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SUMMARY PARAGRAPH

Lung diseases due to infection and dysbiosis affect hundreds of millions of people world-wide!*. Microbial
communities at the airway mucosal barrier are conserved and highly ordered®, reflecting symbiosis and co-
evolution with human host factors®. Freed of selection to digest nutrients for the host, the airway microbiome
underpins cognate management of mucosal immunity and pathogen resistance. We show here the results of the
first systematic culture and whole-genome sequencing of the principal airway bacterial species, identifying
abundant novel organisms within the genera Streptococcus, Pauljensenia, Neisseria and Gemella. Bacterial
genomes were enriched for genes encoding antimicrobial synthesis, adhesion and biofilm formation, immune
modulation, iron utilisation, nitrous oxide (NO) metabolism and sphingolipid signalling. RNA-targeting CRISPR
elements in some taxa suggest the potential to prevent or treat specific viral infections. Homologues of human
ROG60 present in Neisseria spp. provide a possible respiratory primer for autoimmunity in systemic lupus
erythematosus (SLE) and Sjogren syndrome. We interpret the structure and biogeography of airway microbial
communities from clinical surveys in the context of whole-genome content, identifying features of airway
dysbiosis that may presage breakdown of homeostasis during acute attacks of asthma and chronic obstructive
pulmonary disease (COPD). We match the gene content of isolates to human transcripts and metabolites expressed
late in airway epithelial differentiation, identifying pathways that can sustain host interactions with the microbiota.
Our results provide a systematic basis for decrypting interactions between commensals, pathogens, and mucosal
immunity in lung diseases of global significance.

INTRODUCTION
RESPIRATORY INFECTION AND IMMUNITY

The mucosal surfaces of the airways and lung are extensive and constantly challenged by inhaled
microorganisms’°. Overt respiratory infections are the leading cause of death in developing countries, resulting
in 4 million lost lives annually!. Asthma and COPD each affect more than 300 million people worldwide and are
driven by respiratory infections!®. Two-thirds of individuals exposed to COVID-19 in their home'' and half of
subjects directly challenged with COVID-19'? do not develop infections because of unknown factors.

Upper and lower airways contain a characteristic microbiome'? that acts as a gatekeeper to respiratory health',
The commensal microbiota regulate immunity in the respiratory mucosa through multiple mechanisms!'>-'7. These
appear within the first days of life and coincide with susceptibility or resistance to colonisation and infection'®.

The nose, oropharynx and the intra-thoracic airways form a contiguous tract. The nasopharyngeal mucosa differs
histologically and functionally from lower sites!'?, as does its resident microbiota®. Pulmonary diseases arise in
the intrathoracic airways, whose commensal microbiota are similar to those of the oropharynx'>?"?2, Up and
downward microbial movement occurs between sites??. Respiratory pathobionts such Streptococcus pneumoniae,
Haemophilus pneumoniae, and Neisseria meningitidis are commonly carried in the nose and throat without
symptoms. The oropharyngeal microbiota do not vary greatly between individuals and are organised into co-
abundance networks that may share similar niches’. Microbial community dysbiosis with overgrowth of
pathobionts has been shown in asthma, COPD and other pulmonary disorders'4?3.

Airway commensal organisms have not previously been systematically cultured or sequenced, limiting the
structured study of interactions between bacteria, viruses, fungi and mucosal immunity in clinical samples or in
model systems. In this paper we describe such systematic exploration, substantially extending what is known
about core constituents of airway microbiomes. Our study design is summarised in Supplementary Figure 1. We
have used mucin-enriched media to culture and sequence novel taxa that together account for 75% of the
abundance of airway commensal organisms. Functional characterization, evolutionary analyses and comparison
with amplicon sequencing in representative human samples extends the scope of these results.

RESULTS
CULTURE COLLECTION AND ISOLATE NOVELTY

Lower airway bacteria were cultivated from bronchoscopic brushings from two asthmatics and three healthy
individuals from the Celtic Fire Study (described below). We used a limited range of media with and without 0.5
% mucin, followed by incubation in standard atmosphere or an anaerobic workstation to capture 706 isolates.
Those without overlapping 16S rRNA gene sequences were transferred to the Wellcome Sanger Institute and
whole genome sequenced with assembly using Bactopia (v 1.4.11).

Out of 256 cultures with successful whole-genome sequencing, five appeared mixed and were removed. After
removing duplicates on a threshold of 99.5% nucleotide identity 126 unique strains remained. Forty-four isolates
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were annotated to species level in accordance with MIGA?* (TypeMat and NCBIProk) and with GTDBtk. A
further 30 species were identified by either MIGA (TypeMat and NCBIProk) or GTDBtk. All isolates were
assigned to genera in the TypeMat or NCBI prokaryotes database with p<0.05. Among these samples we classified
49 Streptococcus, ten Veillonella, nine each of Gemella and Rothia, eight Prevotella, six each of Neisseria,
Micrococcus and Pauljensenia, five each of Haemophilus and Staphylococcus, three Granulicatella, two each of
Actinomyces, Cutibarterium and Fusobacterium and one Cuprividis, Leptotrichia, Microbacterium and Niallia,
respectively (Figure 1a).

Fifty-two isolates could not be assigned with p<0.05 to known species in the reference databases®* (Figure 1b).
Twenty-eight of the putative novel species were contained within the Streptococcus genus, six within
Pauljensenia (not previously recognised to be prevalent in the airways), and four each within Neisseria and
Gemella (Figure 1c¢).

Comparison of the full sequences of our streptococcal isolates with 2477 public Streptococcus spp. sequences
showed that the organisms were widely distributed amongst S. infantis, S. oralis, S. mitis, S. pseudopneumoniae,
S. sanguinis, S. parasanguinis, and S. salivarius (Supplementary Figure 2).

ISOLATE CHARACTERISTICS

KEGG ONTOLOGY OF ISOLATE GENOMES

We used the eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) mapper tool (as
previously for large-scale systematic genome annotations®®) to assign by transfer 5,531 Kegg Ontology (KO)
annotations for the 126 isolates. We encoded these in a binary matrix indicating presence or absence
(Supplementary Table 1) and constructed an isolate phylogeny after removing 254 zero-variance KOs either
present or absent in all isolates and reducing identical KO presence/absence to single examples before hierarchical
clustering with the Manhattan distance metric and complete linkage. The Dynamic Tree Cut algorithm?® identified
15 clusters of isolates that recovered known phylogenetic relationships (Figure 2a). Based on the observed 16S
rRNA gene sequence similarity, we further divided one Strepfococcus cluster into two (Step I and Strep 11, Figure
2a). Relative KO enrichment was estimated for each of the 16 clusters by contingency table analysis.

Annotation for the 5,277 informative KOs (including duplicates removed during clustering) (Supplementary Table
2a) identified 247 uncharacterised proteins (Supplementary Table 2b). Features of particular interest among the
known genes are summarised below.

BIOFILMS

Biofilm formation is a feature of respiratory pathogens, archetypically Pseudomonas spp. in patients with cystic
fibrosis. Biofilm-associated genes were also common in the commensal collection (Supplementary File 2b).
Ninety genes were annotated with “biofilm” in their KO pathway descriptions, with cysE (serine O-
acetyltransferase), vpsU (tyrosine-protein phosphatase), /uxS (S-ribosylhomocysteine lyase), #rpE (anthranilate
synthase component I) and PYG (glycogen phosphorylase) present in >75%% of isolates. Amongst the most
abundant organisms, Haemophilus and Prevotella spp. had distinctive profiles of other biofilm pathway genes
(Supplementary Table 2b).

ANTIMICROBIAL RESISTANCE AND VIRULENCE

Many of our isolates contained known genes for antimicrobial resistance (AMR) against tetracyclines and
macrolides. Staphylococcus, Prevotella and Haemophilus spp. also possessed beta-lactam resistance (Figure 1a).
Virulence factors and toxins were concentrated in Streptococcus, Staphylococcus, Haemophilus and Neisseria
spp. (Figure 1a). Although these annotations neither guarantee the genes in question are expressed nor that they
drive clinically relevant AMR or virulence, they do indicate such potential.

ANTIBIOTIC AND TOXIN SYNTHESIS

Competition between bacteria is fundamental to maintaining stable communities?’. Genes with a KO pathway
annotation for antibiotic synthesis (n=33) were present in many genera (Supplementary Table 2c). Arachin
biosynthetic genes included acpP (acyl carrier protein) which was present in 120 isolates and auaG in 7 (mostly
Staphylococcus spp); rifB (rifamycin polyketide synthase) present in 20 (Veillonella and Staphylococcus spp.);
BacF (bacilysin biosynthesis transaminase) present in 12 (Staphylococcus and Gemella spp.); and sgcES
(enediyne biosynthesis protein ES5) present in in 12, mostly Haemophilus spp.. Bacteriocin exporter genes blpB
and blpA were present in 35 and 31 isolates respectively, predominately Streptococcus and Pauljensenia spp.
(Supplementary Table 2d).

Toxins and antitoxin genes were common in the collection (Supplementary Table 2d), without distinctive
enrichment in particular genera. They included homologues of antitoxin YefM (57 isolates); exfoliative toxin A/B
eta, (57 isolates); toxin YoeB (5lisolates); antitoxins HigA-1 (31) and HigA4 (30); antitoxin PezA4 (26); toxin RitxA
(15); antitoxin HipB (14); toxin YxiD (13); antitoxin CptB (12); antitoxin Phd (11); and toxin FitB (10). These
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have not been previously recognised in commensal organisms and differ from the toxin spectrum of known airway
pathogens?®. They may have significant influences on the mucosa as well as other organisms.

NITRIC OXIDE

Nitric oxide (NO) is a central host signalling molecule in the airways, where it mediates bronchodilation,
vasodilation, and ciliary beating?”. NO exhibits cytostatic or cytocidal activity against many pathogenic
microorganisms® and NO elevation in exhaled breath is used as a clinical marker for lower airway inflammation.
Many isolate genes encoded NO reductases (Supplementary Table 2f), including norB (27 isolates); norV (11),
norQ (5), norC (1) and norR (1). The hmp gene, encoding a NO dioxygenase, was present in 39 organisms. These
enzymes may mitigate the antimicrobial activities of NO or affect host bronchodilation and mucus flow.

IRON AND HEME

Iron is an essential nutrient for humans and many microbes and is a catalyst for respiration and DNA replication’'.
Host regulation of iron distribution through many mechanisms serves as an innate immune mechanism against
invading pathogens (nutritional immunity)>'.

We identified 47 genes with “iron” in their KO name (Supplementary Table 2f). Those found in >75% of isolates
were afuC (iron (III) transport system ATP-binding protein), ABC.FEV.P (iron complex transport system
permease protein), ABC.FEV.S (substrate-binding protein), and ABC.FEV.A (ATP-binding protein). A further 19
genes were identified as members of “heme” pathways (Supplementary Table 2g).

Haemophilus spp. require heme for aerobic growth and possess multiple mechanisms to obtain this essential
nutrient. These genes may play essential roles in Haemophilus influenzae virulence2. In our isolate collection sitC
and sitD (manganese/iron transport system permease proteins) and fieF (a ferrous-iron efflux pump) were only
found in Haemophilus spp., as were ccmA, ccmB, cemC, cemD (heme exporter proteins A, B, C and D) and AutZ
(heme oxygenase). These are potential therapeutic targets.

SPHINGOLIPIDS

The sphingolipids constitute an important class of bioactive lipids, including ceramide and sphingosine-1-
phosphate (S1P). Ceramide is a hub in sphingolipid metabolism, and mediates growth inhibition, apoptosis,
differentiation and senescence. S1P is a key regulator of cell motility and proliferation33.

Sphingolipids play significant roles in host antiviral responses®**3 and resistance to intracellular bacteria*®. Their

importance in humans is exemplified by a major childhood asthma susceptibility locus that upregulates ORMDL3
expression®’. ORMDL3 protein acts as a rate limiting step in sphingolipid synthesis*® and the ORMDL3 locus
greatly increases the risk of HRV-induced acute asthma3’.

De novo synthesis of sphingolipids is recognised in human bowel bacteria *° and maintains intestinal homeostasis
and microbial symbiosis*!. In the skin, commensal S. epidermidis sphingomyelinase makes a crucial contribution
to skin barrier homeostasis*?. Based on KO annotations, we did not find obvious SPT homologues in our isolates
but identified 12 genes with putative roles in sphingolipid metabolism (Supplementary Table 2g). Of these, SPHK
(sphingosine kinase, present in 12 isolates) which metabolises sphingosine to produce S1P; and ASAH?2 (neutral
ceramidase, present in 7 isolates) have potential roles in modifying host inflammation and repair. These may
interact with the ORMDL3 disease risk alleles described above.

IMMUNE INHIBITION

Several genes present in the isolates may directly affect host immunity. These were enriched in Prevotella spp.
(Supplementary Table 2h) and included immune inhibitor A (ina), a neutral metalloprotease secreted to degrade
antibacterial proteins; Spa (immunoglobulin G-binding protein A), sbi (immunoglobulin G-binding protein Sbi);
omp31 (outer membrane immunogenic protein); blpL (immunity protein cagA); and impA (immunomodulating
metalloprotease).

A conserved commensal antigen, B-hexosaminidase (HEXA B), has a major role in induction of anti-
inflammatory intestinal T lymphocytes*’, and is present in 59 of our isolates with enrichment in Prevotella,
Streptococcus and Pauljensenia spp.

AUTOANTIGENS

Systemic lupus erythematosus (SLE) and Sjogren syndrome are chronic autoimmune inflammatory disorders with
multiorgan effects. Lung involvement during the course of the disease is frequent*. Our Neisseria isolates contain
a 60 kDa SS-A/Ro ribonucleoprotein (Supplementary Table 2a) that is an ortholog to the human RO60 gene, a
frequent target of the autoimmune response in patients with SLE and Sjogren’s syndrome.

Other bacterial genomes contain potential Ro orthologs*, and a bacterial origin of SLE autoimmunity has been
suggested*. Here, the abundance of Neisseria spp. in human airways and their close proximity to the mucosa are
of interest, as is a recent report that the lung microbiome regulates brain autoimmunity*’, and an earlier observation
that T cells become licensed in the lung to enter the central nervous system*,
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It is relevant that products of cognate microbial-immune interactions in the airways have direct access to the
general arterial circulation through the left side of the heart, whereas molecules and cells arising from the gut
undergo extensive filtration and metabolism in the liver before accessing more distant sites.

CRISPR GENES

Most respiratory viruses, including SARS2-Cov-19, have RNA genomes, and RNA-targeting CRISPR vectors
have the potential to prevent or treat viral infections *°. Type III RNA-targeting system elements (such as cas10,
cas7, csm2 and csm5)*° are present in our isolates (particularly Fusobacteria and Prevotella spp.), as is the Type
II system element cas9 (Supplementary Table 21i).

ISOLATES IN THE CONTEXT OF AIRWAY COMMUNITIES

COMMUNITY COVERAGE

We sought context to our culture collection within the ecological variation of different geographic and anatomical
locations. We studied airway microbial communities in 66 asthmatics and 44 normal subjects recruited from
centres in Dublin (48 subjects), Swansea (48 subjects) and London (16 subjects) (collectively known as the Celtic
Fire Study (CELF)). Swabs were taken from the posterior oropharynx (ptOPs) and bronchoscopic brushings from
the left lower lobe (LLL) in all subjects. When tolerated the left upper lobe (LUL) was also brushed in 52 subjects.
We compared the European CELF microbial communities to 527 ptOP samples from an adult population sample
in Busselton, West Australia (BUS)’. Operational Taxonomic Units (OTUs) were identified by sequencing the
16S rRNA gene amplicon and compared with the assembled genomes from our culture collection.

In the CELF ptOP samples, 17 operational taxonomic units (OTUs) covered >70% of the abundance and 41 OTUs
covered >85% (Supplementary Table 3). Coverage was less complete in LLL and LUL samples (respectively 64%
and 50% at the 70% threshold), due to the expansion of H. influenzae (OTU Haemophilus 14694) and
Tropheryma whipplei (OTU Glutamicibacter 5653) in the pulmonary samples, particularly those from asthmatics
(Supplementary Table 3).

Fifteen of the most abundant 17 OTUs were mapped to at least one isolate using a 99% nt identity, and 11 of the
next 24 mapped to a cultured organism. Genera of moderate abundance (2.8%-0.4% of the total) yet to be cultured
include Fusobacterium, Selenomonas, Alloprevotella, Porphyromonas, Leptotrichiaceae, Megasphaera,
Lachnospiraceae, Solobacterium, and Capnocytophaga. We have previously shown that Leptotrichia,
Selenomonas, Megasphaera and Capnocytophaga spp. are reduced in abundance in asthmatic ptOP samples’.
Future isolation is desirable to test if they are indicator species or direct contributors to respiratory health.

OTUs corresponding to isolates for Staphylococcus, Micrococcus and Cupriavidus spp. had minimal
representation in the community OTU analyses, although S. aureus is a recognised lung pathogen. Their
appearance in the isolates may represent oral or skin contamination or assertive growth in culture.

Mapping of the 50 most abundant OTU sequences onto the 126 isolates revealed complex relationships that reflect
multiple copies of the 16S rRNA gene in different taxa® (Figure 2a). In general, however, OTU assignment
reflected the principal KO phylogenetic structures, and referencing of OTU communities to our isolate genomes
may still inform on community functional capabilities.

The 16S rRNA gene sequences poorly detected the extensive diversity of Streptococcus spp. in airways, as noted
previously’. However, combinations of OTUs can be seen to form “barcodes” (Figure 2a) that may refine
Streptococcus spp. identification into their three main KO phylogenetic groups.

BIOGEOGRAPHY AND COMMUNITY STRUCTURE

The taxa defined by OTUs, and their relative abundances were similar in CELF ptOP and CELF LLL samples,
and to the normal population in BUS ptOP (Figure 2b and Figure 2c). Other than the most abundant organisms,
the prevalence of most OTUs was lower in the LLL than in the ptOP (Figure 2¢). The mean bacterial burden was
much higher in ptOP samples from CELF than in the LLL (log10 mean 7.86+0.07 vs 5.06+0.05), consistent with
previous studies'>?!22,

Strong correlations and anti-correlations were present between the abundances of OTUs in data from each site
(exemplified for CELF ptOP samples in Figure 2d, and previously shown for the BUS ptOP results®). We used
WGCNA analysis to find networks (named arbitrarily with colours) within these correlated taxa. Network
structures were consistent in the CELF and BUS ptOP communities (Figure 2e and 2g), but less distinct in the
lower airway samples (Supplementary Figure 3) where taxa were less diverse and of lower abundance
(Supplementary Figure 3).

Networks often contained closely related species but also extended beyond phylogenetically related organisms
(Figure 2g). For example, in the CELF ptOP networks (Figure 2b) there are phylogenetically homogeneous
modules of Streptococci (blue, red and greenyellow), Gemella (magenta), Haemophilus (black and pink) and
Granulicatella (purple).
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Of interest is the brown module in the CELF ptOP samples, which contain multiple Prevotella and Veillonella
spp. of high abundance. The presence of biofilm elements in Prevotella spp. described above supports a hypothesis
that these organisms may adhere to form a basic “commensal carpet” of the airways’.

Both the CELF ptOP and BUS ptOP networks recovered the phylogenetic relationships found in the KO analysis
amongst Streptococcus isolates. The three clusters of Streptococcus isolates (Strep. I-111) map to distinct sets of
OTUs using sequence similarity (Figure 2a), and this similarity is also uncovered in the WGCNA network
modules in both ptOP networks (Supplementary Figure 4).

DYSBIOSIS

Subtle alterations in bacterial community composition (“dysbiosis™?) are recognized in many diseases with
microbial components. Community instability and inflammation in the presence of mild viral infections'® can be
added to the recognized features of loss of diversity and pathobiont expansion in asthma and COPD. We therefore
sought novel insights into airway dysbiosis in our subjects from genomic sequencing of the commensal organisms.

We used Dirichlet Multinomial Mixtures (DMM)?? to assign airway community components on all samples from
the BUS and CELF subjects. Samples formed predominantly into two clusters (Airway Community Type 1 and
2, ACT 1 and 2) (Figure 3a). The main drivers for the two clusters were identified as Streptococcus, Veillonella,
Prevotella and Haemophilus spp. in descending order of relative abundance across all samples. ACT1 was
dominated by Streptococcus, Veillonella and Prevotella in 410 samples; whilst ACT2 was dominated by
Streptococcus, Veillonella and Haemophilus in 478 samples (Figure 3a). Principal coordinates analysis based on
Bray-Curtis-distance (B-diversity) of the airway microbiota confirmed significant overall compositional
differences between the two community type clusters (PERMANOVA p-value > 0.001) (Figure 3b).

We investigated effects varying between airway sites in the CELF subjects. To assess effects on alpha diversity
measurements (Figure 3c) and the relative abundance of specific bacterial taxa (Figure 3d), we conducted
univariate analysis to relate evenness and richness (Figure 3¢) and phylum level taxon abundance (Figure 3¢) to
the metadata describing the CELF subjects. Metadata features describing clinical phenotypes and sample origin
were often strongly collinear, and so we assessed found associations in turn for retained significance with each
potential confounder, using a nested rank-transformed mixed model test previously implemented as a publicly
available tool** and considering repeated sampling of patients as a random effect.

Congruence analysis with regards to ACT assignment of CELF samples (Figure 3c, left) confirmed consistency
in assignment for samples coming from the same donor (¥* < 0.005) or the same sampling site (%> < 0.005). We
saw pervasive effects both on alpha diversity indices and phylum level of the tested predictors (Figure 3¢ & 3d).
Importantly, the Shannon index and richness were significantly decreased with asthma status and severity (MWU
FDR < 0.1) (Figure 3c). We saw an increase (although not significantly) of the Proteobacteria Phyla associated
with asthma status (Figure 3d), in line with the taxonomic profile of patients with asthma vs. healthy controls
(Figure 3e). This is consistent with many reports of Proteobacteria excess in asthmatic airways!'>!4>,

ACT proportions from CELF samples (Figure 3e, right) differed significantly with regards to asthma status (n=
285, y* < 0.05) and sampling site (n=176, ¥*: Left lower lobe < 0.1, left upper lobe < 0.001, false discovery rate
(FDR) controlled at 10 %).

MUCOSAL FACTORS

Next, to relate our charted microbiome diversity to the salient properties of its ecosystem niche, we sought host
components of the microbial-mucosal interface by serial measurements of global gene expression and supernatant
metabolomics during full human airway epithelial cell (HAEC) differentiation in an air-liquid interface model
(ALI). We hypothesised that the transition from monolayer to ciliated epithelium over 28 days would be
accompanied by progressive expression of genes and secretion of metabolites for managing the microbiota.

We found 2,553 significantly changing transcripts organised into eight core temporal gene clusters of gene
expression (Limma, 3.22.7) (Figure 4a and Supplementary Table 4). Four clusters showed late peaks of expression
and three of these (CL2, CL4 and CLS5) contained many genes that are likely to interact with the microbiome
(Supplementary Table 4). Transcripts in the other upgoing cluster (CL3) were elevated early and late in
differentiation and were enriched for genes mediating cell mobility and localisation. Genes of particular interest
in the other upgoing clusters are as follows.

MUCINS AND CILIARY DEVELOPMENT

Mucosal mucins are central to mucosal function and integrity, providing a source of nutrients and sites for
tethering of commensals’, at the same time as restricting the density of organisms through upward flow by beating
cilia’”. Interaction of mucins with microbiota plays an important role in normal function, and direct cross-talk
between microbes and mucin production is likely®’.

In our ALI model, progressive up-regulation of the major secreted respiratory mucins MUC54C and MUCS5B in
CL2 was accompanied by the membrane associated MUC20 (Table 1, Supplementary Table 4). In contrast, CL5
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contained 3 membrane-associated mucins (MUC13, MUC15, MUCI16). These mucins do not form gels and are
anchored to the apical cell surface where they present a glycoarray for selective interactions with the microbial
environment>®,

Within CL5 we also found 17 gene families and 175 genes with putative roles in ciliary function, ciliogenesis, or
spermatogenesis (Supplementary Table 4). Mutations in many of these genes are known to cause primary ciliary
dyskinesia (PCD)*, which results in recurrent pulmonary infections. Other genes in this list are candidates for
mutation in cases of PCD without known cause.

IMMUNE RELATED GENES

The most significant effects (top hits) in CL2 included ENPP4 (which promotes haemostasis); ALOX15 (which
generates bioactive lipid mediators including eicosanoids); GLIPR2 (which enhances type-1 IFNs); MPPED? (a
metallophosphoesterase active in infection); /NSR (insulin receptor); and MIR223 (an inhibitor of neutrophil
extracellular trap (NET) formation in infection) (Table 1, Supplementary Table 4).

Immune-related genes significantly expressed in CL5 included complement factor 6 (C6) which forms part of the
membrane attack complex. C6 deficiency is associated with Neisseria spp. infections. CD38 was also highly
expressed, and its product is an activator of B-cells and T-cells.

DETOXIFICATION AND TRANSPORTATION

Top hits in CL4 include ADHIC, an alcohol dehydrogenase; GSTA2 with a known role in detoxification of
electrophilic carcinogens, environmental toxins and products of oxidative stress by conjugation with glutathione;
ACE2, the SARS2-Cov-19 binding site which cleaves angiotensins; and PI/K3R3 which phosphorylates
phosphatidylinositol to affect growth signalling pathways (Table 1, Supplementary Table 4).

CL4 contains five members of the cytochrome P450 families with potential roles in detoxification of microbial
products, including CYP2F I (which modifies tryptophan toxins and xenobiotics); CYP4X1 (unknown substrates);
CYP4Z1 (benzyl esters); CYP4F3 (Leukotriene B4); and CYP2CI8 (sulfaphenazole). Also in CL4 were
transporters SLC10A45 (substrate bile acids); SLC2742 (fatty acids); SLCI1A41 (glutamate); SLC4A411 (borate);
SLC25A44 (ADP/ATP in mitochondria); SLC45A44 (sucrose); SLC25A428 (iron); and SLC39A411 (zinc).

Enrichment of genes for detoxification and transport was also present within CL2, which included CYP4B1
(substrate fatty acids and alcohols); CYP4V2 (fatty acids); CYP2A413 (nitrosamines); CYP2B6 (xenobiotics);
CYP26A1 (retinoids); and CYP4F12 (arachidonic acids). Transporters included SLC40A1 (iron); SLCI3A42
(citrate); SLC15A42 (small peptides); SLC12A47 (KCI co-transporter); and SLC3545 (nucleoside sugars).

NEURONAL DEVELOPMENT

The bronchial mucosa is innervated with unmyelinated fibres that detect airway luminal substances® and mediate
smooth muscle tone, mucus secretion, and cough. Stimulation of airway sensory nerve endings also generates the
release of proinflammatory molecules® (“neural inflammationS!”).

A basis for innervation can be seen in top hits from CL2, which included ENPP5 and HECW2, which have putative
roles in development of airway sensory nerves (Supplementary Table 4). Interestingly, CL2 and CL4 together
contained ten members of the protocadherin beta gene family (PCDHB2, PCDHB3, PCDHB4, PCDHBS),
PCDHBI10, PCDHBI2 and PCDHBI8P in CL2; PCDHBI13, PCDHBI4, and PCDHBI5 in CL4). Interactions
between protocadherin beta extracellular domains specify self-avoidance in specific cell to cell neural
connections®?, and their abundant presence here may regulate singular neural-mucosal cell coherence.

INTERSECTION OF MUCOSAL AND MICROBIAL METABOLOMIC PATHWAYS

Metabolites are central to biological signalling, and so we used the same time-series model of AEC differentiation
to measure levels of metabolites released into the culture media of the cells (Supplementary Table 5).

We then mapped these ALI culture metabolites to enzymes in matching bacterial pathways identified within the
KO of isolate genomes (Figure 4b), based on direct reactions, as substrates or products. Notable interactions
include amino acids, nucleotides and compounds involved in energy metabolism. The metabolite-related KOs
exhibited distinctive patterns within the isolate phylogeny (Figure 4c).

Enrichment of these KOs onto global human and bacterial KO pathways with iPath® is shown in Supplementary
Figures 4a and 4b. These suggest folate biosynthesis to ubiquitous amongst airway organisms, valine, leucine and
isoleucine metabolism to be of intermediate importance and alanine, aspartate and glutamate metabolism to be
rare functions amongst the isolates.

Extrapolation of metabolic activities was possible from binning 16S abundance onto the isolate KOs using an
approach modelled on the PICRUSt program®, revealing metabolite profiles that distinguished measures of
diversity and location within upper or lower airways (Figure 31), as well as distinctive features of asthma and
dysbiosis.
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DISCUSSION

Our results provide an inventory of the genomic and metabolomic capacities of the respiratory commensal bacteria
and of the fully differentiated respiratory epithelium that they inhabit. Known mechanisms through which
commensal microbiota regulate immunity include activations of inflammasomes'>, Nod2 and GM-CSF'¢, and
chemokines!”. Such factors are present in neonates during microbial differentiation with subsequent susceptibility
or resistance to infections'®. Our study suggests multiple other host factors for managing microbial growth,
including metabolites.

It is to be expected that other pathways, particularly involving immune signalling, will only become evident when
bacteria and the mucosa are grown together. With our representative airway isolate collection, our findings set a
stage for systematic investigation of the dynamic interplay within members of the microbial-mucosal complex in
health and in the protean respiratory conditions that arise at the border between the environment and the lung.

Metagenomic sequencing has been the cornerstone of many studies of the bowel microbiota, but non-purulent
sputa (airway secretions) typically contain <5% microbial DNA® and cellular samples such as brushings and
biopsies will contain even less. Abundant pathogens and commensals may nevertheless be identified by
sequencing, albeit at great depth %%, Our results will greatly improve metagenome assembly and allow assays of
individual microbial activities through metatranscriptomics.

Microbial community dysbiosis with diversity loss and overgrowth of pathobionts is recognised in asthma, COPD
and other pulmonary disorders!*?. HRV infections are the major precipitant of acute exacerbations of asthma®”-68
and of COPD®7 yet have trivial effects in most individuals. Here we have found networks of interacting bacteria
that are attenuated in the lower airways, possibly presaging loss of stability’!. The hypothesis can now be tested
that airway dysbiosis and microbial community instability predisposes to catastrophic dysregulation of airway
microbiota and inflammatory processes during acute exacerbations of lung disease. Eventually, the successful
repair of dysbiotic airway microbial communities may help treat asthma and prevent lung infections.
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FIGURES
FIGURE 1. GENOMIC CHARACTERISTICS OF AIRWAY MUCOSAL BACTERIA
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a) Culture collection phylogeny based on average nucleotide identities between genomes with 1000bp fragment length. Putatively novel species are highlighted in red (indicating that it is not
related to any species in the TypeMat DB or NCBI Prok DB (p<0.05) when assessed using MIGA and not assigned to a known species or incongruent species assignment using gtdbtk). Greyed-
out isolates are not fully supported by MIGA and gtdbtk. Genome completeness and contamination are displayed as a barchart. AMR finder was used to identify antimicrobial resistance genes
at the protein level (red panel). Virulence factors were identified using the VFDB and ariba databases and binned into 15 categories (heatmap). Asthma status of the host is indicated in the black
asthma/control panel. Cultivation conditions are indicated in green circles for selected growth media, blue rectangles for aerobic and white rectangles for anaerobic cultivation. Positive gram
staining for GNB, GNC, GPB, GPC and other gram staining is shown in black circles. Neuraminidase activity was tested if a blue star is present and is filled for positive test and white for
negative test. b) Taxonomic novelty as calculated by MIGA using TypeMat reference. The scatterplot shows support (P-value, vertical axis) for each taxon relative to complementary hypotheses
that this taxon is a previously known one (red markers) or a novel one (cyan markers) at each taxonomic level (horizontal axis). Many of the isolate collection constitute novel species within
known genera. ¢) Composition of bacteria isolated and cultivated from five subjects. Counts are shown for all lineages from species level (outer circle) to phylum level (inner circle) in squared
brackets. The ETE3 toolkit was used to fetch taxonomic lineages for all genera of cultured isolates 2. The number of unique species was summed up and visualised along with their lineages
using Krona tools’.
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FIGURE 2. ECOLOGY AND STRUCTURE OF AIRWAY MICROBIAL COMMUNITIES
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a) Mapping of the 50 most abundant OTUs onto 126 novel airway isolates. Isolates are grouped into 15 clusters according to distance
and branching order of their inferred Kegg Ontology (KO) gene content. OTU/isolate nt identity is shown as 95-97% (light blue),
97-99% (medium blue) and 100% (dark blue). The complex relationship between OTUs and isolates reflects multiple copies of the
16S rRNA gene in different taxa, but in general captures KO phylogenetic structures. b) Comparison of abundance (left) and
prevalence right) of bacterial OTUs in populations from northern (CELF) and southern (BUS) hemispheres. The species distribution
is similar between the CELF and BUS studies ¢) comparison of abundance (left) and prevalence right) of bacterial OTUs in the
posterior oropharynx (ptOP) and the left lower lobe (LLL) in CELF subjects. The relative abundance of organisms in ptOP is very
similar to those in the LLL, although absolute abundance is an order of magnitude lower in the LLL. Lower abundance OTUs in the
CELF dataset are more prevalent in the upper than lower airways d) Spearman correlations between the abundance of organisms in
the CELF ptOP samples, showing a high degree of positive and negative relationships between OTUs that is the basis of WGCNA
network analysis. Common phyla are colour coded at the top of the matrix, and WGCNA modules (named for the most abundant
membership) are at the bottom. Network module membership may be dominated by a single phylum (e.g., the Haemophilus or
Streptococcus modules) or contain mixed phyla (e.g., the Veillonella module).


https://doi.org/10.1101/2022.09.08.507073
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.08.507073; this version posted September 8, 2022. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

FIGURE 3. MICROBIAL FEATURES OF DYSBIOSIS
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a) Main drivers of Dirichlet multinomial model-based airway communities. b) beta diversity based on Bray-Curtis dissimilarity
principal coordinate analysis showing separation of the two communities. ¢) alpha diversity measures d) Consistency of airway
community assignment between samples of same and different donor(left) and sampling site (right). ) Proportion of community
assignments between throat samples of different study origin (left), sampling site (middle), disease group (right). f) Univariate
associations of CELF 168 samples binned on phylum level to metadata. g) relative abundance of most abundant phyla (left) and
genera (right) based on CELF samples 16S rRNA. h) Univariate metabolite associations based on binning of CELF 16S rRNA
sequences onto isolate annotation.
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FIGURE 4. GENE AND METABOLITE ABUNDANCE DURING AIRWAY EPITHELIAL DEVELOPMENT
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a) Global gene expression was measured at 7 times over 28 days in an air-liquid model of epithelial differentiation (monolayer to
ciliated epithelium). A total of 2,553 transcripts, summarised by 8 core temporal profiles, showed significant variation in abundance
during mucociliary development. Hallmark functional roles are shown for each cluster. Clusters CL2, CL3, CL4 and CL5 show late
peaks of expression and contain genes that can interact with the microbiome. Upregulated chemokines and immune-function genes
are also noted within the clusters. b) Metabolites (square) measured in the supernatant of the fully differentiated airway cells were
linked to genes (circle) identified in bacterial isolates. Arrows indicate if the reactions were reversible or irreversible, with
metabolites as substrates and products. These networks were built based on KEGG pathways. ¢) Binary heatmap displaying the
presence (1) or absence (0) of genes (columns) identified in the genomic sequences of bacterial isolates (rows). Bacterial isolates
are organised into Kegg Ontology phylogeny clusters (see Figure 2). Gene annotations (top) indicate the frequency of the gene:
‘frequent’ for genes in >75% of isolates, ‘intermediate’ for genes in 25-75% of isolates and ‘rare’ for those in <25% of isolates.
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METHODS
MICROBIAL CULTURE

After sampling. bronchial brushes for extended culture were immediately placed in 15 ml centrifuge tubes with 2
ml sterile saline solution (0.9% w/v) and immediately transported to the laboratory for processing. Samples were
mixed on a vortex mixer twice for 5 seconds. On duplicate plates, 100 pl of the saline was plated on Columbian
blood agar (5% horse blood), chocolate agar or minimal agar with 0.5 % (w/v) mucin. One set of plates were
incubated at 37 °C in standard atmosphere while the other set was incubated at 37 °C in an anaerobic workstation
(Don Whitley DG250). Colonies were selected from 24 hours to 168 hours by appearance, streaked out on their
corresponding media and incubated for a minimum of 48 hours. Plates were then colony selected again and Gram
stained. Aerobic isolates were tested for oxidase and catalase activity. DNA was extracted from brain heart
infusion broth for aerobes and sodium thioglycollate media for the anaerobes. Any isolate which failed to grow
in liquid medium were grown on solid medium and an inoculation loop was used to scrape growth off the surface
of the agar prior to DNA extraction.

WHOLE GENOME SEQUENCING BACTERIAL ISOLATES

Whole genome sequencing was carried out at the Wellcome Sanger Institute, using the HiSeq X platform and
generating paired-end read lengths of 151bp. Genomes were de novo assembled using Bactopia’™ (v 1.4.11).
Taxonomic classification and quality control were performed using MiGA (http://microbial-genomes.org/) with
the TypeMat database. Isolates appearing to contain multiple genomes were discarded.

For all assemblies the average nucleotide identity was computed using fastANI” (v 1.3) with a fragment length
of 500bp and clustered on 99.5% average nucleotide identity. For every cluster, sequencing data of every entity
(isolate) were pooled and processed using Bactopia (v 1.4.11) with default settings. Taxonomic annotation and
novelty scores were computed using MiGA with the TypeMat database as well as the NCBI Prokaryote genome
database for comparison. Functional annotation was performed using prokka (v 1.14.6) as implemented in
Bactopia; and eggnog-mapper’® (v emapper-1.0.3-40-g41a8498) using diamond (v 0.9.24) for the alignments,
reducing the search space to the domain of bacteria. Antimicrobial resistances were annotated using amrfinder (v
3.8.4) and ARIBA (v 2.14.5) using the CARD database (v 3.0.8). Virulence factors were computed using the
VFdb core dataset (v) and binned into higher functional entities using a custom perl script.

Phylogenetic  analysis of the isolates was performed wusing the Bacsort pipeline
(https://github.com/rrwick/Bacsort). First, fastANI distances were computed with a fragment length of 1000 bp
and a maximum distance of 0.2. A phylogenetic tree was constructed using as implemented in the R-package ape”’
(v 5.6-2). The tree was visualized using the Interactive Tree of Life (iTol)’®. Small ribosomal subunits were
extracted from assembled genomes using Metaxa2 and aligned with CELF OTUs using BLAST with 100%
percentage nucleotide identity, e-value=1e-10, and length >206 bp.

KEGG ONTOLOGY AND ISOLATE PHYLOGENY

From the eggnog-mapper output we derived 5,531 Kegg Ontology (KO) annotations for the 126 isolates which
we encoded in a binary matrix indicating presence/absence. We removed 254 zero-variance KOs (that were either
present in all or no isolates) and performed hierarchical clustering of the isolates with the 5,023 remaining KOs
using the Manhattan distance metric and complete linkage. The distance matrix was calculated after removing
2,313 KOs that had identical presence/absence to at least one other isolate. The distance matrix was calculated
after removing 2,313 KOs that had identical presence/absence to at least one other isolate. The Dynamic Tree Cut
algorithm?® identified 15 clusters of isolates that recovered known phylogenetic relationships (Figure 2a). These
15 clusters were then mapped to the OTUs using the 16S rRNA gene sequence similarity (Figure 2a). Based on
OTU similarities, one Streptococcus cluster was split into two additional clusters, resulting in a final set of 16.

We then identified characteristic KOs that were over- or under-represented in each cluster relative to all other
clusters. We scored cluster i and KO j using a 2x2 contingency table, where a: number of isolates in cluster i
containing KO j; b: number of isolates in cluster i without KO j; c: number of isolates not in cluster i containing
KO j and d: number of isolates not in cluster j without KO j; from which we calculated odds ratios (ORs) using
ad/bc. 0.5 was added to cells with zero counts (the Haldane-Anscombe correction). Logl0(OR) was used a
summary statistic to rank the KOs by importance for a given cluster. The 2,313 duplicate KOs were assigned the
same score as their duplicated counterpart used to construct the distance matrix.

HUMAN STUDY POPULATIONS

Samples included in this study were collected from two study populations, The microbial pathology of asthma
study (Celtic Fire, CELF) and the Busselton health study, a long running epidemiological survey in South-Western
Australia (BUS).
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The CELF study was a multicentre, cross-sectional study of asthmatic adults and healthy controls. Participants
were recruited from 3 UK centres, Connolly Hospital, Dublin; The Royal Brompton Hospital, London; and
Swansea University Medical School, Swansea. Ethical approval for the study was granted by the London-
Stanmore Research Ethics Committee (reference 14/L0/2063). All subjects provided written informed consent.
Subject groups were: healthy subjects (non-smokers and current smokers; asthmatic patients taking short-acting
beta agonists only (BTS Step 1) ; asthmatics on moderate dose of inhaled corticosteroid (ICS) (up to 800 pg/day
of beclomethasone propionate (BDP equivalent)+ long-acting B-agonist LABA (BTS Step 2/3); asthmatics on
high dose ICS (ICS dose >=1600 pg/day) + LABA + other controllers (theophyllines, LTRA, LAMA) (BTS Step
4); and asthmatics on high dose ICS (ICS dose >=1600 pg/day) + LABA =+ other controllers + oral prednisolone
+ anti-IgE treatment (BTS Step 5). Severe asthma was defined as BTS step 4 or 5. Exclusion criteria were:
Asthmatic subjects must be non-smokers or ex-smokers with < 5 pack-years smoking; BMI>35; diagnosis of
rheumatoid arthritis, allergic bronchopulmonary aspergillosis, or Churg-Strauss syndrome; drug therapy with
beta-blockers, ACE inhibitors, anti-asthma immune modulators other than steroids; antibiotics within 4 weeks of
study; acute exacerbations of asthma within past 4 weeks; history of an upper or lower respiratory infection
(including common cold) within 4 weeks of baseline assessments; confounding occupations (such as baking); and
significant vocal cord disorder.

Participants were invited to initial assessments prior to bronchoscopy. A posterior oro-pharyngeal (ptOP) swab
was taken from each participant immediately before the bronchoscopy commenced. During bronchoscopy, two
bronchial brushings were taken from the left lower lobe (LLL) of each subject. If tolerated, two further brushes
were taken from the left upper lobe (LUL). An additional bronchial brush from the left lower lobe of five study
participants from The Royal Brompton Hospital were processed for extended bacterial culture (described below).

All other samples were stored at -80°C within 1 hour of collection. Those harvested at The Royal Brompton
Hospital were transported stored directly to the Asmarley Centre for Genomic Medicine (ACGM) at the same
site. Samples at other sites were stored locally at -80°C for a maximum of 6 months prior to transport to the
ACGM on dry ice.

Investigation of the BUS subjects was as previously described’. ptOP swabs were collected with the same
protocols as CELF from 527 individuals. After local storage at -80°C, ptOP swabs were transported on dry ice to
the ACGM for further processing.

DNA EXTRACTION AND QUANTIFICATION

Microbial DNA extraction from Celtic Fire samples was carried out using a hexadecyltrimethylammonium
bromide (CTAB) and bead-beating double extraction using phase lock tubes. Bacterial isolates were extracted
using a single extraction method. Full details of extraction protocols for each sample type are outlined in
Cuthbertson et al 2020 (Protocols.io). Bussleton throat swabs were extracted using the MPBio DNA extraction
kit for Soil, as previously described®. DNA was stored at -20°C until processing. Microbial DNA quantification
was carried out using a SYBR green 16S rRNA gene gPCR”.

MICROBIAL 16S RRNA ANALYSES

16S rRNA gene sequencing was performed on the Illumina MiSeq platform using dual barcode fusion primers
and the V2 500 cycle sequencing kit. Sequencing was performed for the V4 region of the 16S rRNA gene as
previously described>”’. Sampling and extraction controls, PCR negatives and mock communities were included
on all sequencing runs.

All samples and controls from both the Celtic Fire and BUS datasets were included in this analysis and were
processed through the QIIME 2.0 analysis pipeline.

Sequences were quality trimmed to 200bp using trim-galore (Version 0.6.4) and joined with a maximum of 10%
mismatch and a minimum of 150 base pair overlap using joined paired_ends.py (Version 1.9.1). Data was quality
checked using FASTX Toolkit (Version 0.0.14) prior to de-multiplexing.

Reads were dereplicated and open reference OTU clustering was performed in QIIME 2. Chimeric sequences
were identified and removed, leaving borderline calls in the analysis. Phylogeny was aligned using mafft followed
by consensus taxonomic classification. The Biom file, tre file and taxa identifications were exported for further
analysis.

Processed data was transferred to R (Version 3.6.3) and uploaded into Phyloseq (Version 1.3). Reads unassigned
or assigned to Archaea at the kingdom level were removed before further analysis along with reads identified as
Chloroplast or Mitochondria. All OTUs with less than 20 reads (reads present in less than <2% of the samples (n
= 1,174)) were removed from further analysis.

Contaminant OTUs were identified using Spearman’s correlation between bacterial biomass with number of reads
per samples. OTUs were considered to be contaminants with a Benjamini-Hochberg corrected P-value of <0.05
and a correlation value of >0.2.
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Due to the nature of the differences in the extraction and sequencing protocols between BUS and CELF studies,
contaminants were investigated in the whole dataset and in CELF and BUS separately. OTUs identified using the
individual datasets were removed from further analysis (Table S2). The “Prevalence” method in Decontam
(Version 1.6) with a threshold of 0.1 and controlling for study, identified a further 55 OTUs contaminant OTUs
associated with negative controls. All OTUs identified were checked and found to be consistent with
contamination®.

COMMUNITY ANALYSES OF 16S RRNA SEQUENCES

OTU counts were rarefied to the size of the smallest retained sample (discarding samples with too few reads) to
obtain the relative abundances of the microbiota in each sample accounting for read depths.

Univariate analysis was done using metadeconfoundR (https://github.com/TillBirkner/metadeconfoundR),
relative abundances were tested for univariate associations with clinical variables, requiring Benjamini-Hochberg
adjusted FDR < 0.1 and the absence of any clear confounders. Only major taxa and OTUs detected after rarefaction
in at least 10% of samples were used.

Within metadeconfoundR, as described elsewhere®* non-parametric tests were used for all association tests as the
data was not normally distributed. For discrete predictors, the Mann-Whitney test (two-categorical variables) or
the Kruskal-Wallis analysis of variance (more than two categorical variables) were used. For pairs of continuous
variables, a non-parametric Spearman correlation test was used. Benjamini-Hochberg False Discovery Rate
control (FDR) was applied to control for multiple testing controlling the family-wise error rate at 10%.

Hierarchical clustering on the relative abundance profiles were used to establish grouping patterns of the different
study samples, including an updated adaptation of the approach used to define “enterotypes” in the human gut,
this so called pulmotyping was performed using the Dirichlet Multinominal package, fitting a Dirichlet-
multinomial model on the count matrix of genus relative abundance to classify genus abundance based on
probability. Each count x in the matrix corresponds to a feature (of n features in total) in the composition observed
in the replicate sample. Replicates are grouped into k groups. This parameterization of the Dirichlet distribution
for k parameters corresponds to the expected proportions of each of the features (e.g., a particular taxon) in group
k, and is an intensity that is shared among all features. The hyperprior for the k parameters at the ‘topmost’, or
most inclusive, level of the model hierarchy is another Dirichlet distribution with equal prior probability for each
feature within the composition. These distributions together form a hierarchical model for relative abundances
among samples used to cluster all samples into different pulmotypes. The chi-square test implemented in base R
was used to test for significant differences in the resulting pulmotype distribution between samples grouped by
disease status.

Redundancy-reduced isolate abundance/sample (from 16S) and annotation isolate to KEGG KOs were used to
generate a sample to KO projection. The projection was mapped to KOs involved in generating the metabolites
highlighted by the ALI experiments®, by multiplying taxon abundances with the KO presence/absence matrix to
yield functional potentials and a proxy for expected metabolite turnover. MetadeconfoundR analysis of this matrix
was then carried out together with clinical metadata accompanying the OTU abundance analysis.

AIRWAY EPITHELIAL CELL CULTURE

Primary normal human bronchial epithelial (NHBE) cells (Promocell, Germany) derived from a 26-year old adult
were grown on collagen coated flasks using the Airway Epithelial Cell Growth Medium Kit (Promocell, Germany)
supplemented with bovine pituitary extract (0.004ml/ml), epidermal growth factor (10 ng/ml), insulin
(recombinant human) (5 pg/ml), hydrocortisone (0.5 pg/ml), epinephrine (0.5 pg/ml), triiodo-L-thyronine (6.7
ng/ml), transferrin, holo (human) (10 pg/ml) & retinoic acid (0.1 ng/ml) (Promocell, Germany) and Primocin
(Invivogen, France).

At passage 3, NHBE cells were seeded onto 12 mm Transwell inserts with 0.4 pm pore polyester membranes at
a density of 2.5x10° cells/insert. Cells were maintained in ALI medium, a 50:50 mixture of ALI x2 media (Airway
Epithelial Cell Basal Medium with 2 supplement packs added (without triiodo-L-thyronine and retinoic acid
supplements) and 1 ml BSA (3 pg/ml)) and DMEM supplemented with retinoic acid (15 ng/ml) (Sigma Aldrich,
Gillingham, UK). Cells were fed apically and basolaterally until 100% confluent, after which they were fed
exclusively basolaterally with apical media removed. This was defined as ‘Day 0°, the start of the ALI culture.
Media was changed three times a week for 28 days, at which stage full differentiation had occurred. At seven
points during culture we performed transepithelial electrical resistance (TEER) measurements, took apical
washings for ELISA measuring MUCS5AC, harvested triplicate wells for gene expression microarray analysis and
qPCR for MUCS5AC mRNA as well as harvested quadruplicate wells and culture supernatants for metabolomics
analysis. NHBE cell pellets and 200ul basolateral supernatants were snap-frozen in liquid nitrogen and stored at
-80°C for metabolomic analysis.
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All cell culture experiments were regularly tested for mycoplasma contamination using LOOKOUT®
Mycoplasma PCR Detection Kit (Sigma-Aldrich, USA) for mesothelioma cell culture and PCR Mycoplasma Test
Kit I/C (Promokine, Germany) for NHBE cell culture.

METABOLOMICS ANALYSIS

Metabolic profiling performed by Metabolon Inc (NC, USA) followed their standard protocols. NHBE cell
samples were analysed using LC-MS and GC-MS methods. All samples were given unique identifiers and bar-
coded for tracking throughout the analysis pipeline. The Metabolon LIMS system was used to extract raw data,
identify peaks and process QCs. Metabolites were identified by comparing retention times, m/z and
chromatographic data to library entries of purified standards and recurrent unknown entities. All library matches
were confirmed with interpretation software and the assigned compounds were curated. Metabolite data from cell
lines were normalised by cell density and missing values, below the limit of detection, were imputed with the
lowest detected value for the corresponding variables for subsequent analysis.

Analyses were performed using R (version 4.1.1). The MetaboSignal package®' was utilised to link media
metabolites to KOs via their shortest paths, according to KEGG pathways. These pathways were filtered to display
only direct reversible and irreversible reactions. Metabolites and KOs were mapped to human and microbial
metabolic pathways using iPath 3.0 (https://pathways.embl.de/)®.

TRANSCRIPTOMICS OF NHBE

Approximately 200ng total RNA (with the exception of one sample in which 100ng total RNA was used) was
prepared for whole transcriptome microarray analysis using the Ambion WT Expression kit. Purified cRNA yield
was assessed using an Agilent 2100 Bioanalyzer and then taken forward for reverse transcription to yield sense-
strand cDNA. A total of 5.5ug of sense-strand cDNA was fragmented and labelled using the Affymetrix GeneChip
WT Terminal Labelling Kit prior to hybridization to the GeneChip ST2.1 Array. Micorarray libraries were
hybridised, washed, stained and imaged using the Affymetrix Genetitan.

Analyses were carried out in R (version 3.1.0). Raw data was imported into R and quality control carried out using
arrayQualityMetrics (version 3.20.0), detecting outlier arrays that are likely to skew data upon normalisation. Any
outlier arrays were excluded and the corresponding samples re-processed and run on arrays until all samples had
successfully passed quality control. QC-passed arrays were normalised by Robust Multichip Average (RMA)
using Affymetrix Power Tools (version 1.12.0). Probe-sets that had below-median levels of expression in all
arrays were removed. Differential expression was determined using linear modelling of the time-course using the
Limma package (version 3.20.0)32. All P values are corrected for multiple testing; using a method derived from
Benjamini and Hochberg’s method to control the false discovery rate®>.

Transcripts were clustered based on their expression patterns over the time-course using a soft-clustering approach
(MFUZZ)*. Gene ontology was determined by the HOMER (Hypergeometric Optimization of Motif
EnRichment, version 4.7) program®®. Fold-change per gene ontology term was determined by: (number of target
genes in term / total number of target genes) / (total number of genes in term / total number of genes in background
list).

Temporal variation in gene expression was assessed by fitting a temporal trend using a regression spline with 3
df (Limma, 3.22.7). P-values were adjusted for multiple testing, controlling the false discovery rate (FDR) below
1%. TC annotations were compiled from NetAffx (access date 30/06/2020) and hugene2 1sttranscriptcluster.db
(8.5.0). Common temporal expression patterns were sought amongst differentially expressed genes using the
unsupervised classification technique Mfuzz (2.26.0), informed by the minimum distance between cluster
centroids (Dmin).

NETWORK ANALYSIS

Co-abundance networks were constructed using Weighted correlation network analysis (WGCNA)*®. We
constructed WGCNA co-abundance networks separately using the CELF ptOP, CELF LLL and BUS ptOP
samples, including any OTUs that appeared in 20% of samples in at least one of these four subsets (646 OTUs).
Spearman correlation was used to construct the WGCNA adjacency matrices. OTU reads were transformed using
log(x+1) prior to WGCNA analysis.
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