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Abstract 

 

Over the past several decades, metrics have been defined to assess the quality of 

various types of models and to compare their performance depending on their 

capacity to explain the variance found in real-life data. However, available validation 

methods are mostly designed for statistical regressions rather than for mechanistic 

models. To our knowledge, in the latter case, there are no consensus standards, for 

instance for the validation of predictions against real-world data given the variability 

and uncertainty of the data. In this work, we focus on the prediction of time-to-event 

curves using as an application example a mechanistic model of non-small cell lung 

cancer. We designed four empirical methods to assess both model performance 

and reliability of predictions: two methods based on bootstrapped versions of 

parametric statistical tests: log-rank and combined weighted log-ranks 

(MaxCombo); and two methods based on bootstrapped prediction intervals, 

referred to here as raw coverage and the juncture metric. We also introduced the 

notion of observation time uncertainty to take into consideration the real life delay 

between the moment when an event happens, and the moment when it is observed 

and reported. We highlight the advantages and disadvantages of these methods 

according to their application context. With this work, we stress the importance of 

making judicious choices for a metric with the objective of validating a given model 

and its predictions within a specific context of use. We also show how the reliability of 

the results depends both on the metric and on the statistical comparisons, and that 

the conditions of application and the type of available information need to be taken 

into account to choose the best validation strategy. 

 

Introduction 

Mechanistic models and by extension knowledge-based models provide a 

mathematical representation of biological phenomena, and by extension 

physiological and pathophysiological mechanisms. Based upon knowledge in the 

literature describing components of biology which are integrated using fundamental 

laws of nature such as physical and biochemical principles, these models allow 

representation and analysis of complex dynamic behavior of variables seen in 

biology and clinical trials 1, 2. During the past decade, mechanistic models have been 

progressively integrated into the pharmaceutical research and development 
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industry workflow to provide valuable decision support in addition to conventional in 

vitro and in vivo approaches 3 4. 

An essential benefit of mechanistic models, when compared to statistical models or 

machine learning approaches, is that the model equations and associated 

parameters have a direct physical or biological meaning. Indeed, statistical models 

are based on the correlation found between variables while mechanistic ones model 

causality. This facilitates the overall comprehension of the process and the scientific 

interpretation of model results 5. Moreover, mechanistic modeling can predict 

biological or physical behaviors that have not yet been reported by currently 

available in vivo or in vitro experiments 6 7. 

However, because of their complexity, and because this approach is more driven by 

knowledge, which can be considered as consolidated data, and less so by analysis 

of a small number of raw data from a very limited trial dataset, their credibility is 

often questioned compared to historical approaches, particularly their capacity to 

fully reproduce real-world data 8 9. For this reason, while the adoption of mechanistic 

modeling is in use at most major pharmaceutical/biotechnological companies, and 

its application is accelerating, trust in the relevance of such approaches for 

predicting novel phenomena is still a work-in-progress 10 11 12.  

 

Even if the links between the variables of interest in these models are reported and 

justified in the literature, the range, the distribution and the correlation of their 

parameter values are difficult to evaluate. To overcome this problem, calibration is 

now a standard step in mechanistic model construction. Calibration can be defined 

as the search for a set of model parameter values that allows the model to 

reproduce a predefined set of behaviors and dynamics, observed in real life 13. 

However, how can we ensure that a model calibrated on several relevant datasets is 

good enough to be considered as validated and credible for its intended use?  

 

Indeed, as with statistical models, mechanistic models have to be validated in order 

to confirm that their predictions are reliable and accurate. To avoid tautological bias 

and improve model credibility, this step requires data that has not been previously 

used for other purposes, such as model calibration 14 15. 

Model validation is a very topical issue, and is of interest to regulatory agencies. 

Indeed, the ASME V&V 40 Subcommittee on Verification and Validation (ASME V&V 

40) in Computational Modeling of Medical Devices developed a risk-informed 

credibility assessment framework including a quantitative validation phase 10, and 

the European Medicines Agency (EMA) has drafted a specific guidance on the 
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reporting of PBPK models including the evaluation of the predictive performance of 

the drug model 16. According to these guidelines, the context of use (CoU) of a model 

must also be defined, which defines the specific role and scope of the model in 

addressing the questions of interest 17. 

 

The validation on retrospective data requires careful choice of appropriate metrics 

that take into account the nature of the measurements and the existing variability 

and bias 18 19 20. In the case of mechanistic models, the outputs are variable dynamics 

over time which are, most frequently, related to discrete reported observational or 

experimental values. Such experimental measures show an inherent variability due 

to the type of instruments that were used, as well as its resolution or sensitivity level, 

the quality of the sample, the applied protocol, human variability in reporting results 

and variability between samples 21 22 23 24, that also needs to be considered in the 

establishment of a validation strategy. In a situation of time-to-event (TTE) data, an 

additional difficulty can arise. Indeed, the TTE reported in real life corresponds to the 

moment when the event is detected by the observer, and not to the moment when it 

really happened. These two moments can be separated by a potentially significant 

period of time depending on the frequency of observations. Moreover, the model’s 

purpose is to predict the exact time until the occurrence of the event, and not the 

time to the observation of the event. This concept also has to be taken into 

consideration during the validation process.  

Another goal of the validation process is also to guarantee that the model is not 

overfitted, which can happen if it was calibrated using datasets with limited 

variability. Additionally, the validation should as well assure that the variability of 

predictions of the model is not excessively wide. The latter can be assessed by 

evaluating the prediction intervals, that is to say, the range within which future 

observations should fall. Therefore, an adequate validation strategy should prevent 

both overfitting and underfitting as designing a model with the appropriate 

complexity requires achieving a balance between bias and variance, as well as a 

control of overfitting. Otherwise, if the prediction interval is too wide, the model’s 

outputs will lack precision and therefore the model’s credibility and usefulness will be 

low 25. 

In order to demonstrate how the validation approach is applied, a case study 

including TTE oncological data will be described. 

In summary, in this article we address the following challenge: how to properly 

manage the validation process when faced with a multi-condition situation, namely: 
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� Discrepancy in the size of the data to be compared: indeed, on the one hand, 

a mechanistic model may produce a very large amount of data. On the 

other hand, we wish to challenge the model outputs with a limited 

experimental validation dataset. Issues such as excess of statistical power, 

discrepancy in variability and uncertainty quantification will likely arise. 

� Hypotheses for the application of statistical tests are not always verified 

producing a lack of statistical power. 

� The uncertainty linked to the occurrence of events during clinical studies: the 

observation time uncertainty (further detailed in the “Methods” section), that 

is not handled by one deterministic model. 

  

In this article, we focus on quantitative validation, a step of the overall validation 

process recommended by the regulatory guidelines (ASME V&V 40 26 and EMA 16). We 

introduce multiple methods suited to validate deterministic non-linear mechanistic 

models including feedback loops, producing a TTE type of outcome. Importantly, 

these validation approaches consider both the model uncertainties and the 

variability of validation data.  

We first present the methodology behind each one of those approaches, including 

the pre-processing of the dataset. Then, to answer the question of interest, we 

design four empirical methods to assess the model’s performance and the reliability 

of predictions: two methods based on bootstrapped versions of parametric 

statistical tests (log-rank and combined weighted log-ranks - MaxCombo) and two 

methods based on bootstrapped prediction intervals (that we named raw coverage 

and juncture metric). We also introduce the notion of observation time uncertainty 

(OTU) to take into consideration the delay between the moment when an event 

actually occurs, and the moment when it is witnessed and reported.  

We then present an application on a clinical example. We finally discuss our results, 

highlight the advantages and disadvantages of these methods according to the 

application context, compare the performances and conclude. 

 

Methods 

The statistical approaches, which are described hereafter, are combined with two 

additional mathematical concepts in order to better match the actual clinical 

context of this application example. Thus we first introduce the bootstrap and OTU 

concepts and then proceed with the actual statistical validation approaches. 
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Bootstrap 

In the context of modeling and simulation, one is not theoretically limited by the 

number of simulated statistical units (patients). This can be an advantage but also a 

drawback when using inferential statistics. Indeed, under the assumption of the 

same variance of the data, the statistical power will increase with the size of the 

sample 27. This can lead to a misinterpretation of the results, concluding that there is 

a statistical difference between compared groups when there is none 28. In order to 

control this statistical power, to avoid tests from being overly sensitive to negligible 

differences between groups, and to take into account the model uncertainty and the 

variance of the sampling in the simulation results, a bootstrapped version of the 

statistical tests is recommended 29 30 31. We propose to apply a bootstrapped 

approach that consists in drawing a sample from the simulation outputs, of the 

same size as the observed population, then performing the statistical test of interest 

to compare the virtual sample and the corresponding observed population and 

storing its result. The output of the bootstrapped approach is the ratio of non-

significant tests at a defined alpha risk (set to 5% in our case) out of the total number 

of performed tests. Note that the proportion of rejections is the estimated empirical 

power of the used test (bootstrap power)34 35 35. To determine how many iterations 

are required, preliminary tests are performed to see how long it takes for the ratio of 

non-significant tests to become stable. This process is then repeated n times, and 

the ratio of non-significant tests is compared to a given predefined threshold.  

Observation Time Uncertainty 

The mechanistic models considered here are deterministic. Because we have 

access by design to the model outputs at all time points, the exact time at which a 

simulated event takes place can be determined. This model output is named the 

predicted-time-to-event (PTTE). In real patients, the true TTE can only be bounded 

between the time of two observations. We do not know the “exact” time-to-event. 

Therefore, an unknown difference between the PTTE and the reported time-to-event 

(RTTE) exists, bounded by the time between two observations (Figure 1). This time 

frame is what will be called the OTU, and depends on the delay between two 

observations. In other words, the actual TTE could have occurred in a time period 

ranging from the reported RTTE to the RTTE minus the time elapsed since the 

previous observation period. Nevertheless, one should keep in mind that we should 

not expect the model to cover this entire period since there is no evidence that the 

whole area reflects the real time at which the event occurred. A visual representation 

of the OTU is presented below. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2023. ; https://doi.org/10.1101/2022.09.08.507079doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507079
http://creativecommons.org/licenses/by/4.0/


 

8

 

Figure 1: Representation of the observation time uncertainty. If an event happens between 

observation 1 and observation 2, it will only be reported at the time of observation 2. The 

observation time uncertainty corresponds to the time between two observations. To note, even 

though the TTE can theoretically happen any time between two observations, it is unknown 

whether this is true in a real life context. TTE: time-to-event, RTTE: reported time-to-event 

 

The two concepts introduced above (bootstrap and observation time uncertainty) 

will be used in combination with the following validation approaches. Their 

description as well as their advantages and limits will be described. 

 

Raw coverage 

In order to perform both a quantitative and a visual validation of the computational 

model based on the validation dataset, a raw data coverage validation is 

performed. This approach consists of computing the percentage of the observed 

curve covered by the prediction interval of the model. In the context of simulation, 

there is no limit to the number of times one can run the same model, changing a few 

numbers of parameters and getting a new endpoint value. As a consequence, one 

can perform a large number of model runs so that there are more available model 

endpoints values than the number of endpoints values reported within the real 

population. Therefore, the definition of the prediction interval computed using 

bootstrapping has been adapted. At each iteration, a sample of simulated endpoints 

of the same size as the size of the real life population is taken from the set of 

simulated endpoints, and a Kaplan-Meier (KM) time to progression curve is 

estimated. This step is repeated n times. The 95% prediction interval of the average 

simulated curve is then calculated. It corresponds to the interval between the 2.5th 

percentile value and the 97.5th percentile value of the n-th simulated TTE curves. The 

level of coverage of the observed curve with the prediction interval of the simulated 

curve is then computed: for each time point, a check is performed to see if the 
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observed curve is within the prediction interval - value is set to “True” - or not - value 

is set to “False” -. The percentage of “True” values is then computed. It is considered 

that a coverage value of at least 80% is acceptable to consider the model as 

validated (see Figure 2 based on generated synthetic data for illustrative purposes).  

The raw coverage approach has the advantage of using the raw observed data 

without any prior transformation, considering that the real events occurred exactly at 

the moment of the reported event. In addition to the computed metric, the raw 

coverage allows one to easily perform a graphical check of the model’s ability to 

reproduce the observed results. 

 

The fact of considering that the event happened exactly at the time of the 

observation can also be considered as a limitation, as this is very unlikely. Indeed, the 

real event most certainly occurred sometime in between observation periods. 

Another point of concern is that the value of the raw coverage strongly relies on the 

width of the prediction interval. Indeed, the wider the interval, the more chances for 

the observed curve to be included in it. This means that if the model produces a lot 

of variability, then the raw coverage value will most certainly be very high.  

 

 

Figure 2: Representation of the raw coverage. The purpose of this example is to illustrate the 

raw coverage metric based on generated synthetic data. In the time interval of 0 to 10 months, 

the synthetic reference curve is covered by the prediction interval from t=0 to t=3.6 months, 

then between t=7.95 and t=10 months. This gives a raw coverage of ((3.6-0) + (10-7.95)) / (10-

0) = 56.5%. 
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Juncture 

The juncture approach is similar to the raw coverage in the way that it is both a 

mathematical and a visual validation method. It differs from the latter by the fact 

that it takes into account the OTU in the form of an interval. This approach aims to 

measure the proportion of time over the entire observation period where the 

observed interval and the 95% prediction interval overlap even if it is only partially. At 

each time point where observed data is available, a check is performed to see if the 

two intervals contain common values. The juncture approach metric corresponds to 

the ratio of time points where this condition is met, over the total number of time 

points. If the ratio is greater than a predetermined threshold, then, the model is 

considered to be validated (see Figure 3 based on generated synthetic data for 

illustrative purposes). 

 

The juncture approach metric takes into consideration the OTU and for this reason, 

this approach does not rely on the assumption that the event occurred exactly at the 

time it was reported. Similarly to the raw coverage, it is easy to identify the periods of 

time during the observation period where the simulation outputs successfully 

reproduce the observed data. 

 

One of the limits of the metric associated with this approach is that it is strongly 

dependent on the width of both intervals, that is to say on the variability initially 

included in the computational model, which can come from the data used to 

calibrate it, as well as on the size of the OTU. Indeed, the larger the time in between 

observations, the wider the interval, and vice versa. Moreover, with the juncture 

approach, even a slight overlap of the two intervals is enough to be considered 

satisfactory, at a given time point. This means that overall, even if a small fraction of 

the observed data is covered by the simulated outputs over the entire observation 

period, then the entire prediction will be considered as validated, even if the latter is 

shifted up or down compared to the observations. Similarly to the raw coverage, the 

juncture approach does not rely on a statistical test, with a p-value as an output, but 

instead on an arbitrary value between 0 and 100%. Similarly to the raw coverage, a 

value above 80% is considered to be acceptable to judge the model predictions as 

validated. 
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Figure 3: Representation of the juncture metric. The purpose of this example is to illustrate the 

"juncture" metric based on generated synthetic data. In the time interval of 0 to 10 months the 

synthetic reference interval overlaps, at least partially with the prediction interval from t=0 to 

t=5 months, then between 6.8 and 10 months. This results in a juncture of ((5-0) + (10-6.8)) / 

(10-0) = 82%. 

 

Bootstrapped log-rank test 

The log-rank is a well known and widely used test to compare survival curves 35 36. Its 

statistic is based on the computation of the difference between the observed and 

expected number of events in one of the groups at each observed event time. These 

differences are then added up to get an overall summary across all-time points 

where there is an event. The log-rank does not rely on the proportional hazards 

assumption, that is to say the risk associated with the event of interest remains 

proportional in both compared groups over the course of the follow-up period. It is a 

valid test of the null hypothesis of equality of survival functions but it is likely to be 

less powerful in case of violation of the proportionality of risk assumption and is in 

this case more effective for detecting the alternative hypothesis 37 38.  

Log-rank’s assumptions are the following: the degree of censoring should not be 

related to the outcome, and the events should have really happened at the reported 

time.  

The log-rank test is integrated into a bootstrapped approach, and is tested first on 

the raw experimental data. It is then tested again with an OTU sampled from a 

uniform distribution U(-OTU, 0) being assigned to each real patient, at each iteration. 
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A given number of bootstrap iterations are performed and the ratio of significant 

tests at a given alpha risk level is assessed. If this proportion does not exceed a 

certain predetermined threshold, the model is considered to be validated. 

At each iteration proportional hazards assumption is checked, for exploratory 

purposes 39 40. 

 

The advantage of the log-rank based validation approach is that it relies on a 

statistical test frequently used to assess differences between two samples when it 

comes to TTE data, making its results easy to understand. The proposition to 

combine the log-rank test with a bootstrap approach, with a sampling of a number 

of model runs comparable to the number of real patients, prevents it from being 

excessively sensitive to differences between groups because of an excess of 

statistical power induced by a very large number of statistical units.  

 

However, because the statistical power of the log-rank test is affected by the 

proportional hazards assumption, its results might not be considered reliable for  

samples where the assumption is not met 37. This implies that if the number of 

samples where the proportional hazards assumption is not met is high, the ratio of 

significant tests can be biased. A method more suited for the situations where the 

proportional hazard hypothesis is not met is introduced in the next section. 

In the case where the OTU is not taken into account, the TTE curve based on the 

sample taken from the simulated data is directly compared to the raw observed 

data, implying that the reported (RTTE) and the real TTE are equal, which can be 

considered as a strong assumption. 

 

Bootstrapped weighted log-rank tests combination 

Several statistical methods have been developed to better manage the risk of type 1 

error and to optimize statistical power in a situation where the proportional hazard 

assumption is not met 37 41 42 43. One of these methods is the use of a combination of 

weighted log-rank tests, called the MaxCombo approach 44 45. This approach 

consists in the use of the Flemming-Harrington family of weights (FH(rho, gamma), 

rho, gamma ≥ 0). The combination of weights that is used is the following: 

- FH(0,0) corresponding to a regular non-weighted log-rank 

- FH(1,0) for a log-rank putting more weight on early differences 

- FH(1,1) where weights are put on mid-observation differences 

- FH(0,1) where late differences are given more weight 
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Similarly to the log-rank, this approach is also bootstrapped. At each iteration of the 

bootstrap, all four tests are performed, and the one with the highest z-score, that is 

to say, the test with the weights showing the largest difference between KM curves, is 

selected. Given the fact that four tests are performed at once, a Bonferroni correction 

is applied to the p-value of this test. 

 

The weighted log-rank combination approach is a more robust version of the 

standard log-rank based one, usable even in the situation where the two compared 

survival curves cross, implying the proportional hazards assumption is not met. By 

drawing sub-samples, from the very large simulated population, of the same size as 

the observed population (a reasonable sample size), we control the occurrence of 

excessive statistical power related to large samples, preventing the test from being 

overly sensitive to neglectable differences between the two groups. 

 

As out of the four tests performed at each iteration, it is the one with the highest z-

score that is selected, this approach tends to find more differences than a standard 

Log-rank because more weight is put on the time period where the distance 

between KM curves is at its maximum. For this reason, the validation acceptance 

threshold has to be defined accordingly, and should eventually be set lower when 

compared to other approaches. Similarly to the bootstrapped Log-rank test, this 

approach is launched twice, first without the OTU, and a second time with a random 

OTU assigned to real patients at each iteration. 
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The advantages and limits of the 4 validation methods as well as their variants with OTU are summarized in the table 1 below. 

Method Advantages Limits 

Raw coverage � Based on the reported and non pre-

processed data 

� A graphical check can easily be performed to 

assess the quality of the coverage 

� Does not take  into account the OTU 

� Strongly dependent on the width of the 

predicted interval 

� Does not rely on a statistical test 

Juncture � Takes into consideration the OTU 

� A graphical check can easily be performed to 

see how well the observed and predicted 

intervals overlap 

� Strongly dependent on the width of both 

observed and predicted intervals 

� A minimal overlap between the two intervals 

is enough to consider the predictions as 

validated for a given time point 

� Does not rely on a statistical test 

Bootstrapped log-rank (without OTU) � Based on a statistical test frequently used in 

a TTE context 

� Combined with a bootstrap approach to 

avoid an excess of statistical power 

� Does not take into account the OTU 

� Credibility of the result if the proportional 

hazards assumption is not met 

Bootstrapped log-rank (with OTU) � Based on a statistical test frequently used in 

a TTE context 

� Combined with a bootstrap approach to 

avoid an excess of statistical power 

� Takes into consideration the OTU 

� Credibility of the result if the proportional 

hazards assumption is not met 

Bootstrapped combination of weighted 

log-ranks (without OTU) 

� Based on an improved version of the log-

rank test, more robust in case of non-

proportional hazards 

� Combined with a bootstrap approach to 

avoid an excess of statistical power 

� Does not take into account the OTU 

� Can be overly sensitive to minor differences 

because of its design 

Bootstrapped combination of weighted 

log-ranks (with OTU) 

� Based on an improved version of the log-

rank test, more robust in case of non-

proportional hazards 

� Combined with a bootstrap approach to 

� Can be overly sensitive to minor differences 

because of its design 
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avoid an excess of statistical power 

� Same as above 

� Takes into consideration the OTU 

Table 1: Summary of the characteristics of the validation methods (OTU: Observation Time Uncertainty, TTE: Time-To-Event) 
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Application example: validation of a mechanistic model of lung 

adenocarcinoma under gefitinib treatment 

The methods that were presented in the previous section were assessed and tested 

on a knowledge-based mechanistic model of the tumor evolution of patients with 

lung adenocarcinoma. 

This model, named the In Silico Epidermal growth factor receptor Lung 

Adenocarcinoma (ISELA), evaluates tumor growth and progression in patients 

harboring a mutation on the Epidermal Growth Factor Receptor (EGFR), and relies on 

a mechanistic representation of the lung adenocarcinoma (LUAD) evolution from 

specific EGFR mutations to clinical outcome. It includes shrinkage in response to the 

administration of a first generation tyrosine kinase (TKI) drug called gefitinib. This 

model was calibrated with publicly available data 46 47 48 49 50 51, and details regarding 

the calibration of tumor growth are given in a paper published by Palgen et al. 52. It 

should be noted that this model is not designed to predict mortality from any cause, 

but rather developed to predict time to tumor progression (TTP), which was deduced 

from progression-free and overall survival curves. 

 

In this application context, we focus on the TTP clinical endpoint and will apply our 

validation strategy to ensure the ISELA model’s accuracy on a dataset that was not 

previously used in the calibration process: the one extracted from Maemondo et al. 

and not previously used for calibration purposes 53. This study compares the effect of 

gefitinib versus chemotherapy on NSCLC (of which 90.4% are LUAD) with mutated 

EGFR. The trial described in the article, and called NEJ002, took place in Japan and 

gefitinib was used as the first-line treatment. About 90% of the analyzed population 

had stage IIIb or IV cancers. In this study, gefitinib (250 mg/d) was orally 

administered once daily, until disease progression, development of intolerable toxic 

effects, or withdrawal of consent. The progression-free survival (PFS) and the overall 

survival (OS) curves were manually extracted for patients treated with gefitinib. 

 

Pre-processing of the datasets 

A gap was identified between the model output and the dataset related endpoint. 

While the model represents TTP, which is a clinical endpoint that censors out the 

patients that die, the dataset extracted from Maemondo et al. focuses on PFS and 

OS. In both clinical endpoints, a patient's death prior to disease progression is 

therefore an event and is not censored out. 
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To be able to compare the model TTP to the experimental dataset, the endpoint 

disease progression was derived from clinical PFS and OS: we manually extracted 

the KM curves of PFS and OS and their corresponding censored events, and deduced 

the list of PFS and OS TTEs. 

 

Under the assumption that patients who died before disease progression are 

characterized by the same time to event in the PFS and OS sets, we are able to filter 

out PFS events that correspond to patients’ death. Indeed, by removing from the PFS 

values all TTEs that are equal in PFS and OS datasets with a small tolerance due to 

manual extraction uncertainty, one is left with the TTEs where events are disease 

progression only. The reduced dataset was named NEJ002 TTP. We consider as equal 

any PFS and OS values that differ from maximum 2 days. 

 

The NEJ002 TTP dataset is composed of 74 patients, corresponding to 68% of the 

original dataset, a percentage which seems plausible, considering that the 

remaining 32% correspond to either censoring, or dead patients. Nevertheless, the 

exact number was not reported in Maemondo et al.. Among the removed data 

points, 24 correspond to censored events and 10 to death preceding disease 

progression. Removal of those data points leads to a shift of the curve towards the 

left. It should be noted nonetheless that the overall linear slope is unchanged (Figure 

4). 

 

 

Figure 4: Probability of progression-free survival (red curve) and tumor non-progression (blue 

curve) from the NEJ002 dataset respectively before and after removal of dead and censored 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2023. ; https://doi.org/10.1101/2022.09.08.507079doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507079
http://creativecommons.org/licenses/by/4.0/


 

18

patients. The dashed line highlights the impact of data-processing on time corresponding to 

the median probability. Median PFS (12.43 months) and TTP (10.17 months) are represented with 

dotted lines. PFS data manually extracted from Maemondo et al., processed and plotted in R. 

 

 

The statistical validation methods described previously were applied to compare the 

ISELA simulation results to the NEJ002 TTP dataset. For all situations where a 

bootstrap approach was used, 5000 iterations were performed (cf. Appendix 1), while 

for approaches based on the Log-rank test, the alpha risk level was set at 5%. The 

time between visits being 2 months, the OTU used ranged between -2 and 0 months.  

 

Note that the ISELA model represents the tumor growth from which we can deduce 

the TTP, and only right censoring can be represented by the model.  

 

Results and discussion 

Results on entire population 

According to the initially defined CoU, the validation approaches were applied to the 

data corresponding to the entire population extracted from the Maemendo et al. 

article and based on the NEJ002 trial. The results are shown in Fig. 5 and summarized 

in Table 2. 
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Figure 5: Observed and simulated Kaplan-Meier curves computed on the full dataset. The 95% 

bootstrapped prediction interval of the simulated curve is represented by the green area. 

(Boot. = Bootstrapped, LR = log-rank test, comb. of wt. LR = combination of weighted log-rank 

tests (MaxCombo)) 

 

Method Metric value Ratio of of samples where 

PH assumption is not met 

Raw coverage 57.96% NA 

Juncture 87.71%  NA 

Bootstrapped LR (no OTU) 87.68% 4.68% 

Bootstrapped LR (with OTU) 98.14% 12.92% 

Bootstrapped weighted Log-rank 

combo (no OTU) 

64.9% 4.62% 

Bootstrapped weighted log-rank 

combo (with OTU) 

87.24% 13.28% 

 

Table 2: Results of the various validation methods applied to the full dataset. (PH = 

proportional hazards)  

Note: the acceptability threshold was set at 80%. Given the way all four metrics are 

defined, the higher the value, the closer the model predictions are to the observed 

values according to the validation assumptions.   

 

In this context of use, the results provided by the various validation methods vary 

from 57.96% to 98.14% of validation. Four methods show a metric superior to the 

chosen threshold of acceptance set at 80%, while the two others fail to reach it. The 

raw coverage, and the weighted LR based method without OTU fail to reach the 

validation threshold. The reason for the raw coverage metric to remain below 80% 

can be explained by the fact that between 2 and 6 months, the model 

underestimates the number of events, and then overestimates them between 12 and 

approximately 24 months, as shown in Figure 5. Regarding the weighted LR based 

approaches, they show that the model’s predictions are not accurate while both 

bootstrapped LR metrics, with and without OTU, indicate that the model is performing 

well. This difference can be explained by the fact that simulated and observed 

curves cross, implying that the statistical power of LR tests is reduced, resulting in a 
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lower rejection rate of the null hypothesis, and consequently, a higher validation 

metric. 

 

 

Refinement of the context of use 

According to previous results and the noticeable discrepancies between methods, in 

order to show how data structure and the model’s CoU can have an impact on the 

model validation process we decided to go further through the exploration of the 

data. Indeed, considering the mutational status of the tumor, the data used for 

validation consist of a mixture of two populations. Each of these subsets was 

characterized by a specific EGFR mutation: exon 19 deletion (Del19) and L858R on 

exon 21. Those mutations had an impact on the time to progression, making the 

simultaneous validation on both types of patients not relevant and potentially 

incorrect 54 55 56. Thus, In order to have a more precise assessment of the model’s 

predictive capability, the validation process assessment was stratified according to 

the mutation status of patients. 

 

After applying the validation approaches to the Del19 subset, new metrics were 

computed and summarized in Figure 6 and Table 3. 

 

Figure 6: Observed and simulated Kaplan-Meier curves computed on the Del19 subpopulation. 

The 95% bootstrapped prediction interval of the simulated curve is represented by the green 
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area. (Boot. = Bootstrapped, LR = log-rank test, comb. of wt. LR = combination of weighted log-

rank tests (MaxCombo)) 

 

 

Method Metric value Ratio of of samples where 

PH assumption is not met 

Raw coverage 69.98% NA 

Juncture 80.59%  NA 

Bootstrapped LR (no OTU) 84.2% 12.34% 

Bootstrapped LR (with OTU) 94.26% 19.24% 

Bootstrapped weighted log-rank 

combo (no OTU) 

71.1% 12.42% 

Bootstrapped weighted log-rank 

combo (with OTU) 

84.02% 19.02% 

 

Table 3: results of the various validation methods applied to the Del19 subset. (PH = 

proportional hazards) 

 

As for the Del19 subset, the validation metrics on the L858R subset were computed 

and summarized in Figure 7 and Table 4. 
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Figure 7: Observed and simulated Kaplan-Meier curves computed on the L858R subset. The 

95% bootstrapped prediction interval of the simulated curve is represented by the green area. 

(Boot. = Bootstrapped, LR = log-rank test, comb. of wt. LR = combination of weighted log-rank 

tests (MaxCombo)) 

 

 

 

Method Metric value Ratio of of samples where 

PH assumption is not met 

Raw coverage 99.62% NA 

Juncture 99.62% NA 

Bootstrapped LR (no OTU) 97.6% 2.38% 

Bootstrapped LR (with OTU) 98.94% 5.32% 

Bootstrapped weighted log-rank 

combo (no OTU) 

97.14% 2.8% 

Bootstrapped weighted log-rank 

combo (with OTU) 

98.94% 5.7% 

 

Table 4: results of the various validation methods applied to the L858R subset. (PH = 

proportional hazards) 

 

 

 

When applied to the Del19 subset, the raw coverage approach provided better 

results than on the overall population with approximately 12% more coverage of the 

observed curve. Regarding the juncture method, the value was lower by 7.12% for the 

subset. A decrease was found as well for both the bootstrapped log-rank (-3.66% 

without OTU, -3.88% with OTU) and the bootstrapped combination of weighted log-

ranks with OTU (-3.22%). The version without the VTU increased by 6.2%. The results 

obtained on the Del19 subset show that there are even more differences between the 

validation data and the simulations than in the previous CoU. The model appears to 

be unable to correctly predict events in this subgroup, despite the better results 

obtained with the raw coverage approach, which indicate that relying on a single 

metric is not enough to properly evaluate the quality of the model’s predictions. We 

note here, as an aside, that mismatches such as this help guide model 
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improvement, allowing us to better understand the disease and treatments effects. 

Without such a model, these discrepancies might not even be noticed. 

 

 

In the case of the L858R subset, both the raw coverage and juncture methods 

produced much better results than on the entire population : 99.62% for both 

approaches, equal to an increase of 29.64% and 19.03%, respectively. With the 

bootstrapped log-rank, the results were better without the OTU (+13.4%), as well as 

with the OTU taken into account (+4.68%). For the bootstrapped combination of 

weighted log-ranks, both metrics without and with OTU were better on the subset 

than on the global population (+32.24% and +14.92%, respectively). This 

demonstrates that all validation metrics can show good performances when the 

CoU is properly chosen. Indeed, it appears that the model is well suited to predict the 

events in the L858R subgroup, which was not the case for the Del19 subset. 

 

The differences between the metrics obtained on the entire population and on the 

subsets are summarized in the table 5 below. 

 

Method Difference 

between full 

dataset and Del19 

Difference 

between full 

dataset and 

L858R 

Difference 

between Del19 

and L858R 

datasets 

Raw coverage +12.02% +41.66% +29.64% 

Juncture -7.12% +11.91% +19.03% 

Bootstrapped LR (no 

OTU) 

-3.66% +9.74% +13.4% 

Bootstrapped LR 

(with OTU) 

-3.88% +0.8% +4.68% 

Bootstrapped 

weighted log-rank 

combo (no OTU) 

+6.2% +36.24% +32.24% 

Bootstrapped 

weighted log-rank 

combo (with OTU) 

-3.22% +11.7% +14.92% 

 

Table 5: Differences between the results obtained on the initial dataset and the Del19 and L858R 

subsets 
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Conclusion  

 

 

 

In this article, we introduced different approaches to validate mathematical model 

predictions on Time-To-Event data, and gave some insight on how to perform a 

robust validation of a mathematical model by choosing one or multiple methods to 

correctly evaluate the model’s prediction. We have emphasized that the choice of 

methods and metrics is highly impactful and thus it should be made according to 

the context, available validation data, and to its specificities, structure and nature 

(single curve or interval).  

We demonstrated in the application section that a model is meant to be applied to a 

specific context of use (CoU), as otherwise, by performing a validation on an 

excessively broad dataset, the whole process may fail because the model will not be 

able to correctly predict the events for heterogeneous subpopulations. Moreover, the 

importance of using multiple validation methods at once instead of relying on a 

single one was illustrated by the results obtained on a non-adapted CoU (e.g. Del19) 

where, by looking at only one validation metric (raw coverage in this specific case), 

one could wrongfully conclude that the model performed well, or at least better than 

within the previous CoU, while in fact, all the other metrics together demonstrated a 

worse performance of the model.  

Indeed, the strength of the validation process comes from the combination of well 

selected validation metrics, as each one has its own strengths and weaknesses and 

conditions of application (see Table 1). We highlighted and suggested that 

simultaneously using multiple methods that rely on different statistical concepts can 

ensure correct evaluation of the model’s performance. Nevertheless, we noted that 

some of the methods introduced in this article will have more weight than others in a 

combined approach, because some methods are relatively more robust and more 

prone to detect differences between observed and simulated data, for example the 

MaxCombo approach when the assumption of proportional hazard is not met.  

It should be noted that during the validation process, it is necessary to avoid 

tautology, principally by using data not used for the construction of the model, and 

to avoid trying to validate the model by arbitrarily changing goals, but to define a 

priori protocol and methods in order to evaluate the model and the context of use 

properly.  
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Appendix 

 

 

 

 

Annex 1: Evolution of the ratio of non-significant bootstrapped log-rank tests on the entire 

population, according to the number of bootstrap iterations. The ratio can be considered as 

stable after 5000 iterations. 
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