FP and the RDSs were replaced 424 
with two choice icons (circular RDSs at 100% disparity signal, one at the near, the other 425 
at the far signal disparity) positioned above and below the FP but horizontally offset 426 
towards the cued side. The animal was rewarded after making a saccade within 2sec 427 
after the onset of the choice icons, to the choice icon that had the same sign of the 428 
disparity signal as the stimulus.  The task-relevant hemifield was cued by three instruction 429 
trials at the beginning of each 50-trial block. On instruction trials a single stimulus was 430 
presented on the task-relevant side. The vertical position (~3° above or below the fixation 431 
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point) of the choice icons was randomized across trials to prevent a fixed mapping 432 
between the chosen disparity sign and saccade direction. 433 

Visual Stimuli 434 
Visual stimuli were back-projected on a screen (Stewart Filmscreen, Torrance, CA) by a 435 
DLP LED projector (Propixx, VPixx Technologies, Saint-Bruno, QC, Canada; 1920×1080-436 
pixel resolution). The display was achromatic, and the luminance steps were linearized 437 
(mean luminance: 72 cd/m2 for M1, 30 cd/m2 for M2). Visual stimuli were presented on a 438 
uniform display at the mean luminance. Separate images were delivered to the two eyes 439 
(120 Hz for M1 and 60 Hz for M2, for each eye) using a combination of an active circular 440 
polarizer (DepthQ, Lightspeed Design Inc., Bellevue, WA) in front of the projector and two 441 
passive circular polarizers with opposite polarities (American Polarizers, Reading, PA) in 442 
front of the eyes. The viewing distance was 45 cm for M1 and 97.5 cm for M2, at which 443 
the display subtended 74° by 42° for M1 and 32° by 18° for M2. 444 
Stimuli used in the fixation task for M1 were drifting circular sinusoidal luminance gratings 445 
whose position and size were tailored to the collective RFs of the recording site. The 446 
spatial frequency was adjusted inversely proportional to the RF size and the temporal 447 
frequency was typically 4 or 5 Hz. The contrast of the stimulus during each of four 450-448 
ms stimulus epochs on a trial was randomly chosen from 4 values (0, i.e., blank stimulus, 449 
6.25, 25, and 100%) with equal probabilities.   450 

Stimuli used in the disparity discrimination task for M2 were circular dynamic RDSs (50% 451 
black, 50% white dots, dot size typically 0.08° radius, 50% dot density) with a disparity 452 
varying central disk (3-5° in diameter, approximately matching the RF size of the recorded 453 
units) surrounded by an annulus of zero disparity (1° width). The positions of the dots 454 
were updated on each frame. The central disk consisted of signal frames randomly 455 
interleaved with noise frames. For each session, the signal disparities (one near disparity, 456 
one far disparity) were fixed. The center disparity of the stimulus was updated on each 457 
video-frame. On “signal frames”, the center disparity was one of the signal disparities, 458 
held constant across each trial. On a “noise frame”, the disparity of the center disk was 459 
randomly chosen from a uniform distribution of 9 values equally spaced from -0.4° to 0.4°.  460 
The task difficulty on a trial was defined as the ratio of the signal to noise frames such 461 
that 100% means that all frames were signal frames, and 0% means all frames were 462 
drawn from the noise distribution.  On a 0% trial, the reward was randomly given 50% of 463 
times.  The choice target icons were also circular RDSs but slightly smaller than the 464 
stimuli, and always presented at 100% near and far signal. We assessed disparity tuning 465 
before the behavioral task in separate visual fixation experiments using RDSs (450 ms 466 
duration), whose disparity varied typically from -1° to 1° in 0.1° increments. The two signal 467 
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disparities in each session were chosen to approximately match the preferred and non-468 
preferred disparities by most of the recorded units.  469 

Receptive fields (Supplementary Fig. S1) of the recorded units were first approximated 470 
by a bar stimulus whose orientation and position were manually controlled, then 471 
quantitatively measured with strips of horizontal or vertical bars (450 ms duration each, 472 
typically white and black bars but sometimes RDSs at the preferred disparity when they 473 
evoked stronger responses) that were equally spaced over the range covering RFs 474 
estimated by manual sweeping (typically 9 to 11 positions whose intervals were 475 
determined by the collective RF range). 476 

Visual stimuli were generated in MATLAB (MathWorks, Natick, MA) by custom-written 477 
code53, adapted from Eastman & Huk54  using the Psychophysics toolbox55. 478 

Electrophysiological Recordings 479 
Extracellular recordings were made from areas V1, V2 and V3/V3A using multi-channel 480 
laminar probes (Plexon Inc., Dallas, TX; V/S Probes, 24/32 channels, 50 to 100 μm inter-481 
contact spacing).  Neuronal signals were amplified, filtered (250 Hz to 5 kHz) and digitized 482 
(30 kHz sampling rate) by the Grapevine Neural Interface Processor (NIP, Ripple Neuro, 483 
Salt Lake City, UT) run by the Trellis software (Ripple Neuro, Salt Lake City, UT) that 484 
interfaced with MATLAB via Xippmex (v1.2.1; Ripple Neuro, Salt Lake City, UT).   485 
We inserted recording probes on each day of experiments via the operculum of V1 using 486 
a custom-made (M1) or customized (M2; NaN Instruments, Israel) micro-drive placed 487 
approximately normal to the surface. We initially mapped the recording sites using single 488 
tungsten-in-glass electrodes (Alpha Omega, Nazareth, Israel) to determine the receptive 489 
field locations and assess the selectivity for horizontal disparity.  During data collection, 490 
visual areas were identified using two physiological criteria: 1) transitions from a gray to 491 
white matter, which was typically characterized by a silent zone that spanned a few 492 
consecutive channels showing weak or no visually driven responses, 2) abrupt shifts in 493 
the receptive field location and size, and often abrupt changes in the tuning preferences 494 
for orientation or disparity. Final assignments of channels to visual areas were done 495 
offline with the aid of receptive field maps constructed from receptive field location and 496 
size determined from quantitative fitting (see below) across all sessions (see 497 
supplementary Fig. S1), combined with the structural MRI scans.  Because of the 498 
similarity between the disparity selectivity in V3 and V3A56, we did not seek to further 499 
assign channels to V3 or V3A, and instead designate them collectively as V3/V3A. 500 

On each day of experiments, after the laminar probe was advanced to a depth at which 501 
most channels spanned the visual area we intended to record from, we usually advanced 502 
it further down to confirm the visual area underneath.  Then, we withdrew the probe back 503 
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to the desired depth and waited for at least 30 min before data collection to allow time for 504 
the tissue around the probe to be stabilized, thereby to minimize vertical drifts of the 505 
recording site along the probe.  We mapped the receptive fields before, sometimes in 506 
between, and after data collection to diagnose drifts of the neural tissue relative to the 507 
electrode via the receptive field position across the channels during data collection.  We 508 
only included units that remained in the same visual areas during the entire data collection 509 
period and excluded units whose activity was picked up by channels positioned within the 510 
transition depth between visual areas at any time during data collection.   511 

Measurements of eye position 512 
We monitored the animals’ binocular eye positions using the EyeLink 1000 infrared video 513 
tracking system (SR Research, Ottawa, ON, Canada) at a sampling frequency of 500 Hz. 514 

Recording of face and body movements 515 
To record the face and body movements of the animals during data collection, we installed 516 
infrared (940nm) LEDs and at least two cameras (Fig. 1A; M1 – Stingray camera 517 
integrated in a CinePlex Behavioral Research System, Plexon Inc., Dallas, TX, 60 or 80 518 
Hz sampling rate, downsampled to 20Hz and spatially downsampled by 2x2 pixels for 519 
analysis; M2 – Imaging Source DMK camera; triggered image acquisition at 12.5 Hz), 520 
one pointing to the face, and one to the front view of the body.   521 
 522 

Data Analysis 523 

Spike sorting 524 
We sorted spikes from single- or multi-units offline using Kilosort2.557  followed by manual 525 
curation in Python (www.github.com/cortex-lab/phy) for data from M1, and using the 526 
Plexon Offline Sorter (v3.3.5; Plexon Inc., Dallas, TX) for data from M2.  We analyzed 527 
spikes from both single- and multi-units isolated by the spike sorting procedures, which 528 
we refer to as units without distinction.   529 

Receptive fields 530 
To measure receptive fields, we averaged the multi-unit response (spike count during 531 
stimulus interval) on each recording channel for each position of the bar stimuli. We fit a 532 
Gabor function to the mean response as a function of stimulus position, separately for the 533 
horizontal and vertical dimensions, using MATLAB (lsqnonlin). The center of the receptive 534 
field was defined as the position at the peak of the fitted function, and the width as the 535 
distance between the two positions flanking the peak at which the fitted function reached 536 
20% of its peak above the offset (Fig. S1).    537 
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Motion decomposition 538 
To quantify the face and body movements, we selected regions of interest (ROI) from the 539 
videos with the face view and the frontal body view to include only the animal’s face and 540 
body. The movements in the selected ROIs were decomposed into movement 541 
components using singular value decomposition (SVD) following the method in Stringer 542 
at al.19 (www.github.com/MouseLand/FaceMap), via temporal-segment wise SDV (~1 543 
min long segments of the videos) (Fig. 1C). The motion matrix M of the video, where M 544 
is the absolute pixel-wise difference between two consecutive frames (number of the 545 
pixels in the ROI × number of the video frames minus 1), was then projected onto the first 546 
1000 movement components to calculate their temporal profiles. These temporal profiles 547 
correspond to the face/body movement regressors used in the ridge regression modeling 548 
approach described below. To evaluate the contribution of the movement components of 549 
the eye region in the face view to neural modulation (see Results), we performed the 550 
same SVD analysis on the face videos after the eye regions were removed from the face 551 
ROI. 552 

Modeling neural activity during trials 553 
We modeled the spiking activity of each unit as a linear combination of task-related and 554 
task-unrelated events within a session using ridge regression adapted after Musall, 555 
Kaufmann et al.20. Our linear multivariate regression is thus analogous to the approach 556 
used previously in mice20,21. Although a non-linear model might achieve better overall 557 
predictions, we used a linear statistical model to facilitate this comparison to mice, such 558 
that it cannot account for the discrepancy between the previous findings in mice and our 559 
findings in the macaque visual cortex. 560 
 561 
Regressors for task-related events reflect the stimulus, the time since the beginning of 562 
the trial, the timing of reward in both animals, and additionally, the presence of choice-563 
targets and saccadic choice in animal M2 (Fig. 2A). Regressors for task-unrelated events 564 
were based on face and body movements, and a slow drift term to capture non-565 
stationarities in firing rates of each unit. Below we describe the individual regressors: 566 
  567 
Stimulus regressors: stimulus regressors were discrete binary vectors with one dimension 568 
for each distinct stimulus (i.e., disparity and contrast). They had the value 1 for the 569 
appropriate stimulus dimension in the time periods spanning the stimulus presentation 570 
window and 0 elsewhere. Separate regressors were used to model different stimulus 571 
values. In addition, in animal M1, within each stimulus value (i.e., the four contrast values), 572 
separate regressors were used for the 4 successive samples in time (supplementary fig. 573 
S2). In animal M2, within each stimulus value (i.e., the disparity value on each video-574 
frame), separate regressors were used for stimulus presentations on the left and right 575 
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hemifields (i.e., whether the attended stimulus was within or outside of the receptive field 576 
of the recorded neuron). This allowed us to capture modulation of spiking activity as a 577 
function of sample position within the stimulus sequence and stimulus contrast in animal 578 
M1, and as a function of disparity and attended location in animal M2. 579 
Reward regressors: reward regressors were discrete binary vectors with value 1 at reward 580 
onset and 0 elsewhere. 581 
Time regressors: time regressors were discrete binary vectors with value 1 at stimulus 582 
onset and 0 elsewhere and were used to model modulations in spiking activity due to 583 
stimulus onset and offsets (see fitting procedure). 584 
Choice-target, and Choice-saccade regressors: animal M2 performed a discrimination 585 
task requiring him to make a saccade to one of the two targets presented after the 586 
stimulus offset. Target regressors were discrete binary vectors with value 1 at target 587 
presentation and 0 elsewhere. Separate regressors were used to model targets 588 
presented offset to the left and right hemifields. Choice regressors were discrete 589 
regressors with the value +/- 1 to model saccades to the top and bottom target when the 590 
animal reported the choice and 0 elsewhere. 591 
Drift regressors: non-stationarity in firing rates for each unit was modeled as a set of 592 
analog regressors using tent basis functions spanning the entire session52. These basis 593 
functions allow for a smoothly varying drift term that can be fitted as linear model terms. 594 
We defined anchor points placed at regular intervals within each session (10 and 8 anchor 595 
points for animals M1 and M2, respectively), each denoting the center of each basis 596 
function. The basis function has a value 1 at the corresponding anchor point, and linearly 597 
decreases to 0 at the next, and previous anchor point, and remains 0 elsewhere. Thus, 598 
any offset at each timepoint due to slow drift in firing rate is modeled by a linear 599 
combination of the two basis functions. While the drift regressors were included to 600 
account for non-stationarities related to experimental factors, they would also capture 601 
factors related to slowly changing cognitive states throughout a session58. To therefore 602 
avoid that the drift predictors accounted for the block-wise alternation in spatial attention 603 
for M2, we ensured that no more than one anchor point was used for each pair of 604 
successive, i.e., alternating, blocks of attention.   605 
Face & Body movement regressors: the temporal profiles of the top 30 SVD components 606 
(SVs) of videos capturing movements in the face and body regions in both animals were 607 
used as analog regressors to model modulation in spiking activity due to movements. 608 
Note that since we did not additionally include regressors for pupil-size or eye-position, 609 
this gives the included movement regressors the possibility to also explain neuronal 610 
variability that might otherwise be explained by pupil regressors due to the correlation 611 
between these covariates16. To avoid overfitting, we limited our analysis to 30SVs, but 612 
our results were qualitatively similar when the top 200 SVs were used instead 613 
(supplementary fig. S5).   614 
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 615 
Fitting procedure 616 
Recordings from each session were first split into individual trials. We modeled only 617 
successfully completed trials. Each trial was defined by a 300ms pre-stimulus period, the 618 
stimulus presentation window, and a 1000ms window after stimulus offset. This allowed 619 
us to split time-periods within an individual trial into those where the retinal input was 620 
controlled, i.e., the animal maintained visual fixation, and where the retinal input was 621 
uncontrolled. Time points within each session were discretized into non-overlapping 622 
16.67ms wide time bins, matching the lower framerate of the stimulus displays used for 623 
the two monkeys. Spiking activity of each unit was quantified as the number of spikes in 624 
each time-bin, and all the regressors were down-sampled to 60 Hz while preserving their 625 
discrete/analog nature. On trials where the 1s post-stimulus window of the current trial 626 
overlapped with the 0.3s pre-stimulus window of the next trial, we reduced the post-627 
stimulus window to only include the non-overlapping time bins.  628 
Because the effect on neural activity of a given regressor will often play out across time, 629 
we modeled the effect of each regressor using a time-varying "event kernel" by creating 630 
numerous copies of individual regressors each shifted in time by one frame20 relative to 631 
the original using pre-defined time windows. These time-windows for stimulus, reward, 632 
and choice-target regressors were 250ms post-event, for choice-saccade regressors 633 
were 500ms pre- and post- event, and for time regressors spanned the entire duration of 634 
the trial following the stimulus onset including the post-stimulus window. The time-varying 635 
kernels of the analog movement regressors were modeled by convolving the temporal 636 
profiles of the corresponding component with separate tent basis functions with anchor 637 
points at -100ms, 0ms, and 100ms with respect to the movement event. This allowed us 638 
to capture the temporal dependence of spiking activity on the movement within a 400ms 639 
time window, resulting in a total of 90 regressors each for face and body movement 640 
components. All the event kernels were constructed at the level of individual trials.  641 
We fit the models using ridge regression and 10-fold cross-validation across trials to avoid 642 
overfitting. Trials were randomly assigned to training or test dataset within each fold such 643 
that no event kernel spanned samples from both the training and test sets. Separate ridge 644 
penalty parameters were estimated for each unit during the first cross-validation fold 645 
which were then used in subsequent folds. 646 
 647 
Model performance 648 
We used cross-validated variance explained (%VE) as the measure of model 649 
performance. This is computed based on the variance of the residual of the model 650 
prediction (prediction minus the binned spike count) compared with the overall variance 651 
of the observed binned data. Note that %VE at the single-trial level at these time 652 
resolutions (16ms bins) is dominated by spike-count variability, and the same models that 653 
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explained on average 94% of the variance in the SDF averaged across trials (Fig. 2C) 654 
explain a mean of 9.8% VE (Fig. 2D). Furthermore, to determine the “unique” effect of 655 
different task-related and task-unrelated events on the spiking activity, we estimated the 656 
“unique variance” as defined by Musall, Kaufmann et al.20. This metric was devised to 657 
account for the fact that many predictors in the model are correlated. It is the variance 658 
explained by each class of regressors by computing the %VE for a reduced model 659 
obtained by shuffling in time only the regressors under consideration leaving all the others 660 
intact and subtracting this from the %VE of the full model. Note that by shuffling rather 661 
than eliminating a given regressor, the resulting model will have the same amount of 662 
parameters as the full model and thus, if the regressor contained no additional (or 663 
“unique”) information to predict the neural response, it would result in the same %VE, The 664 
resulting difference (∆ %VE) thus gives a measure of the predictive power unique to each 665 
regressor20. 666 
 667 
Movement and Attention Index  668 
To determine periods with movement (Fig. 3) we used the motion matrix M (see section 669 
Motion decomposition) for the face and body, where M is the absolute pixel-wise 670 
difference between two consecutive video frames (number of the pixels in the ROI × 671 
number of the video frames minus 1). We then averaged M over pixels to compute the 672 
average motion versus time 𝑀!"""" (1x number of frames minus 1). Periods with movement 673 
were defined as those when 𝑀!"""" exceeded the 80th percentile across all time-points of 𝑀!"""" 674 
in either the face or body view, while periods without movement were defined as those 675 
for which 𝑀!"""" was below its median across all time-points, in either the face or body view. 676 
(We note that we confirmed that the results were qualitatively similar when we used 𝑀!"""" 677 
from only the body view or only the face view, indicating that neither type of movement 678 
had a sizable effect on MI.) We calculated the movement index (MI) and attention index 679 
(AI) based on the average spike rates (R; computed after removing non-stationarities 680 
across the recording session using the drift-term of the linear regression model described 681 
below) from 0.15-2sec after stimulus onset, as  682 

𝑀𝐼 = "!"#$	&'()&)*##"!"#$'+#	&'()&)*#
"!"#$	&'()&)*#$"!"#$'+#	&'()&)*#

 and 𝐴𝐼 = ",##)*#"'*	"*#",##)*#"'*	'+#
",##)*#"'*	"*$",##)*#"'*	'+#

. 683 

We computed the spike density functions (Fig. 3A) by convolving peri-stimulus time 684 
histograms (1ms resolution) for each unit with a temporal smoothing function (half 685 
Gaussian function; standard deviation 30ms) and averaging this across units. 686 

 687 
Dataset 688 
Our dataset consists of a total of 1407 units: 1139 units from M1 recorded in 54 sessions 689 
and 268 units from M2 recorded in 5 sessions. We excluded 507 units from the analysis 690 
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that failed to meet the following criteria: (1) a minimum mean firing of 2 spks/s during 691 
stimulus presentations epochs in each of the four quartiles of the session, and (2) a 692 
minimum of 0 %VE of the full model during both retinal input controlled and uncontrolled 693 
epochs.  Among the remaining 900 units, 653 units were from M1 (V1 - 269, V2 - 143, 694 
V3/V3A - 198) and 247 units were from M2 (V1 - 24, V2 - 108, V3/V3A - 114). Results 695 
were qualitatively similar when the minimum firing rate criterion was relaxed to include 696 
1343 units in the model (Supplementary Fig. S6). For the model-free analysis in Fig. 3, 697 
we only used the first criterion, avoiding sub-selection of units based on model-fits. We 698 
did not assign visual areas to 44 units recorded in three sessions from M1 in which the 699 
receptive location and size were not consistent with the overall topography of the offline 700 
receptive field map as to unambiguously assign the recording sites but included them 701 
when data were combined across areas. 702 
 703 
Statistical tests 704 
We used nonparametric permutation tests59 to test for group-level significance of 705 
individual measures, unless otherwise specified. This was done by randomly switching 706 
the condition labels of individual observations between the two paired sets of values in 707 
each permutation. After repeating this procedure 10,000 times, we computed the 708 
difference between the two group means on each permutation and obtained the P value 709 
as the fraction of permutations that exceeded the observed difference between the 710 
means. All P values reported were computed using two-sided tests unless otherwise 711 
specified. 712 
 713 
  714 
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 715 

 716 
Fig. S1 Receptive Field distribution. The average receptive field centers and widths (shaded 717 
ellipses) for each session and area are plotted for animal M1 (circles) and animal M2 (squares). 718 
The median eccentricity of the receptive fields of the recorded units for V1 was 5.7° (operculum: 719 
4.2° ranging from 2.9° to 7.3°; calcarine sulcus: 10.3°, ranging from 8.2° to 15.1°), 6.2° (range: 720 
3.4° to 11.5°) for V2 and 7.9° (range: 3.1° to 14.0°) for V3/V3A.  721 
  722 
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 723 

 724 
Fig. S2 Schematic of the linear encoding model for animal M1. Linear encoding model 725 
predicts neural firing in visual cortex (the predictors, labels left, are for the task used in M1). The 726 
three traces show peristimulus spike-density function for example units in V1, V2, and V3/V3A 727 
(left) recorded in M1, the model predictions (right), and the variance explained by these 728 
predictions (center).  729 
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 730 
Fig. S3 Linear encoding model fits, separately for animals M1(A, B, C) and M2 (D, E, F). (A, 731 
D) Top: Variance explained by the model with (green), and without (brown) movement covariates 732 
for all epochs (left), and separately for epochs when retinal input was controlled (middle), and not 733 
controlled (right) for all units. Bottom: Difference in variance explained by the two models. Units 734 
are sorted according to the variance explained by the full model. (B, E) Unique variance explained 735 
by different covariates towards the full model, for units across all areas (left), and separated by 736 
area (right). (C, F) Unique variance explained by covariates. Format as in Fig. 2. For M1: during 737 
controlled retinal input epochs (A, middle), 3% of units (V1: 15/269, V2: 10/143, V3/V3A: 6/198), 738 
and during uncontrolled retinal input epochs, (A, right), 55% of units cross the threshold of ∆%VE 739 
> 0.1 (V1: 232/269, V2: 67/143, V3/V3A: 108/198); for M2: during controlled retinal input epochs 740 
(D, middle), 6% of units (V1: 0/24, V2: 6/108, V3/V3A: 7/114), and during uncontrolled retinal input 741 
epochs, (D, right), 66% of units cross the threshold (V1: 14/24, V2: 64/108, V3/V3A: 83/114).  742 
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 743 
Fig. S4 Movements have minimal effect on neural activity after controlling for eye 744 
movements in epochs when the animals do not maintain visual fixation. Unique variance 745 
explained by different covariates towards the full model during uncontrolled retinal input (open 746 
bars in Fig. 2G). Unique variance was computed separately for time-points when the receptive 747 
field (RF) of the unit was on the monitor showing a gray screen (shaded bars; time-points when 748 
retinal input could be inferred), and when the receptive field was outside the boundaries of the 749 
monitor (open bars; time-points when retinal input could not be inferred). The criterion for defining 750 
whether the RF was on the monitor was that the center of the RF + twice its width was within the 751 
monitor edges along the horizontal and vertical dimension. In addition to our general inclusion 752 
criteria (see Methods) we required that for each unit the ratio of the number of time-points for 753 
which the retinal input could be inferred vs the number of time-points when it could not be inferred, 754 
and vice-versa, was at least 10%. This was done to ensure that there were enough time-points 755 
for computing unique variance, but our conclusions do not depend on incorporating this additional 756 
criterion. Format as in Fig. 2E. 757 
  758 
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 759 
Fig. S5 Linear encoding model fits, using 200 face and body components. Format as in Fig. 760 
2. Increasing the number of SV components from face and body videos in the linear encoding 761 
model to 200 from 30 (Fig. 2) did not increase the variance explained by spontaneous 762 
movements. 763 
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 764 
Fig. S6 Linear encoding model fits, using a lenient criterion for unit selection. Format as in 765 
Fig. 2. We used all units for which the % VE by the full model was > 0 (see Methods).  766 
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Movie S1. 767 
Example video clip showing typical spontaneous movements of one of the animals (M1) during a 768 
recording session. The labels of the body parts (obtained using DeepLabCut60) are only included 769 
for demonstration purposes here but not used for our analysis. 770 
 771 
 772 
Threshold (% ∆VE) Controlled Retinal input Uncontrolled retinal input P-value (c2 test) 

All areas 
0 549/900; 61% 768/900; 85% < 10-16 
0.05 172/900; 19% 697/900; 77% < 10-16 
0.1 48/900; 5% 606/900; 67% < 10-16 
0.5 1/900; 0.1% 252/900; 28% < 10-16 
1 0/900; 0% 125/900; 14% < 10-16 

V1 
0 159/293; 54% 281/293; 96% < 10-16 
0.05 42/293; 14% 268/293; 91% < 10-16 
0.1 15/293; 5% 246/293; 84% < 10-16 
0.5 1/293; 0.3% 132/293; 45% < 10-16 
1 0/293; 0% 67/293; 23% < 10-16 

V2 
0 160/251; 64% 168/251; 67% 0.45 
0.05 59/251; 24% 145/251; 58% 10-15 
0.1 16/251; 6% 131/251; 52% < 10-16 
0.5 0/251; 0% 35/251; 23% 10-9 
1 0/251; 0% 15/251; 6% 10-4 

V3/V3A 
0 211/312; 68% 277/312; 89% 10-10 

0.05 64/312; 20% 242/312; 78% < 10-16 
0.1 13/312; 4% 191/312; 61% < 10-16 
0.5 0/312; 0% 61/312; 20% 10-16 

1 0/312; 0% 28/312; 9% 10-9 

 773 
Table S1 Proportion of units for which the unique variance of movements (Fig 2E) exceeds 774 
different thresholds of unique variance. P-values compare the proportions between controlled 775 
and uncontrolled retinal input epochs using a chi-square test. 776 
 777 
  778 
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