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Abstract 
 
Visual attention is a fundamental cognitive operation that allows the brain to evoke 
behaviors based on the most important stimulus features. Although mouse models offer 
immense potential to gain a circuit-level understanding of this phenomenon, links 
between visual attention and behavioral decisions in mice are not well understood. Here, 
we describe a new behavioral task for mice that addresses this limitation. We trained mice 
to detect weak vertical bars in a background of checkerboard noise while audiovisual 
cues manipulated their spatial attention. We then modified a reverse correlation method 
from human studies to link behavioral decisions to stimulus locations and features. We 
show that mice attended to stimulus locations just rostral of their optical axis, which was 
highly sensitive for vertically oriented stimulus energy whose spatial frequency matched 
those of the weak vertical bars. We found that the tuning of sensitivity to orientation and 
spatial frequency grew stronger during training, was multiplicatively scaled with attention, 
and approached that of an ideal observer. These results provide a new task to measure 
spatial- and feature-based attention in mice which can be leveraged with new recording 
methods to uncover attentional circuits. 
 
Introduction 
 
Attention is thought to be the fundamental cognitive operation that allows the brain to 
evoke behaviors based on the most important visual features1–3(Fig 1A). Much of what 
we know about the neural mechanisms of attention comes from pioneering 
electrophysiological work in primates which studied the effects of cueing on visually 
guided behavior and single neuron responses in visual cortical areas1,2,4,5. A common 
view of this work portrays attention as a spotlight that enhances neural signals about 
visual locations or features that are relevant to the task at hand1,3. This influential 
perspective inspired detailed models1,6–9 of attention and led to discoveries that 
attention’s effects grow as one moves from lower to higher visual areas1,10. However, a 
circuit-level, mechanistic understanding of how attention achieves its effects is still not 
clear.  
 
New advances in mice11–15, such as the ability to mark, monitor and perturb the neural 
signals of thousands of neurons in awake behaving animals could offer a route to make 
progress. Our understanding of how rodents allocate attentional resources to shape 
behavior, however, is still limited. A set of recent studies suggest that mice can allocate 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2022. ; https://doi.org/10.1101/2022.09.08.507101doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507101
http://creativecommons.org/licenses/by/4.0/


 2 

voluntary (endogenous) attention in response to a cue and can switch its spatial location 
between visual hemifields16–25. Simultaneous behavioral measurements and neural 
recordings in mice16,20,23 are beginning to identify brain regions involved in attention and 
resemble some findings from the classical primate literature1.  
 
Current behavioral tasks, such as the Posner valid/invalid cueing paradigm26, usually do 
not simultaneously monitor a broad range of visual features to identify the ones most 
affected by attention (Fig 1A).  Here, we address this issue by modifying a behavioral 
reverse-correlation approach that has been successfully used in humans7,27–33. This 
approach let us link multiple visual locations and features to visually guided behavior. 
 
We trained mice to detect weak vertical bars in a background of random checkerboard 
noise and used audiovisual cues to manipulate their spatial attention. We then modified 
a reverse correlation method from human studies to relate mouse behavioral decisions 
to stimulus location and visual features. This tool revealed that mice did not attend to the 
full noise stimulus but limited their behavioral sensitivity to an ~30 deg patch just rostral 
of their optical axis. In this region, sensitivity peaked for vertically oriented noise patterns 
whose spatial frequency matched that of the weak vertical bars. This sensitivity grew over 
training, predicted detection performance, and followed the location of the cue.  The 
tuning of mouse sensitivity to stimulus features approached that of an ideal observer, and 
was remarkably reminiscent of human sensitivity, and demonstrated multiplicative scaling 
with spatial attention.  
 
Results 
 
Mice performed a spatially-cued detection task 
We describe a method to reverse correlate mouse sensitivity to different features in a 
visual stimulus.  Mice were trained to perform a cued detection task while viewing two 
random checkerboard stimuli (52 x 34 deg centered on the optical axis) presented on 
gray backgrounds (Fig. 1B).  Briefly, animals licked a reward spout when they detected 
a coherent grating that appeared in one of the random checkerboard patterns.  The 
coherent grating was produced by combining random checkerboard noise with a 3-bar 
vertical grating to create a range of grating stimulus strengths (referred to as grating 
coherence, Fig. 1C).  
  
Trials began with a static checkerboard plus a visual and auditory cue on one monitor 
(Fig. 1D). This spatial cue indicated which checkerboard would eventually contain the 
coherent grating. The cue was always valid for the first half of the training sessions.  For 
the second half of training sessions, we also measured attentional effects using the 
Posner valid/invalid cueing paradigm (the coherent grating appeared on the uncued side 
10% of the time).   Mice initiated the dynamic checkerboard noise by licking the reward 
spout which also caused the audiovisual cue to fade over 6 secs (start lick).  If the mouse 
licked before the onset of the coherent grating (false alarm or FA lick), the single static 
checkerboard and audiovisual cue were re-displayed, and the trial restarted.  Trials kept 
restarting until no FAs licks occurred.  The coherent grating appeared at a random time 
within 4 to 12 seconds (derived from a flat hazard function).  The coherent grating had a 
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duration of one second and the mouse was rewarded for licking within a reaction time 
window of 0.2 to 1.5 secs (hit lick).  No reward was given if the mouse failed to lick in 
response to the coherent grating (miss).  Cues remained on the same screen for a block 
of ~25 completed trials before switching to the other screen. 
 
As shown by the example psychometric curves in Fig. 1E, this was a challenging 
detection task.  We always included a grating coherence = 0 to measure the effect of FAs 
on the hit rate, which allowed us to report d-prime performance levels.  It usually took 
about 20 training sessions for a typical mouse to detect a grating coherence = 0.3 at a d-
prime above one. 

 
Using reverse-correlation to measure sensitivity and attention in mice 
On average, mice produced false alarms at a rate of 0.18 FA licks per second of dynamic 
checkerboard noise (standard deviation = 0.04, N = 13 mice).   We wondered if these FA 
licks occurred because the mice thought that the random noise resembled the 3-bar 
vertical grating they were trained to detect. If true, what features/locations of the 
checkerboard noise were they monitoring? To answer this, we modified a reverse-
correlation technique designed to measure behavioral sensitivity and attention in 
humans28,31–33.   Reverse correlation links a subject’s response to the energy contained 
in the preceding noisy stimulus.   
 

Figure 1. Behavioral task to measure attention in mice. A. Schematic shows how visual attention 
enhances specific visual features to aid decision making and direct behavior. B. Head-fixed mice faced 
angled visual screens (100 by 64 deg of visual angle). Speakers were located behind the screens. C. 
Dynamic checkerboard noise was combined with a 3-bar vertical grating to create the coherent grating 
stimulus. Checkerboard size in degrees of visual angle is indicated (optical axes = 0,0) and examples 
show gratings of different coherences. D. Schematic of our behavioral task. Trials begin with a static 
checkerboard and audiovisual cue that indicated the eventual location of the coherent stimulus (valid 
cue).  In some trials the cue was invalid 10% of the time.  The cue faded after mice licked (start lick) and 
was replaced by dynamic checkerboard noise (30 Hz stimulus update on each screen) that was 
presented for a randomly chosen wait period (flat hazard function). The cue was restarted if mice licked 
during the wait period (false alarm lick). A lick following coherent stimulus presentation (hit lick) resulted 
in a liquid reward (reward licks). Cue and coherent stimulus switched screens after ~25 completed trials.  
F. Typical psychometric curves for a single well-trained mouse for sessions 31 to 40.  Hits and d-prime 
versus stimulus coherence for valid cues (SEMs are smaller than points).   
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Our dynamic checkerboard noise was an ideal stimulus for reverse correlation approach 
because it contained all spatial frequencies, orientations, and contrast patterns, and thus 
was statistically unbiased.  Another benefit of using random checkerboard noise is that it 
allowed us to focus on the mice’s voluntary (endogenous) attention, as opposed to 
involuntary (exogenous) attention recruited by the 3-bar grating. 
 
We first extracted the spatial frequency and orientation energy by convolving Gabor filters 
with the black and white checker pattern in each stimulus frame (Fig. 2A).  For example, 
our coherent grating produced maximum energy using a vertical Gabor with a spatial 
frequency of 0.077 cpd but produced little energy using a horizontal Gabor at the same 
spatial frequency (Fig. 2A).  A typical FA lick is shown in Fig. 2B along with the preceding 
checkerboard frames and their vertical and horizontal energy that appeared on the cued 
side.  In this example, increased vertical energy located in the nasal half of the stimulus 
happen to occur ~0.33 seconds before the FA lick (Fig. 2B, arrow).  By comparison, there 
was less horizontal energy in the stimulus before the same lick. 
 
We applied a variant of the reverse-correlation approach31,34, that used a logistic 
generalized linear model to link FA licks to the energy contained in our random 
checkerboards (Fig. 2C).  The logistic equation describes the probability of observing a 

FA lick as a function of stimulus energy. The slope parameter (), captured the correlation 

between stimulus energy and the probability of a FA lick. We refer to  as behavioral 

Figure 2. Behavioral reverse correlation of visual features and locations.  A. Examples of 
convolving our 3-bar grating and checkerboard stimuli with either vertical or horizontal Gabors (0.077 
cpd). B-C. Example checkerboard noise frames and energy presented on the cued screen before a false 
alarm (FA) lick. The probability of a FA lick (PL) was modeled as a logistic function of stimulus energy 
appearing  secs before the lick (C). The behavioral sensitivity term () captures the correlation between 
the energy and the probability of a FA lick.   D. Example behavioral sensitivity () for vertical and 
horizontal oriented energy from the mouse shown in Fig. 1. Insets relate orientation energy and the 
probability of a false alarm lick for the indicated checker location. Fits computed using the logistic 
function are shown along with the probability of a FA lick (filled circles) as a function of stimulus energy.  
Energy was always z-scored before fitting with the logistic equation. P-values are probability of  =   
E. Average behavioral sensitivity from all mice (N = 13) for vertical or horizontal stimulus orientations. 
Red boxes indicate the behavioral receptive field (RF) used for subsequent analyses.  F. Behavioral 
sensitivity maps computed from shuffled checkerboard sequences do not show a link between 
orientation energy and lick probability. 
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sensitivity.  The  parameter is the time it took for the stimulus energy to produce a FA 
lick (i.e., reaction time), while k is the energy associated with a FA lick probability = 0.5. 
 

Behavioral sensitivity was strongest at nasal locations on the cued side 

Behavioral sensitivity () represents the correlation of a visual feature linked to the 

decision to lick (see Fig 1A, green arrows represent stronger ).  For example, FA licks 
produced at random with no regard for the stimulus would have a behavioral sensitivity = 
0.  Behavioral sensitivity > 0 suggests that stimulus energy is positively correlated with 
FA licks.  The larger the behavioral sensitivity, the stronger the correlation between a 
particular stimulus energy and FA licks. 
 
We first estimated behavioral sensitivity as a function of spatial location by optimizing the 
logistic function for each checker location using Gabor filters to extract either vertical or 
horizontal stimulus energy.  The effects of attention were measured by separately 
estimating behavioral sensitivity using stimuli from either the cued or uncued sides.  
 
Example behavioral sensitivity as a function of spatial location and cue side for vertical 
and horizontal stimulus energy are shown as heatmaps (Fig. 2D).  Behavioral sensitivity 
was strongest in a slightly nasal region of the checkerboard for vertical energy presented 
on the cued screen (Fig. 2D, top left).  For the uncued screen (Fig. 2D, bottom) and 
horizontal energy (Fig. 2D, right) on either screen, behavioral sensitivity was reduced.  
The insets show example fits of the logistic equation from four locations; plotting binned 
lick probabilities as a function of normalized energy shows that the logistic function 
captured the probability of a lick.   
 
Averaging across all mice revealed an unexpected result. Although vertical energy was 
spatially available across most of the checkerboard (Fig. 2A, left), behavioral sensitivity 
appeared in a nasal region of the cued screen (Fig. 2E, top left, P < 0.0001 that the 

average of  in the red box is > 0, single tailed t-test, N = 13).  We do not know why the 
mice biased their FA licks to vertical stimulus energy in this nasal region but discuss the 
possibility that it could be related to specializations in the mouse visual system (see 
discussion).    
 
We found no behavioral sensitivity to horizontal orientation on the cued screen (Fig. 2E., 
top right, P = 0.4), and reduced sensitivity to vertical energy on the uncued screen (Fig. 
2E., bottom left, P < 0.001).  As a control, we eliminated the correlation between stimulus 
energy and FA licks by shuffling checkerboards (Fig. 2F, P = 0.99 & 0.57, cued & uncued 
sides, respectively).   
 

Mice are most sensitive to features that match the 3-bar grating 
We wanted to know how behavioral sensitivity was linked to different stimulus features 
such as spatial frequency, orientation, and local contrast. To accomplish this, we first 
collapsed our data across spatial location by focusing only on the checkboards with strong 
behavioral sensitivity – referred to as the behavioral receptive field (RF, red square in Fig. 
2E).  The behavioral RF encompassed ~ 50% of the checkers and we summed the spatial 
frequency and orientation energy over this region for each stimulus frame (Fig. 3A).   
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The total number of white and black checkers was equal, regardless of the stimulus 
coherence.  However, the 3-bar coherent grating produced local contrast in the number 
of white checkers that could been used by the mice during detection.  Thus, we also 
computed the number of white checkers in the behavioral RF to capture the energy 
associated with the local contrast (referred to as the DC energy, Fig. 3A).   
 
The behavioral sensitivity to spatial frequency, orientation, and DC energy of four well-
trained mice is shown in Figure 3B (arranged in decreasing sensitivity, note the scale bar 
for each mouse).  Animals generally had the highest behavioral sensitivity to orientation 
and spatial frequencies that corresponded to the peak energies in the 3-bar grating.  Peak 
behavioral sensitivity to vertical energy was usually higher than it was to DC energy.  In 
agreement with the effects of cueing shown above, the uncued screen had a reduced 
behavioral sensitivity profile in all but the animal with the weakest sensitivity (Fig. 3B 
right). 

 

Behavioral sensitivity develops over training and follows detection performance 
Average behavioral sensitivity evolved over training (Fig. 4A).  During the first 10 training 
sessions, FA licks showed no correlation with stimulus energy.  Behavioral sensitivity to 
orientations and spatial frequencies contained in our 3-bar grating began to emerge 
during sessions 11 to 20 for both the cued and uncued screens.  As training progressed, 
behavioral sensitivity increased mainly for stimulus energy located on the cued side.  
Sensitivity to the local contrast (DC energy) also emerged during training. It is worthwhile 
to note that the strength of our mouse behavioral sensitivity to orientation and spatial 
frequency is similar in magnitude to that reported for humans30,31,35.   
 
The evolution of the population behavioral sensitivity suggests that training leads mice to 
preferentially monitor features that improved their ability to detect the 3-bar grating.  To 
further examine this idea, we report detection performance (average hits and d-prime for 
valid cues, solid lines) for two grating coherence levels (low = 0.3 and high = 0.8) during 
the same training sessions (Fig. 4B-C).  Detection performance improved over training, 
especially for the low coherence gratings), but false alarms (hits during a grating 

Figure 3. Behavioral sensitivity for orientation, spatial frequency and contrast. A. Flow chart 
showing the conversion of checkerboards into energy using Gabor filters of various orientation and 
spatial frequencies. Energy within the behavioral receptive field (red) was summed before estimating 
behavioral sensitivity. The number of white squares in the same region represents the local contrast and 
is referred to as DC energy.  B. Representative behavioral sensitivity maps for 4 mice for a range of 
spatial frequencies and orientations on the cued (top) and uncued screens (bottom).  Energy at 0 deg 
and 0.077 cpd corresponds to the peak oriented energy contained in our 3-bar grating. 
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coherence = 0) stayed relatively constant. Thus, both behavioral sensitivity and grating 
detection improved for the cued side during training. 
 
Behavioral sensitivity is multiplicatively enhanced by attention 

To reveal how behavioral sensitivity tuning to orientation and spatial frequency was 
affected by attention, we fit Gaussians to the population data in Fig. 4B sliced at 0 deg 

and 0.077 cpd (Fig. 5A, 2 widths are shown).  By the last training sessions, peak 
behavioral sensitivity to the cued side had increased to twice that of the uncued side (P 
= 0.0025, paired t-test).  For these well-trained mice (sessions 31 to 40), the effect of cue 
location scaled the Gaussian fits without changing their width (orientation P = 0.46; spatial 
frequency P = 0.36; bootstrap).  Thus, spatial attention directed at the cued side 
multiplicatively scaled behavioral sensitivity to orientation and spatial frequency by about 
a factor of two.  
 

Furthermore, average behavioral sensitivity to local stimulus contrast (DC energy) was 
consistently less than sensitivity to energy at 0 deg and 0.077 cpd (Fig 5A, bottom row). 
This suggests that intensity was also a feature that the animals used to detect stimuli. 
This sensitivity also evolved as training progressed and was modulated by attention. But 
local contrast was not nearly as strongly linked to FA licks compared to oriented energy 
at 0 deg and 0077 cpd. 
 
Reverse correlation and invalid cueing measured different aspects of attention 
The strong effect of spatial attention on population behavioral sensitivity was evident in 
individual mice, where all but two animals showed increased behavioral sensitivity at the 

cued side (Fig 5B).  When estimating behavioral sensitivity (), we also computed the 

time it took for stimulus energy to trigger a FA lick ( in the logistic equation shown in Fig 
2C), but this parameter was not modulated by attention (Fig. 5C). As a validation of our 
reverse correlation approach, we also included valid/invalid cueing on ~10% of trials at 
the low grating coherence = 0.3 in nine animals (see Methods).  Although these animals 
had no significant increase in d-prime detection between valid and invalid cues (P = 0.23) 
(Fig. 5D), they showed a consistent increase in their reaction time to the 3-bar grating 
when the cue was invalid (P < 0.0001) (Fig. 5E).   

Figure 4. Behavioral sensitivity evolved during training and predicted detection performance. A. 
Average population behavioral sensitivity maps (N = 13) computed across the indicated sets of training 
sessions. Sensitivity to the vertically oriented 3-bar stimulus grows over training. B. Proportion of correct 
trials (hits) as a function of training sessions for a low (.3) and high (.8) grating coherence. False alarms 
are also shown (hits at grating coherence = 0). C. Behavioral d-prime computed from data in B. 
Behavioral performance grows over training sessions. Note that we only presented high grating 
coherences during the first few sessions to aid in early training.   
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Both reverse-correlation and valid/invalid cueing revealed robust effects of attention on 
different aspects of the mice behavior: Changes in sensitivity were found with reverse 
correlation (Fig 5B), whereas changes in reaction time were found with invalid cueing 
(Fig 5E).  We speculate that this difference is because gratings occurring on the uncued 
side (invalidly cued trials) exogenously captured the animals’ attention. When using 
reverse correlation, the checkerboard energies on the uncued screen were much too 
weak to exogenously capture attention (see Discussion). 
 

Finally, we wanted to know if our two measurements from the reverse correlation, 

behavioral sensitivity () and reaction time (), were related to the detection of the 3-bar 
grating.  While behavioral sensitivity at 0 deg and 0.077 on the cue side was moderately 
predictive of detection of the low-coherence 3-bar grating (Fig 5F), our reverse-correlated 
reaction time, was strongly correlated with the time it took for mice to lick in response to 
the 3-bar grating (Fig 5G). Thus, mice that were slow/fast to FA lick in response to 
checkerboard noise were also slow/fast to lick in response to the 3-bar grating.  Taking 

Figure 5. Attention enhances behavioral sensitivity. A. Population tuning curves of behavioral 
sensitivity versus stimulus orientation at 0.077 cycles per degree (top) and versus spatial frequency at 
an orientation of 0 degrees (bottom). Note spatial frequency is plotted on a log scale.  The 2 width of 
the fitted gaussians are labeled (except for the first training sessions that showed no tuning).  B-C. 
Reverse-correlated measurements computed at 0 deg and 0.077 cpd show behavioral sensitivity () 
and reaction time () for the cued and uncued sides.  D-E. D-prime detection performance and reaction 
time (RT) for detection of the 3-bar grating (coherence = 0.3) for valid and invalidly cued trials.  F. 
Behavioral sensitivity at 0 deg and 0.077 cpd on the cued side was correlated with d-prime detection of 
the validly cued 3-bar grating (coherence = 0.03).  G. Reverse-correlated reaction time () is correlated 
with the reaction time (RT) for detecting the validly cued 3-bar grating (coherence = 0.03).  Points are 
individual animals in panels B-G.  P-values are single-tailed paired t-test in panels A-E. R is Pearson’s 
correlation with associated P-value reported in panels F-G. 
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these results together, our reverse-correlated measurements ( and ) reflected detection 
capability, endogenous attentional modulation, and the speed of behavioral responses in 
our mice. 
 
Mouse behavioral sensitivity approached that of an ideal observer 

Although it makes sense that peak behavioral sensitivity () corresponded to the 
orientation and spatial frequency of the peak energy contained in our 3-bar grating, 
several questions remain.  Why did mice have behavioral sensitivity at other orientations 
and spatial frequencies?   And why did mice show a behavioral sensitivity to the local 
stimulus contrast (DC energy) that was about half as strong as their peak sensitivity?  To 
answer these questions, we used an ideal observer model. 
 
Briefly, our ideal observer model used signal detection theory to discriminate between 
random and 0.3 coherence checkerboards using the same Gabor filters as the reverse-
correlation analysis.  At each orientation and spatial frequency, the ideal observer 
summed the energy across the same behavioral RF as that of the mice (Fig. 6A), and a 
d-prime sensitivity was computed based on the energy distributions (Fig. 6B) derived 
from 50,000 stimulus frames.  The resulting d-prime map in Fig. 6C illustrates how well 
the ideal observer discriminated 3-bar checkerboards using different features.   
 
As expected, energy at 0 deg and 0.077 cpd contained the most information about the 
presence of the 3-bar grating. Nearby orientations and spatial frequencies were also 
informative (d-prime > 0), likely because our Gabors are not perfect bandpass filters.  The 
ideal observer model also reported sensitivity at DC that was about half that of the peak 
orientated sensitivity at 0.077 cpd. 
 

Figure 6. Ideal Observer 
analysis. A-B. Example of the 
ideal analysis at a single 
orientation and spatial 
frequency.  Checkerboards 
with the 3-bar grating 
(coherence = 0.3) or those with 
pure noise were convolved 
with a vertically oriented Gabor 
(0.077 cycles per degree). Red 
boxes indicate the behavioral 
RF from which orientation 
energy is summed to create 
two histograms in panel B 

whose spacing corresponded to a d-prime of 1 (see Methods).  d-prime corresponds to the performance 
of an ideal observer to discriminate the noise and grating checkerboards based on random draws from 
each distribution. C. Heatmap shows d-primes computed from using Gabor filters with the indicated 
spatial frequencies and orientations.  DC sensitivity is based on the number of white squares in the 

behavioral RF. D. Detection of 0.3 coherence gratings for mice with low ( < 0.1) and high ( > 0.1) 
behavioral sensitivity on training sessions 31-40.  E. Tuning curves of the ideal observer sensitivity (d-

prime) and behavioral sensitivity () for the mice in panel D versus grating orientation, spatial frequency 
and DC.  Note that the ideal observer tuning was scaled to match the mice peak cued-side behavioral 
sensitivity and was taken from slices of the data shown in C. 
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We wanted to compare the ideal observer to the “most sensitive” mice (largest  in Fig 
5B) because we imagined these animals were the most optimal in how they used stimulus 
features36. To examine this, we evenly divided animals by their behavioral sensitivity at 0 
deg and 0.077 cpd (Fig 6D) and compared the tuning of these groups to that of the ideal 
observer. This comparison revealed several interesting features.  First, and as shown 
above in Fig. 5F, high-sensitivity mice tended to also be good detectors of the 3-bar 
grating (Fig. 6D).  Second, high-sensitivity mice qualitatively chose the same strategy as 
the ideal observer and monitored orientations and spatial frequencies contained in the 3-
bar stimulus (Fig. 6E, right). Third, high-sensitivity mice monitored the local stimulus 
contrast (DC energy) to the same extent as predicted by the idea observer.  Fourth, high-
sensitivity mice showed strong attentional effects by focusing much more on the cued 
side checkerboards (which an ideal observer would also do). Thus, high sensitivity mice 
resembled an ideal observer, but with wider tuning. Low sensitivity mice were less like 
the ideal observer. These animals emphasized orientation, spatial frequency, and 
stimulus contrast (DC energy) equally (Fig 6E, left) and showed no appreciable 
attentional effects.  
 
Taken together, these data show that our high-sensitivity mice found oriented stimulus 
energy more informative than stimulus contrast for detecting the 3-bar grating. These 
animals also better understood the saliency of the cue. 
 
Discussion 
 
We demonstrated that behavioral reverse-correlation7,28–33,35,37 measures the spatial- and 
feature-based properties of attention in mice. We trained mice to detect three vertical bars 
in a background of random checkerboard noise. Mice saw such noise on two screens but 
were cued to which screen would show the three bars. Mice were highly motivated to 
detect the stimuli which led them to mistakenly ‘see’ the weak bars in the checkerboard 
noise. We leveraged this false alarm behavior to show that mice attended to visual 
features that contained evidence of the 3-bar stimulus.  To our knowledge, this is the first 
demonstration that mice can simultaneously attend to different spatial locations and 
features of a visual stimulus. 
 
The resulting maps of behavioral sensitivity showed that mice attended a small patch of 
the cued checkerboards for vertically oriented energy whose spatial frequency matched 
that of our three vertical bars. This patch represented the attentional spotlight and we 
discovered that it evolved with training and followed the audiovisual cue. An ideal 
observer performing the same task revealed sensitivity to visual features that were like 
those found in mice but were more narrowly tuned.  
 
Multiplicative interactions are well-known to describe how neurons in visual cortex 
represent multiple features38–41. Such interactions are a major proposed mechanism for 
the attentional enhancement of neural responses2,2,3,6,42 and behavior7,8,28,35,37,43,44. Our 
reverse correlation method allowed us to test many stimulus features and locations at 
once and revealed how mice weigh these variables to make behavioral decisions. Our 
study is the first to measure these weights in mice, which were surprisingly similar to that 
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found in humans37. These results suggest that multiplicative models of attention 
developed in humans and primates are likely to apply in mice.  
 

Comparisons with other rodent attentional tasks 
 
There are now a few tasks to measure attention in mice16–24. Several use implicit methods 
to direct the locus of spatial attention16,23,45. For example, stimuli that appear in one 
location for blocks of trials before unexpectedly switching to a new location lead mice to 
detect poorly at block transitions because their attention is misallocated16. As another 
example, stimuli that appear more often in one of two locations lead some mice to monitor 
only the high likelihood location but lead others to switch between high and low likelihood 
locations23. These studies test the effects of spatial attention on a single stimulus feature 
and do not reveal tuning.  
 
A small set of studies have used explicit cues to direct a mouse’s attention and observe 
its underlying neural correlates17,19–21. This classical design allowed them to make the 
spatial cue either valid or invalid and confirm that mice, like primates, experience 
increased stimulus detection and faster reaction times with cued attention19. Attention in 
these studies improved mouse performance by ~30%. Our own invalid cueing produced 
comparable effects on reaction times, however, our reverse correlation method found 
attention scaled the sensitivity to features more than 100%. We suspect the reason for 
this difference is because attentional effects on behavior are strongest when using weak 
stimuli.   
 
Endogenous vs exogenous attention 
 
Strong stimuli in uncued locations are well known to transiently take attention away from 
the cued side3,46,47. Our checkerboards were unlikely to be strong enough to capture 
attention in this way, and thus our cue effects on behavioral sensitivity are consistent with 
sustained voluntary attention (endogenous attention). By comparison, the valid/invalid 
cueing effects we observed could have been due to involuntary attention (exogenous 
attention).  This is because the appearance of the 3-bar stimulus on the uncued side was 
probably strong enough to capture attention.  Reorienting of attention takes time, and we 
observed consistent increases in reaction times when mice responded to the 3-bar 
stimulus on the uncued side during invalidly cued trials.   
 
 

Of mice and ideal observers 
Why was the behavioral sensitive tuning of mice more broadly tuned than the ideal 

observer?  Both the mice behavioral sensitivity () and the ideal observer sensitivity (d-
prime) were based on the same Gabor filters.  We suspect the difference lies in the 
relatively broad tuning of mouse visual cortical neurons48–50. A quick survey of recently 
published tuning widths shows that the orientation tuning width of mouse V1 neurons is 
~40-50 degrees48,51 while spatial frequency tuning widths are ~2-3 octaves49,52.  In 
addition, neurons in the mouse visual system respond to much lower spatial frequencies 
compared to humans (.01-.08 cpd49 versus 0.5-5 cpd53, respectively). Although our 
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mouse reverse-correlated behavioral sensitivity to orientation and spatial frequency had 
similar behavioral sensitivity magnitudes compared to humans, the spatial frequency 
range reported and orientation tuning width for humans was much higher30,31,35,37.   
 
Only a few studies have addressed how a visual cortical neuron’s link to behavior changes 
as a function of its stimulus tuning. For example, Bosking and Maunsell demonstrated 
that the correlation between a directional selective visual neuron’s activity and behavior 
gradually fell off as the motion stimulus direction moved away from that preferred by the 
neuron54. This suggests that downstream areas involved in generating behavioral 
responses ‘weigh’ a visual neurons activity proportional to how much information the 
neuron provides about the stimulus.   Thus, the wider behavioral sensitivity tuning of mice 
compared to the ideal observer could be explained by the fact that mouse visual neurons 
are more widely tuned than the Gabor filters used by the ideal observer model. Combining 
our method with in vivo calcium imaging of mice V1 could allow a direct test of this idea. 
 

Behavioral sensitivity and attention in mice and primates 
We specifically chose a stimulus with narrowband orientation and spatial frequency 
energy similar to that used to measure attention in humans28,30,31,35,37. We note that the 
behavioral sensitivities and effects of attention we see in mice are remarkably similar to 
those obtained in human30. While there are substantial differences in the retinal 
specializations of humans and mice55, we did notice high behavioral sensitivities located 
in a slightly anterior location of our two monitors. This region abuts the binocular zone of 
mice55, which in recent years, is receiving increasing attention as a functional fovea56–59. 
Retinal ganglion cells types innervating the primary visual thalamus are particularly 
enriched in this region57,60 and it is neurally magnified in mouse visual cortex56. Moreover, 
other studies employing freely moving prey capture behaviors suggest that mice actively 
stabilize this part of their retina and require it for the final stages of prey capture58,59. Our 
results showing an attentional focus in a very similar region could reflect a strategy to use 
this retinal specialization to pay attention. Such a strategy is common in humans where 
eye-movements are a well-known measure of attention1,30,45. Future work could use our 
attentional task and reverse-correlation methods together with eye-tracking to address 
this idea. 
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Methods 
 
Animals 
Animals were used in accordance with the rules and regulations established by the 
Canadian Council on Animal Care and protocols were approved by the Animal Care 
Committee at McGill University. Male and female C57BL6/J mice aged 60-120days were 
implanted deeply anesthetized using isofluorane (5% induction, 1-3% maintenance), 
mounted on a stereotaxic frame (Stoelting), and eye ointment was applied to prevent 
corneal drying. A circular incision was made along the scalp using micro scissors to 
remove the scalp. Lidocaine was applied to skull surface before the underlying fascia was 
cleaned and the skull was dried. Bregma and lambda were then levelled to within 0.1mm 
of one another. A custom designed stainless steel headplate was cemented directly to 
the skull using Metabond (C&B). Following surgery, the scalp was sutured closed, the 
animal removed from the stereotaxic frame and placed on a heat pad for recovery, and 
analgesia administered subcutaneously for 3 days following surgery. 
 

Behavioral Arena 
The behavioral apparatus consisted of a custom built soundproofed dark box that 
displayed visual stimuli via two 60 Hz LCD displays angled at 32 degrees from the 
mouse’s midline. The head fixed mouse was placed in the center of the apparatus on a 
custom designed, 3D-printed, platform. A lick spout was positioned in front of the mouse’s 
mouth to administer the liquid reward. Licking was capacitively sensed using custom 
electronics and an Arduino Uno. Liquid reward was delivered by controlling a solenoid 
pinch valve. The behavioral task and presentation of visual stimuli was controlled using 
the psychophysics toolbox extensions for Matlab (The Mathworks), and custom data 
acquisition software. 
 
Training schedule 
Mice were housed in a 12hr/12hr reversed light-dark cycle, with lights turned off in the 
morning. After recovery from the head plating surgery, mice were initially head-fixed in 
behavioral rigs to habituate to the setup. In these sessions (up to 3), free liquid rewards 
were given to the mice to associate reward with the lick spout.  Once training on the 
grating stimulus began, home-cage water bottle was removed and a minimum daily quota 
of 1mL water was enforced. Animals either drank this amount during training or were 
completed to this amount, if necessary, at the end of the day. A typical training session 
lasted 1-2 hours or until the mouse ceased self-initiating trials. Animals were weighed 
daily, and the amount of water consumed during each training session recorded (typically 
.7-1.2mL).  We gradually increased the wait times and grating coherence (Fig. 1E) while 
monitoring the animals detection performance. By training session 10, mice reliably 
produced psychometric curves.  As shown in Fig. 5B-C, detection performance, 
especially at the low coherence level of 0.3, continued to improve over the 40 training 
sessions used in this study. Mice were never rewarded for false alarm licks, or licks in 
response to a zero coherence grating. 
 
 

Visual stimulus 
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Dynamic checkerboards were updated at 30 Hz.  Each checkerboard was 17 (elevation) 
X 26 (azimuth) checkers and individual square checkers were 2° X 2° (Fig. 1C-D).  
Positive azimuth corresponds to the nasal direction.  A visual cue was used to guide the 
animal’s attention to one monitor and consisted of a black and white frame that 
surrounded the checkerboard and a small black and white rectangle placed on one side 
of the checkerboard (Fig. 1E).  Simultaneously, an audio cue was also presented from a 
speaker mounted behind the monitor and was an 8Khz tone at ~75dB SPL. Once a start 
lick occurred, both the visual and audio cue simultaneously faded linearly over 6 secs. 
 
The coherent stimulus consisted of three vertical white bars combined with a noisy 
background (Fig.1C-D). The 3-bar stimulus was derived from a thresholded vertical 
Gabor (.077 cpd).  For random noise (i.e., coherence = 0), all checkers were randomly 
assigned to black or white on each frame.  The coherent grating stimulus was generated 
using three steps: 1) The three vertical bars in the checkerboard were set to white, and 
all other checkers set to black (see grating in Fig. 1C).  2) Black checkers were then 
randomly flipped to white so that the number of white and black checkers were equal.  
This corresponded to a grating coherence = 1 (Fig. 1D, far right).  3) For grating 
coherence < 1, a number of checkers, proportional to one minus the coherence, were 
randomly assigned either black or white (referred to as noise checker).  Thus, for a grating 
coherence = 0.5, half the checkers are noise (Fig. 1D).  This checkerboard stimulus 
maintained, on average, an equal number of white and black checkers for all grating 
coherence. 
 
Trial design and cueing 
 
Mice performed a spatially cued detection task (Fig. 1E). They were trained to lick in 
response to the onset of the 3-bar coherent grating stimulus.   Trials began with the onset 
of the audiovisual cues and a static random checkerboard; cues and coherent stimuli 
changed sides together every ~25 completed trials (i.e., trials that ended in either a hit or 
miss).  Mice were required to produce one or more start licks within 10 sec.  If no start 
lick occurred, the trial was scored as an ignore.  After the start lick, dynamic random 
checkerboard noise began on both screens.  The coherent grating then occurred on the 
cued screen at a random time.  The minimum and maximum wait times for the coherent 
grating to occur was gradually lengthened during the initial training sessions until it 
reached 4 – 12 secs (~session 15). The time the coherent grating appeared was randomly 
chosen between the minimum and maximum wait times (based on an exponential 
distribution in order to produce a flat hazard function61).   
 
Once the coherent grating occurred, a lick that occurred within a 0.2 to 1.5 sec reaction 
time window was scored as a hit and a reward was provided after a 0.3 sec delay.  Licks 
that occurred before 0.2 sec were scored as a false alarm and the trial ended with no 
reward.  No licks, or licks occurring after 1.5 sec, were scored as miss and no reward was 
provided.   
 
When mice licked before the onset of the 3-bar coherent grating it was scored as a false 
alarm (FA lick) and the trial restarted. Restarts cause a static checkerboard to appear on 
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the cued side along with the audiovisual cues for 0.5 sec (the uncued screen was gray), 
followed by dynamic checkerboard noise. Trials were allowed to restart for four minutes, 
after which the trial ended with no reward. Mice rarely produced enough FA licks to extend 
the trial beyond 20 sec. 
 
During the first 20 training sessions the coherent grating always appeared in the cued 
checkerboards.  In 9 of 13 mice, an invalid cueing paradigm was used as an additional 
measure of spatial attention during training sessions 20 to 40.  For invalidly cued trials 
the 3-bar coherent grating (0.3 coherence) occurred on the uncued side and were ~10% 
of all trials (i.e., the cue was valid on 90% of trails).  
 
Reverse correlation 
 
We linked FA licks to stimulus features and locations using reverse correlation34,37.  In 
this variant of the reverse correlation approach, FA licks are modeled using the logistic 
function shown in Fig. 2C.  In this equation, the probability of a FA lick (PL) is a function 
of a stimulus feature (referred to as Energy in our logistic equation).  In our study, stimulus 
energy was characterized as orientation, spatial frequency and local contrast.  The three 

unknown parameters of the logistic equation were:  the behavioral sensitivity of FA licks 

to the stimulus energy,  the time it took stimulus energy to produce a FA lick, and k which 

defines the stimulus energy corresponding to PL = 0.5.  was our most important 

parameter as it captured the correlation between a stimulus feature and behavior.  A  = 

0 indicated that stimulus energy had no correlation with FA licks.  A  > 0 indicated that 

increased stimulus energy was positively correlated with the probability of a lick, while  
< 0 suggested increased energy was associated with a reduction in the lick probability. 
 
On each random checkerboard frame, stimulus energy was computed for orientation, 
spatial frequency and local contrast.  We used quadrature phased Gabor filters convolved 
with each stimulus frame to extract energy associated with orientation and spatial 
frequency35.  These Gabor filters were 26 X 26 checkers in size constructed with a 
standard deviation = 4 checkers (8 deg).  We used 12 orientations from 0 (vertical) to 165 
deg in 15 deg increments, and 13 spatial frequencies from 0.046 to 0.25 cpd with variable 
increments.  Because orientation is symmetric with respect to vertical, we combined like-
orientation energies before solving for the parameters in the logistic equation (e.g., 15 
and 165 deg, 30 and 150 deg, etc.)35,37. Combining like-orientations increased the number 
of data points and thus improved the accuracy of behavioral sensitivity estimates and did 
not qualitatively change our results. 
 
Convolving Gabors with our checkerboards produced orientation and spatial frequency 
energy centered at each checker (Fig. 2A-B).  Thus, our first reverse correlation analysis 

extracted behavioral sensitivity () across stimulus space (Fig. 2D-F).  Subsequent 
analyses collapsed across space by summing energy within a behavioral RF defined by 
the red box in Fig. 2E-F before solving the logistic equation (Fig. 3A). 
 
Although our checkerboard stimulus maintained the same number of black and white 
checkers regardless of grating coherence, local differences in the number of white 
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checkers (contrast) occurred for checkerboards with grating coherences > 0. Mice could 
have been detecting these contrast changes during FA licks. Thus, we also used the 
number of white squares in the behavioral RF as a feature of our stimulus (referred to as 
DC energy, Fig. 3A). 
 
We aligned our stimulus energy to FA licks.  We only included FA licks that were preceded 
by at least 1.5 sec of random checkerboard noise.  The average duration of checkerboard 
noise before a FA lick was 3.8 ± 0.7 sec (SD, N = 13).  For each FA lick we temporally 

filtered the stimulus energy with a centered Gaussian filter ( = 3 stimulus frames).  We 
then resampled the stimulus energy every 10 frames starting at the FA lick minus the 

reaction time ().  The temporal filtering and resampling greatly reduced the noise in our 
estimate of behavioral sensitivity and represented the temporal integration in the mouse 
visual system.   
 

For a given reaction time (), a generalized linear model (GLM) approach was used to 

solve for  and k in our logistic equation35,37.  We first divided our FA licks into three data 
partitions by assigning every 3rd lick to a different partition.  After temporally filtering and 
resampling the data, we then estimated the parameters of the logistic equation using a 
three-step process: First, from one data partition, solve the GLM model for every reaction 

time (), where  ranged from 8 to 20 frames (0.267 to 0.667 sec).  Select the highest  

as the reaction time i to use in step 2. Second, using the reaction time (i) from step 1, 

solve the GLM model for i using the data in the other two partitions. And third, repeat 
these two steps until all possible combinations of the data partitions have been used to 

estimate i and i. 
 

Our reported estimates for behavioral sensitivity () and reaction time () were the 

averages of i and i.  Partitioning our data ensures that our estimates of behavioral 
sensitivity were unbiased.  In other words, this method ensured that if mice randomly FA 
licked with no regards to stimulus energy, then behavioral sensitivity would approach 
zero.  This was verified in our shuffle control (Fig. 2F). 
 
Ideal observer model 
 

This model computed the sensitivity (d-prime) of an ideal observer that discriminated 
random checkerboards (coherence = 0) from checkerboards containing the weak 3-bar 
grating (coherence = 0.3).  The ideal observer used the same stimulus features as the 
mouse reverse-correlation analysis (orientation, spatial frequency and DC energy located 
in the behavioral RF, Fig. 3A).  For each stimulus feature, two energy distributions were 
computed using 50,000 stimulus frames (Fig. 6A-B).  The d-prime sensitivity of the ideal 

observer was computed using the standard expression Ζ(auROC) ×  √2, where auROC is 
the area under the receiver operating characteristics curve for the two distributions and Ζ 
is the inverse of the standard normal cumulative distribution function62. 
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