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Summary 29 

The brain organizes experiences into memories that can be used to guide future behavior. Hippocampal 30 

CA1 population activity may reflect the retrieval of predictive models that contain information about 31 

future events, but little is known about how these kinds of memories develop with experience. We 32 

trained mice on a series of tone discrimination problems with or without a common statistical structure 33 

to observe how memories are formed and updated during learning. Mice that learned structured 34 

problems integrated their experiences into a predictive model that contained the solutions to upcoming 35 

novel problems. Retrieving the model during learning improved discrimination accuracy and facilitated 36 

learning by decreasing the amount of new information that needed to be acquired. Using calcium 37 

imaging to track the activity of thousands of CA1 neurons during learning on this task, we observed the 38 

emergence of a persistent hippocampal ensemble at the same time that mice formed a predictive model 39 

of their environment. This ensemble was reactivated during training and incorporated new neuronal 40 

activity patterns from each training problem. Interestingly, the degree to which mice reactivated the 41 

ensemble was related to how well their model predicted the content of the current problem, ensuring 42 

that the model was only updated with congruent information. In contrast, mice trained on unstructured 43 

problems did not form a predictive model or engage a persistent ensemble. These results show how 44 

hippocampal activity supports building predictive models by organizing newly learned information 45 

according to its congruence with existing memories. 46 

Keywords: hippocampus, learning, memory, retrieval, prediction, integration, context, schema, latent 47 

state, inference, cognition 48 
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Introduction 57 

All animals use information from their past to guide their present behavior. Memories derived 58 

from multiple experiences may be particularly useful for supporting efficient behavior by providing 59 

insight into the rules that govern environments. This type of memory, often described as a predictive 60 

model, is considered a fundamental feature of high-level cognitive functions such as creativity and 61 

intelligence (Kumaran et al., 2016; Tervo et al., 2016; Behrens et al., 2018; Momennejad, 2020; Morton 62 

and Preston, 2021). However, little is understood about how predictive models are formed in the brain 63 

and used to guide behavior. 64 

The hippocampus has been implicated in supporting predictive models across several species 65 

(Zeithamova et al., 2012; Pudhiyidath et al., 2022; Brunec and Momennejad, 2022; Vikbladh et al., 2019; 66 

Schapiro et al., 2016; Knudsen and Wallis, 2021; Baraduc et al., 2019; Bulkin et al., 2016; McKenzie et al., 67 

2014; Nieh et al., 2021; Tse et al., 2007). One possibility is that the hippocampus supports the 68 

development of predictive models by repeatedly retrieving and updating memories with new 69 

information (Lee, 2009; Schlichting and Frankland, 2017; Gisquet-Verrier and Riccio, 2018; Mack et al., 70 

2018; Mau et al., 2020). In this framework, animals may infer a predictive model of their environment 71 

from a subset of possible observations and then interpret subsequent experiences in terms of this 72 

model (i.e. latent state theory; Fuhs and Touretzky, 2007; Gershman and Niv, 2010; Niv, 2019; Redish et 73 

al., 2007). When an existing predictive model can explain the animal’s current experience, it is retrieved 74 

along with a corresponding hippocampal activity pattern (i.e. map or context code; Sanders et al., 2020; 75 

Whittington et al., 2020). New learning that is consistent with the model may then be integrated into 76 

the model, whereas new learning that is not consistent with any existing model may prompt the 77 

formation of a new model. 78 

Although it is challenging to study mental representations in the brain (Tervo et al., 2016), 79 

several aspects of this idea have been examined. For instance, it has been shown that the hippocampus 80 

encodes experience in state spaces (Wood et al., 2000; Nieh et al., 2021; Sun et al., 2020; Samborska et 81 

al., 2021) and that pre-existing memories (McKenzie et al., 2014; Tse et al., 2007; Cai et al., 2016) and 82 

neural structure (Epsztein et al., 2011; Dragoi and Tonegawa, 2011; Sadtler et al., 2014; McKenzie et al., 83 

2021) can affect learning. However, whether the interplay between new learning and existing memory 84 

accrued over many experiences gives rise to a predictive model that guides behavior has not been 85 

assessed directly, especially at the neural level. Here, we developed a new behavioral protocol that 86 

repeatedly probes the task representation of a mouse as it learns a series of unique problems. At the 87 
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behavioral level, we found that mice formed a predictive model that accurately predicted the solution to 88 

novel problems by integrating their memories of past problems, and that mice retrieved and updated 89 

their model with new learning only when what they learned matched their predictions.  At the neural 90 

level, we used calcium imaging to track changes in hippocampal CA1 ensemble activity as mice formed 91 

and retrieved a predictive model. We found that mice formed a persistent hippocampal ensemble by 92 

incorporating neurons associated with prior training problems, and that they reactivated this ensemble 93 

during new learning when they accurately predicted the solutions to the problems.  94 

Results 95 

Mice show superior learning of structured experiences 96 

We trained 80 mice to perform a novel auditory discrimination and foraging task to examine 97 

how memory-based predictions are formed and updated. In this task, mice hear tones and learn to wait 98 

longer in response to certain frequencies in order to obtain chocolate milk rewards (Figure 1A; 99 

Supplemental figure 1). Training was divided into a series of six unique training problems, and mice only 100 

advanced to the next problem after successfully learning the current one. Half of the mice (n=40) 101 

received a Structured training protocol where the highly rewarded (i.e., rich) tones from every problem 102 

fell within a continuous band of frequencies (Figure 1B), while the other mice (n = 40) received an 103 

Unstructured training protocol where the rich and poor tones were more evenly distributed (Figure 1C). 104 

Consistent with previous work on memory transfer (Harlow, 1949), the Structured training group 105 

showed increased preference for the rich tone on the first day of training of later problems (one-way 106 

repeated measures ANOVA, F(5, 195) = 23.99, p < 0.001; Figure 1D), as well as more rapid learning over 107 

the course of training (F(5, 195) = 18.45, p < 0.001; Figure 1F), even though every problem was novel, 108 

indicating that early training experiences enhanced the ability of mice in the Structured training group to 109 

learn novel problems. By contrast, the Unstructured training group reliably preferred the poor tone (F(5, 110 

195) = 3.76, p < 0.01; Figure 1E) and often showed slowed learning (F(5, 195) = 4.59, p < 0.001; Figure 111 

1G), indicating memory interference. Direct comparisons between the groups on the first and last 112 

problems (which were the same in both training protocols; i.e., the common problems) confirmed that 113 

only the Structured training group improved their performance on the first day of training problems 114 

(two-way repeated measures ANOVA, group X problem interaction, F(1, 78) = 93.89, p < 0.001; between 115 

groups on problem 1, t(78) =  0.13, p = 0.90; between groups on problem 6, t(78) =  11.43, p < 0.001; 116 

Figure 1H) and their rate of learning (group X problem interaction, F(1, 78) = 63.18, p < 0.001; between 117 

groups on problem 1, t(78) =  0.81, p = 0.42; between groups on problem 6, t(78) =  9.80, p < 0.001; 118 
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Figure 1I). Lastly, the Structured training group did not require as much training to reach criterion 119 

(defined as the difference between the preference for the rich tone on the first and last day; two-way 120 

repeated measures ANOVA, group X problem interaction, F(1, 78) = 10.37, p < 0.01; between groups on 121 

problem 1, t(78) = 1.08, p = 0.28; between groups on problem 6, t(78) = 4.76, p < 0.001; Structured 122 

training group compared to zero, t(39) = 1.13, p = 0.26; Unstructured training group compared to zero, 123 

t(39) = 9.14, p < 0.001; Figure 1J), indicating that the last problem contained less new information for 124 

the Structured training group despite neither group having been trained on that problem before. 125 

Figure 1. Efficient learning of structured versus unstructured problems. (A) Mice were trained and tested in an 126 
operant chamber with a nose-poke port, reward-delivery hopper, and a speaker that delivered different tones. 127 
Each trial consisted of a nose-poke followed by head entry into the hopper. Upon head entry, a tone played 128 
followed by a potential reward delivery. (B) Two groups of mice were trained on a series of tone discrimination 129 
problems. In the Structured training group, all of the rich tones fell within a continuous band of frequencies. (C) In 130 
the unstructured group, the rich tones were more evenly distributed. The first and last problem were the same for 131 
both groups (black arrows). (D) Preference for the rich tone is shown in terms of the standardized mean difference 132 
between how long mice waited in response to the rich tone and the poor tone. Preferences are shown for the first 133 
and last day of training on every problem. Mice were trained to the same criterion (longer wait times on rich tone 134 
trials than poor tone trials as determined by a significant T-test, alpha level = 0.01) on every problem and then 135 
were given one additional day of training (i.e., the last day). The Structured training group showed better 136 
discrimination on the first day of problems later in learning compared to the first problem. (E) The Unstructured 137 
training group did not improve first-day performance and typically showed significantly worse performance. (F) 138 
The number of days required to reach criterion. The Structured training group learned new problems faster later in 139 
learning. (G) The learning rate of the Unstructured training group failed to improve. Direct comparisons between 140 
the two groups on the first and last problem revealed that the Structured training group (H) showed higher initial 141 
discrimination on the last training problem, (I) learned the last problem in fewer days, and (J) learned less new 142 
information on the last problem compared to the Unstructured training group. 143 

Mice integrate structured experiences to form a stable, generalized model of the environment 144 
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We hypothesized that the Structured training group performed better on later discrimination 145 

problems by integrating its early experiences into a predictive model of the environment that supported 146 

new learning (Tolman, 1948; Tse et al., 2007). If this is true, then the Structured training group should 147 

develop tone preferences (increased wait times) that match the statistics of the full Structured training 148 

set (and not simply the most recent problem; Figure 1B). Furthermore, if this process depends on 149 

updating a predictive model with new information, then tone preferences should change (be updated) 150 

when mice encounter unpredicted problems but should remain stable when the mice encounter 151 

problems that are already predicted by the model (and therefore do not require additional learning). 152 

To observe how tone preferences changed during Structured or Unstructured training, we 153 

examined the behavioral responses of both groups during probe tests administered before and after 154 

each training problem (Figure 1B, C). During probe tests, 41 unique tones (min frequency = 5kHz, max 155 

frequency = 35kHz; all tones, p(reward) = 0.5) were presented in random order to examine the length of 156 

time mice would wait in response to a range of tones, including tones that had not been trained yet. 157 

Early in training, both groups generalized beyond the two most recent training tones, preferring all 158 

tones beyond the recent rich tone to all tones beyond the recent poor tone (e.g., probes 1 and 2; see 159 

Purtle, 1973). Later in training, the Structured training group began to selectively prefer tones in the 160 

center of the auditory range (including novel tones that were not previously trained), consistent with 161 

the statistics of the training set (Figure 2A, B). This suggests that the Structured training group 162 

integrated its training experiences into an accurate model of the relationship between tone and reward. 163 

To quantify the degree to which the model changed after each training experience, we assessed 164 

the similarity of tone preferences before and after each problem. The Structured training group 165 

developed stable tone preferences during the second half of training (linear mixed-effects (LME) model 166 

with fixed effects for first probe, second probe, and group, and a random effect for subject, first probe X 167 

second probe X group interaction, t(3352) = 9.16, p < 0.001; Figure 2C; the Structured training group, 168 

one-way repeated measures ANOVA, F(5, 195) = 27.79, p < 0.001; Figure 2D). In contrast, the tone 169 

preferences of the Unstructured training group were either uncorrelated or anticorrelated (F(5, 195) = 170 

7.27, p < 0.001; Figure 2E), indicating that this group did not form a stable model. Between-group 171 

comparisons confirmed that the Structured training group developed a stable model while the 172 

Unstructured training group continued to show learning-related changes (two-way repeated measures 173 

ANOVA, group X stage interaction, F(1, 78) = 61.86, p < 0.001; Structured training group compared to 174 
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zero, t(39) = 13.78, p < 0.001; Unstructured training group compared to zero, t(39) = 0.67, p = 0.50; 175 

Figure 2F). 176 

Figure 2. 177 
Integrating 178 
structured 179 
experiences into 180 
a generalized 181 
model. (A) The 182 
wait time 183 
responses to 184 
every tone are 185 
shown for every 186 
subject in every 187 
probe test of the 188 
Structured 189 
training group. 190 
Probe 0 is the 191 
pre-probe 192 
administered 193 
before any tone 194 
training. 195 
Subsequent 196 
probes were 197 
administered the 198 
day after 199 
completing the 200 
corresponding 201 
problem. The rich 202 
and poor tone 203 

frequencies of the prior problem are shown as red and grey lines, respectively. (B) Same as A, but for the 204 
Unstructured training group showing no integration of new information into previous memories. (C) Correlation 205 
matrices showing the mean of all subject correlations between every pair of probe tests for the Unstructured 206 
training group (top) and Unstructured training group (bottom). (D) The correlation between every pair of 207 
sequential probe tests is shown for the Structured training group. (E) Same as D, but for the Unstructured training 208 
group. (F) The correlation between the probes before and after the two common problems (problem 1 and 209 
problem 6) are shown for both groups. 210 

Generalized model predicts future discriminations and improves learning 211 

The above observations indicate that the Structured training group formed a stable model at the 212 

same time that they began to show efficient learning of novel discriminations. This raises the possibility 213 

that the model (integrated memories of past problems) contained information about future (not-yet 214 

trained) problems that facilitated learning on these problems. To quantify the information about 215 

discrimination problems contained in the model, we fit a curve to the tone preferences (wait times) 216 

observed during every probe test (see methods) and then measured the difference between how long 217 

the mouse waited in response to the rich and poor training tones used in the training problems. As a 218 
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proof of concept, we first asked whether the model expressed during probe tests correctly discriminated 219 

between the rich and poor tones of the most recent training problem. Because both groups successfully 220 

learned to prefer the rich tone to the poor tone over the course of every training problem (Figure 1 D-E), 221 

we anticipated that the mice would similarly discriminate between these tones during the subsequent 222 

probe test one day later. Consistent with this, mice showed a similar preference for the rich tone during 223 

training problems and the probe tests the following day (Figure 3A; every Structured training group 224 

session compared to zero, p < 0.001; Figure 3B; every Unstructured training group session compared to 225 

zero, p < 0.001; Figure 3C; direct comparisons after the common problems, two-way repeated measures 226 

ANOVA, group X probe interaction, F(1, 78) = 4.35, p = 0.04; at probe 1, t(78) = 1.14, p = 0.26; at probe 6, 227 

t(78) = 1.66, p = 0.10; Figure 3D), indicating that the model expressed during the probe test contained 228 

information about the discrimination learned during the preceding training problem. 229 

To examine whether the model expressed during probe tests also contained information about 230 

future problems, we asked whether mice waited longer in response to the upcoming rich tone than to 231 

the upcoming poor tone. Similar to above, we found that the amount of time mice waited in response to 232 

the training tones on the first day of a problem closely matched how long they waited in response to 233 

those same tones on the probe test one day prior (Figure 3E), indicating that the mice were retrieving 234 

the same model during training that they retrieved during the prior probe. However, only the Structured 235 

training group developed a preference for future rich tones over future poor tones (all compared to 236 

zero: probe 0, t(39) = 1.07, p = 0.29; probe 1, t(39) = 3.32, p < 0.01; probe 2, t(39) = 1.42, p = 0.16; probe 237 

3, t(39) = 4.21, p < 0.001; probe 4, t(39) = 1.31, p = 0.20; probe 5, t(39) = 6.87, p < 0.001, Figure 3F). The 238 

Unstructured training group never predicted upcoming problems accurately and was often inaccurate 239 

(all compared to zero: probe 0, t(39) = 0.62, p = 0.54; probe 1, t(39) = 7.24, p < 0.001; probe 2, t(39) = 240 

6.15, p < 0.001; probe 3, t(39) = 4.90, p < 0.001; probe 4, t(39) = 3.95, p < 0.001; probe 5, t(39) = 5.18, p 241 

< 0.001, Figure 3G; direct comparisons on the probes preceding the common problems, two-way 242 

repeated measures ANOVA, group X probe interaction, F(1, 78) = 78.62, p < 0.001; at probe 0, t(78) = 243 

1.14, p = 0.26; at probe 5, t(78) = 8.61, p < 0.001; Figure 3H). These findings indicate that the model 244 

expressed during probe tests contained information that could be used to predict the solutions to 245 

discrimination problems that had not yet been encountered (i.e., a predictive model). 246 

If mice retrieve a predictive model during learning, then their learning might be affected by the 247 

accuracy of the predictions. For example, an accurate model may reduce the amount of new 248 

information that needs to be acquired and incorporated into memory, while inaccurate predictions 249 
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might interfere with performance. To test this, we asked how discrimination performance on the first 250 

day of training was related to the accuracy of the prediction measured during the preceding probe test. 251 

We found that accurate predictions were associated with greater preference for the rich tone on the 252 

first day of training (r = 0.68, p < 0.001; LME model with a fixed effect for prediction accuracy and a 253 

random effect for subject, t(478) = 19.58, p < 0.001; Figure 3I; last day, r = 0.22, p < 0.001, LME model, 254 

t(478) = 5.00, p < 0.001; Figure 3J) and faster learning (i.e. fewer days to criterion, r = -0.46, p < 0.001, 255 

LME, t(478) = 11.22, p < 0.001; Figure 3K), indicating that mice learned new problems more easily when 256 

they possessed a predictive model. Relatedly, accurate predictions were associated with less learning 257 

overall. Mice that retrieved accurate predictions showed a smaller change in their preference for the 258 

rich tone between the first and last day of training (r = -0.34, p < 0.001; LME, t(478) = 7.61, p < 0.001; 259 

Figure 3L), as well as a smaller change in their memory, as indicated by higher correlations between 260 

their responses on the probe tests before and after training (r = 0.54, p < 0.001; LME, t(478) = 14.19, p < 261 

0.001; Figure 3M). Together, these findings indicate that predictive models improve learning by reducing 262 

the amount of new information that must be learned. 263 

Figure 3. Predictive models guide new learning. (A) Memory for the reward values of the rich and poor tones used 264 
in the prior problem can be measured during the probe test one day after training. All wait times from two 265 
example sessions (the last day of a training problem and the probe test one day later) are shown from one mouse. 266 
Grey circles indicate the wait times on individual trials. We quantified the memory for the prior problem in terms 267 
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of the difference between the how long the mouse waited in response to the same tones during the subsequent 268 
probe test. Wait times were determined by fitting a curve to the observed waits from every trial. (B) The 269 
Structured training group and (C) the Unstructured training group showed significant memory for the prior 270 
problem during every probe test. (D) The two groups also showed similar memory for each of the two common 271 
training problems. (E) Predictions for the reward values of future rich and poor tones can be measured during the 272 
probe test one day before the start of training. We measured predictions in the same way that we measured 273 
memory, but with the rich and poor tones from the upcoming (and not the prior) problem. (F) The Structured 274 
training group accurately predicted the solutions to some problems later in learning after initially making 275 
inaccurate predictions. (G) The Unstructured training group showed inaccurate predictions throughout training. 276 
(H) The Structured training group developed superior predictions with training compared to the Unstructured 277 
training group. (I) The more accurate the prediction (measured during the preceding probe test), the stronger the 278 
preference for the rich tone on the first day of training, defined as the standardized mean difference between the 279 
wait times in response to the rich and poor tones. Large circles show condition means. (J) The more accurate the 280 
prediction, the stronger the preference for the rich tone on the last day of training. (K) The more accurate the 281 
prediction, the faster the subject learned the training problem. (L) The more accurate the prediction, the less new 282 
information was learned during a training problem, defined as a smaller change in the preference for the rich tone 283 
from the first to the last day of training. (M) More accurate predictions were associated with smaller learning-284 
related changes to the memory, defined in terms of the correlation between the behavioral responses on probe 285 
tests before and after training (higher correlations indicate smaller changes). 286 

Structured training reactivates CA1 ensembles active during prior learning 287 

Our behavioral data indicate that mice retrieve memories of prior problems to support 288 

predictions and new learning. The hippocampus plays a crucial role in memory retrieval by reactivating 289 

ensembles (e.g., engrams) that were active during prior experiences (Liu et al., 2012; Goshen et al., 290 

2011; Tanaka et al., 2014). To examine how ensemble reactivation in the hippocampus might support 291 

the formation of a predictive model in this task, we implanted GRIN lenses above the CA1 layer of the 292 

hippocampus in 13 Thy1-GCaMP6f mice, and imaged 4349 unique neurons with custom miniature 293 

microscopes (Jacob et al., 2018; Figure 4A, B) while mice performed the discrimination and foraging test 294 

described above (n = 8 Structured training mice, n = 5 Unstructured training mice; Supplemental figure 295 

2). Imaging data was collected during the seven probe tests and the first and last day of each of the six 296 

training problems (19 sessions). To measure ensemble reactivation in our task, we registered active 297 

neurons across sessions (CellReg, Sheintuch et al., 2017; Figure 4C; Supplemental figure 3) and then 298 

quantified excess population overlap for every pair of sessions, defined as the number of neurons that 299 

were active in both sessions divided by the number that were active in either session (Figure 4D) minus 300 

the overlap expected due to the amount of time between imaging sessions (Supplemental figure 4). We 301 

found that excess overlap increased with Structured training, but not Unstructured training (LME model 302 

with fixed effects for sessions and group, and a random effect for subject, session X session X group 303 

interaction, t(4438) = 3.78, p < 0.001; post-hoc LME models with fixed effects for sessions, and a random 304 

effect for subject, Structured training group session X session interaction, t(2732) = 6.09, p < 0.001, 305 

Unstructured training group session X session interaction, t(1706) = 0.23, p = 0.81; Figure 4E; 306 
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Supplemental figure 4D, E), indicating that Structured training increased the degree to which 307 

hippocampal ensembles were reactivated during later sessions. Interestingly, ensemble reactivation 308 

increased in the Structured training group at approximately the same time that these mice began to 309 

form a predictive model, suggesting that neuronal reactivation may be a mechanism for integrating 310 

experiences into a model (Figure 2C-D). 311 

Figure 4. Mice reactivate CA1 populations during structured, but not unstructured, training. (A) Cartoon of the 312 
custom miniature microscope implanted into the hippocampus. (B) Histological section used to identify the 313 
location of a GRIN lens implanted on the surface of CA1. (C) We tracked the activity of every neuron throughout 314 
training for both the Structured training and Unstructured training groups (see also Supplemental figure 3). The 315 
columns show the activity of one neuron over all 19 training sessions (7 probes and the first and last day of each of 316 
6 problems). Neurons are colored according to the session in which they were first active. Rows show the 317 
composition of every session in terms of which cells were active. The composition is summarized in the outset bar 318 
chart. (D) An explanation and example of the population overlap computation, defined as the number of cells 319 
active in both sessions divided by the number active in either. (E) The mean observed overlap between every pair 320 
of imaging sessions for the Structured training and Unstructured training groups. Matrices showing excess overlap 321 
are shown in Supplemental figures 4D-E. 322 

CA1 ensemble activity patterns stabilize during Structured training 323 

In addition to activating unique ensembles of neurons, the hippocampus also guides memory 324 

retrieval by reorganizing neuronal activity patterns along dimensions that are important for task 325 

performance (i.e., remapping; Muller and Kubie, 1987; Markus et al., 1995; Smith and Mizumori, 2006; 326 

Kelemen and Fenton, 2010; Bulkin et al., 2016). To assess how the reorganization of hippocampal 327 
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activity might support the formation of a predictive model in our task, we investigated time-warped 328 

neuronal activity during events common to every trial (from nose poke until the mouse waited in the 329 

food hopper for 2 seconds after tone-on; Figure 5A). Individual neurons reliably became active at 330 

discrete periods during every trial (Figure 5B) such that the population of neurons encoded the entire 331 

trial progression (Figure 5C). To evaluate how patterns of activity changed over training, we identified 332 

neurons that were active in multiple sessions and measured the similarity of their activity patterns 333 

between sessions (Figure 5D) while controlling for the effect of time between sessions as above (i.e., 334 

excess activity similarity, Supplemental figure 4). Comparing the excess activity similarity between every 335 

pair of sessions for both groups showed that population activity became more similar with Structured 336 

training only (LME model with fixed effects for sessions and group, and a random effect for subject, 337 

session X session X group interaction, t(3730) = 5.77, p < 0.001; post-hoc LME models with fixed effects 338 

for sessions and a random effect for subject, Structured training group session X session interaction, 339 

t(2334) = 7.23, p < 0.001, Unstructured training group session X session interaction, t(1396) = 1.57, p = 340 

0.12; Figure 5E; Supplemental figure 4). Therefore, Structured training increased the degree to which 341 

hippocampal neurons from early sessions maintained their activity patterns when reactivated in later 342 

sessions, consistent with the idea that this activity supported the retrieval of training memories late in 343 

learning. As with the increase in ensemble overlap described above, this increase in activity similarity 344 

occurred at approximately the same time that the Structured training group formed a predictive model 345 

(Figure 2C-D). Together, this suggests that the hippocampus supported a predictive model by repeatedly 346 

reactivating prior training memories that predicted the answers to future problems and enabled 347 

efficient learning.  348 

Figure 5. Mice reactivate CA1 activity patterns during Structured training. (A) We examined activity during the 349 
window between nose-poke and then end of the minimum wait (MW) period, occurring 2s after tone-on. (B) Three 350 
examples of neurons that were reliably active during discrete periods on every trial. (C) The mean activity is shown 351 
for every neuron imaged from each group, arranged by when during the trial it was most active. (D) The activity 352 
patterns of neurons that were active across any pair of probe sessions surrounding common problems (probes 0 & 353 
1, 5 & 6) are shown. We examined the similarity of population activity across sessions by measuring the correlation 354 
between the activity patterns of individual cells in both sessions. The top row shows all neurons imaged from mice 355 
in the Structured training group that were active in both probe 0 and 1 (left side), and then neurons that were 356 
active in both probe 5 and 6 (right side). The bottom row shows neurons imaged from mice in the Unstructured 357 
training group. For each pair of probes, the neurons are sorted according to their activity in the left-side probe 358 
(probe 0 or probe 5), such that corresponding rows show the activity of the same neuron. Note the highly similar 359 
activity patterns between probes 5 and 6 in the Structured training group only. (E) The mean observed activity 360 
pattern similarity between every pair of imaging sessions for the Structured training and Unstructured training 361 
groups. Matrices showing excess activity similarity are shown in Supplemental figure 4F-G. 362 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.08.507204doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507204
http://creativecommons.org/licenses/by-nd/4.0/


 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

Learning-related neuronal activity is incorporated into a task memory ensemble 377 

Because the hippocampal ensemble stabilized at the same time that mice began to form a predictive 378 

model, we hypothesized that this stability reflected the transition from learning new problems to 379 

predicting them. In particular, we hypothesized that mice reactivated and updated ensembles during 380 

learning, and that the ensembles stabilized when mice developed a predictive model. To test this, we 381 

quantified the degree to which the ensembles from earlier sessions were reactivated during later 382 

sessions in terms of a reactivation score that described both the ensemble overlap between a pair of 383 

sessions and the similarity of their activity patterns (see methods; time-corrected results reported in 384 

Supplemental figure 5). We then tested the relationship between ensemble reactivation and behavior. 385 

We first investigated whether mice reactivated prior ensembles and associated memories during 386 

new learning by comparing the ensemble reactivation scores between probe sessions and the training 387 

sessions one day later. Consistent with the above findings, we observed that the Structured training 388 
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group increased ensemble reactivation during learning specifically during later training problems 389 

(Structured training, F(5, 35) = 6.35, p< 0.001), while the Unstructured training group did not 390 

(Unstructured training, F(5, 20) = 1.67, p = 0.19; Figure 6A; between groups comparisons, LME model 391 

with fixed effects for session and group, and a random effect for subject, session X group interaction, 392 

t(22) = 2.44, p < 0.05; Figure 6B). However, if ensemble reactivation is indicative of predictive memory 393 

retrieval, then the mice should show greater reactivation specifically when they show behavioral 394 

evidence of accurate memory retrieval. Consistent with this, we observed that ensemble reactivation 395 

scores were correlated with accurate discrimination performance on the first day of training, our 396 

behavioral measure of memory retrieval during learning (r = 0.39, p < 0.001; LME model with fixed effect 397 

for first day discrimination and a random effect for subject, t(75) = 3.52, p < 0.001; Figure 6C).  398 

In addition to supporting memory retrieval, reactivating prior ensembles during learning may also 399 

support the formation of predictive memories by promoting memory updating and integration 400 

(Zeithamova et al., 2012; Cai et al., 2016; Rashid et al., 2016). To investigate the degree to which 401 

reactivated ensembles were updated with new neurons and activity patterns during training sessions, 402 

we compared the ensemble observed during the final probe test—when mice expressed their fully 403 

integrated predictive model—to the ensembles observed during individual training sessions. If training-404 

session information is incorporated into the final predictive model, then there should be increased 405 

reactivation of the training ensemble during the final probe. Consistent with the evidence for increased 406 

reactivation in the Structured training group described above, we observed that the later Structured 407 

training sessions were most strongly reactivated during the final probe session (Structured training 408 

group, F(5, 35) = 27.18, p < 0.001; Unstructured training group, F(5, 20) = 5.64, p < 0.01; Figure 6D; 409 

between-group comparison, LME model with fixed effects for session and group, and a random effect 410 

for subject, session X group interaction, t(21) = 2.30, p < 0.05; Figure 6E). Analyses controlling for time 411 

between imaging sessions confirmed that only Structured training sessions showed excess reactivation 412 

scores that exceeded chance (i.e., what was expected due to the amount of time between imaging 413 

sessions), beginning with the second training session (Supplemental figure 5G-H). This indicates that 414 

Structured training promoted the development of a final probe ensemble that was comprised of 415 

neurons and activity patterns seen during earlier training problems. 416 

Importantly, if the incorporation of training-related information into the predictive model is due to a 417 

memory updating process occurring during training, then the degree to which training ensembles are 418 

reactivated during the final probe should be related to neural processes occurring during training. 419 
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Specifically, we would expect to see greater updating during training sessions with stronger reactivation 420 

of the to-be-updated ensemble. Consistent with this, we found that reactivation during the final probe 421 

was correlated with the amount of reactivation observed during training: the greater the reactivation of 422 

the preceding probe ensemble during training, the greater the reactivation of that training ensemble 423 

during the final probe test (r = 0.58; p < 0.001; LME model with fixed effect for first day discrimination 424 

and a random effect for subject, t(74) = 5.52, p < 0.001; Figure 6F, Supplemental figure 5I). This suggests 425 

that the ensemble observed during the final probe was repeatedly reactivated during—and updated 426 

with new neuronal activity patterns from—each training problem. 427 

 If so, then the ensembles observed during each probe test should become progressively more 428 

similar to the final probe test ensemble as mice accumulate information from each training problem into 429 

a predictive model. Consistent with this, probe reactivation scores increased over training for both 430 

groups (Structured training group, F(5, 35) = 27.62, p < 0.001; Unstructured training group, F(5, 20) = 431 

3.05, p < 0.05; Figure 6G), but this increase was greater in the Structured training group (LME model 432 

with fixed effects for session and group, and a random effect for subject, session X group interaction, 433 

t(21) = 4.21, p < 0.001; Figure 6H), and only the Structured training group showed excess reactivation 434 

over that expected by chance (Supplemental figure 5J-K). Similar to above, we also found a strong 435 

correlation between probe ensemble reactivation during training and probe ensemble reactivation 436 

during the final probe (r = 0.67, p < 0.001; linear mixed effects model with fixed effect for first day 437 

discrimination and a random effect for subject, t(74) = 7.51, p < 0.001; Figure 6I, Supplemental figure 438 

5L), consistent with the idea that the incorporation of new information required ensemble reactivation 439 

during learning. Together, these data suggest that the increased ensemble stability observed in the 440 

Structured training group may be attributed to the repeated reactivation of a predictive model and 441 

corresponding ensemble, both formed by incorporating information from each of the training problems. 442 

 443 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.08.507204doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507204
http://creativecommons.org/licenses/by-nd/4.0/


Figure 6. Learning-related neuronal activity is incorporated into a reactivated ensemble. (A) We computed a 444 
reactivation score that combined ensemble overlap and activity similarity measures. The reactivation probe 445 
session population during subsequent training problems is shown for the Structured training group (left) and the 446 
Unstructured training group (right). (B) The reactivation of probe ensembles during subsequent common problems 447 
is shown for both groups. (C) The reactivation of probe ensembles during subsequent problems was predicted by 448 
first day discrimination accuracy, a behavioral measure of predictive memory retrieval. Large circles show 449 
condition means. (D) The reactivation of training session ensembles during the final probe session is shown for the 450 
Structured training group (left) and the Unstructured training group (right). (E) The reactivation of the common 451 
training problem ensembles during the final probe session is shown for both groups. (F) The reactivation of training 452 
ensembles during the final probe was predicted by the reactivation of probe ensembles during training. (G) Like D, 453 
but with the reactivation of probe ensembles during the final probe session. (H) Like E, but with probe ensembles. 454 
(I) The reactivation of probe ensembles during the final probe was predicted by the reactivation of probe 455 
ensembles during training problems. 456 

 457 

 458 

 459 

 460 

 461 
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Discussion 462 

Hippocampal activity patterns are hypothesized to reflect predictive models of the environment 463 

(Sanders et al., 2020). Here, we tested this hypothesis by investigating the relationship between 464 

memory, prediction, and CA1 ensemble activity as mice learned the rules that governed their 465 

environment. By using a new behavioral method for observing how memories change after discrete 466 

learning experiences, we found that Structured learning experiences promoted the integration of new 467 

learning into a memory of the task environment that accurately predicted future problems (i.e., a 468 

predictive model). We showed that this model included predictions about untrained stimuli, and that 469 

the accuracy of these predictions had a large effect on the efficiency of new learning. Then, by observing 470 

hippocampal activity throughout learning, we found that mice learning Structured training problems 471 

reactivated prior ensembles, thereby supporting the integration of new information into the reactivated 472 

ensemble. These data indicate that hippocampal ensemble reactivation supports the formation of 473 

predictive models that explain the underlying structure of an environment. Moreover, these data shed 474 

light on how memory systems organize experiences to maximize prediction accuracy and minimize 475 

memory interference. 476 

 The hippocampus has long been implicated in memory processes that support predictive models 477 

(Tolman, 1948) and considerable evidence suggests that hippocampal activity develops as subjects learn 478 

about their environment (Smith and Mizumori, 2006; Gill et al., 2011; Plitt and Giocomo, 2021). 479 

However, a fundamental feature of a predictive model is the ability to infer information beyond what 480 

has been directly experienced—to generalize what has been learned to explain and predict aspects of 481 

the environment that have not been learned (Tervo et al., 2016; Whittington et al., 2018, 2022). 482 

Consistent with this, we found that mice readily generalized what they learned from individual 483 

discrimination problems into predictions about novel contingencies during subsequent probe tests. 484 

Predictions expressed during probe tests, in turn, affected how mice learned new problems, such that 485 

accurate predictions accelerated learning and inaccurate predictions impeded learning. These findings 486 

are consistent with longstanding ideas that it is easier to learn things that are related to what is already 487 

known (Bartlett, 1932; Bransford and Johnson, 1972; Craik and Tulving, 1975; Harlow, 1949; Chase and 488 

Simon, 1973; Tse et al., 2007). These findings also highlight the reciprocal relationship between learning 489 

and memory whereby learning is stored in memory and then retrieved during new learning. 490 

We additionally found that the Structured training group successfully integrated new 491 

experiences into a predictive model, whereas the Unstructured training group did not. This indicates 492 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.08.507204doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507204
http://creativecommons.org/licenses/by-nd/4.0/


that the ability to integrate experiences was influenced by whether they shared an underlying structure. 493 

It has been previously noted that the relationship between new experiences and existing memories 494 

plays an important role in memory formation (Fernández et al., 2016; van Kesteren et al., 2012). 495 

However, it has not always been clear what makes a given experience sufficiently related to another to 496 

promote memory integration. One possibility is that mice selectively integrate information that is 497 

predicted by the memories retrieved during learning. Such a rule could support the formation of 498 

predictive models by organizing experiences in memory according to shared hidden causes (i.e. whether 499 

both experiences were caused by the same underlying rule or structure). It is also likely that memory 500 

integration in the Structured training group was facilitated by the learning-related benefits of retrieving 501 

accurate predictions: predicted experiences are learned more quickly, thereby increasing the likelihood 502 

that learning occurs in the presence of the retrieved memory. Inversely, if a memory interferes with 503 

learning (as was observed in both groups early in training and in the Unstructured training group 504 

throughout training), then the retrieved memory may be suppressed, thereby preventing the new 505 

information from being integrated into it. Over many iterations, these two processes could organize a 506 

series of experiences into a predictive model that closely matches the underlying structure of the 507 

environment and can therefore support predictions about future experiences in that environment. 508 

Integrating experiences requires a system for retrieving relevant memories and then updating 509 

these memories with new information. The hippocampus plays essential roles in memory retrieval (Liu 510 

et al., 2012; Robinson et al., 2020) and consolidating new learning (Davis and Squire, 1984; Girardeau et 511 

al., 2009). One way these functions cooperate is through the process of integrating memories that are 512 

learned under the same hippocampal activity pattern, such as when two experiences occur close in time 513 

(Cai et al., 2016; Chowdhury et al., 2022) or when a second experience reminds one of the first 514 

(Zeithamova et al., 2012; Lee et al., 2017). In the current study, we found increased reactivation of 515 

hippocampal activity patterns associated with prior problems exclusively in the Structured training 516 

group and specifically late in learning, coinciding with the time that memory integration became 517 

apparent behaviorally. This suggests that memory integration occurs when predictive memories and 518 

their corresponding hippocampal activity states are retrieved during new learning, leading to integration 519 

of newly learned information into the reactivated state. If so, then the memory integration might result 520 

from a two-part process whereby memory retrieval increases the activity of the subset of neurons 521 

associated with the retrieved memory (i.e., the engram), and then a neuronal allocation process 522 

preferentially assigns newly learned information to those active neurons (Rashid et al., 2016). This 523 

process would result in the first and second experience becoming linked in memory due to both 524 
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experiences sharing a single neuronal population that drives the retrieval of both memories when 525 

reactivated. 526 

A complementary possibility is that the hippocampus changes its activity state in response to 527 

unpredicted problems. Although retrieving related memories is important for memory integration and 528 

the formation of predictive memories, it is arguably even more important to avoid retrieving and 529 

integrating unrelated information, which can cause memory interference (Smith and Vela, 2001) and 530 

possibly amnesia (McCloskey and Cohen, 1989). The hippocampus is well known for its ability to 531 

reorganize its firing activity in response to new environments (Muller and Kubie, 1987). Interestingly, 532 

this type of reorganization can also free subjects from memory interference (Bulkin et al., 2016; Butterly 533 

et al., 2012), likely by discouraging the retrieval of the interfering information (Park et al., 2021). 534 

Therefore, one explanation for our finding that the Unstructured training group showed little 535 

reactivation of prior hippocampal activity patterns during learning is that the hippocampus actively 536 

generated new patterns to facilitate the learning of unstructured problems. This would also help to 537 

avoid erroneously integrating experiences that do not share an underlying hidden cause and whose 538 

integrated memory would therefore have little predictive value. 539 

Memory organization can also occur ‘offline’ during sleep or otherwise outside of task 540 

performance. In the days and weeks after learning, newly learned information goes through a systems 541 

consolidation process that transfers information into neocortical regions (Squire, 2004), and there are 542 

changes to memory content such as the loss of detailed information (Wiltgen and Silva, 2007; Richards 543 

et al., 2014) and, in some cases, additional learning or insight (Barron et al., 2020; Payne et al., 2009). 544 

Mice in the current study learned training problems over the course of weeks (Figure 1F-G), providing 545 

sufficient opportunity for long-term memory generalization into the cortex (Makino and Komiyama, 546 

2015; Miller et al., 2019; Takehara-Nishiuchi and McNaughton, 2008; Tse et al., 2007, 2011). However, 547 

our data show that the process also occurs locally in the hippocampus. One possibility is that 548 

hippocampus supports the selective retrieval of predictive memories stored in the neocortex in order to 549 

update them with relevant new information (Debiec et al., 2002). 550 

 Together, these data suggest a concise description of prediction-based memory organization in 551 

the hippocampal system. After any learning experience, the resulting memory trace generalizes to form 552 

predictions about novel stimuli that can be retrieved when those stimuli are encountered in the future. 553 

When the generalized memories are retrieved during new learning, they are accompanied by the 554 

reactivation of hippocampal activity patterns that were present when the original memory was learned. 555 
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If the retrieved memory improves learning, then the prior hippocampal activity patterns remain 556 

activated while the new memory is formed, thereby integrating the two memories. Alternatively, if the 557 

retrieved memory impedes learning, then the hippocampus changes its activity pattern to discourage 558 

the retrieval of the interfering memories and to avoid erroneous integration. Over many learning 559 

experiences, a predictive model is formed that matches the statistics of the experiences from which it 560 

was formed, and that can be used to predict other similar future experiences. Memories that are not 561 

incorporated into the model may be used to seed new models, or they may become isolated and 562 

forgotten. 563 

 564 

 565 
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Supplemental figure 1. Operant behavior in unoperated mice. (A) Every measured behavior during an exemplary 605 
training session. Mice had the potential to earn 50 rewards over 100 trials in an hour-long session. On each trial, 606 
one of two unique tones would play: the rich tone (p(reward)=0.9) or the poor tone (p(reward) = 0.1) and the 607 
mouse responded by waiting for a potential reward. The wait durations on trials when no reward was available 608 
(thick lines) indicated the mouse’s preference for the tone that played on that trial. (B) All wait durations from 609 
reward-unavailable trials in A. (C) Every measured behavior during an exemplary probe test session. Mice had the 610 
potential to earn 41 rewards over 82 trials in an hour-long session. On each trial, one of 41 unique tones would 611 
play. No reward was available on half of all trials (all tones p(reward) = 0.5) and the wait durations on these trials 612 
(thick lines) indicated the mouse’s preference for each tone. In this example of behavior on probe 1 (after training 613 
on problem 1), the mouse waits longer in response to lower-frequency tones (D) All wait durations from reward-614 
unavailable trials in C. (E) The speed of task behavior was similar between the groups throughout learning. The 615 
amount of time between nose poke entry and head entry is shown for every subject at every probe session. (F) The 616 
amount of time required to complete a session is shown for every probe session. Probe sessions were completed 617 
after 82 trials with a maximum time of 60 minutes. (G) The number of trials completed in every probe session is 618 
shown. Sessions with fewer than 41 trials (dotted line) were repeated. (H) For some analyses (Figure 3; 619 
Supplementary figure 2), we estimated the preference for every tone by fitting a curve composed of a normal 620 
component and a logistic component to the observed wait times on every trial (probe sessions only; see methods). 621 
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Supplemental figure 2. Operant behavior during calcium imaging. (A) Thirteen mice (8 Structured training, 5 628 
Unstructured training) were imaged performing the discrimination and foraging task in an operant chamber. 629 
Preference for the rich tone (standardized mean difference between wait times in response to rich and poor tones) 630 
is shown for the first and last day of training on every training problem. The Structured training group showed a 631 
greater preference for the rich tone on the first day of training on problems later in learning (one-way repeated 632 
measures ANOVA, F(5,35) = 3.35, p < 0.05). (B) The Unstructured training group never improved its first-day 633 
preference for the rich tone (one-way repeated measures ANOVA, F(5,20) = 1.59, p = 0.21). (C) Direct comparisons 634 
between the two groups on the first and last problem revealed that the structured group showed greater 635 
preference for the rich tone on the first day of the last problem (mixed model with fixed effects for intercept, 636 
training group, problem number, and group X problem and a random effect for subject, group X problem 637 
coefficient, t(22) = 3.97, p < 0.001). (D) The number of days required to reach criterion is shown. The Structured 638 
training group learned new problems faster later in learning (one-way repeated measures ANOVA, F(5,35) = 6.16, p 639 
< 0.001). (E) The Unstructured training group never improved its learning rate (one-way repeated measures 640 
ANOVA, F(5,20) = 0.28, p = 0.92). (F) Direct comparisons between the two groups on days required to reach 641 
criterion on the common problems (group X problem coefficient, t(22) = 2.64, p < 0.05). (G) The wait time 642 
responses to every tone are shown for every subject in every probe test of the Structured training group. (H) The 643 
same as G, but for the Unstructured training group. (I) We measured predictions from behavior during the probes 644 
preceding each problem (see Figure 3E). The more accurate the prediction, the better the discrimination 645 
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performance on the first day of training (linear effects mixed model with fixed effects for intercept, prediction 646 
accuracy, and a random effect for subject: prediction accuracy term, t(76) = 3.33, p < 0.01). Large dots indicate 647 
condition means. (J) The relationship between prediction and learning rate on the training problem (prediction 648 
accuracy term, t(76) = 1.92, p = 0.06). (K) The more accurate the prediction, the less new information was learned 649 
during training (prediction accuracy term, t(76) = 2.35, p < 0.05). (L) The more accurate the prediction, the more 650 
stable the memory as measured during pre and post probe tests (prediction accuracy term, t(76) = 4.53, p < 0.001). 651 
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Supplemental figure 3. Registering CA1 neurons. (A) Example showing the registration of imaging data collected 672 
over weeks. Top row, fields of view (maximal projection images) from the same mouse from every probe session. 673 
Second row, spatial footprints are identified from the video file and aligned (translated and rotated) to a common 674 
reference frame. Bottom row, session pairs are then overlaid to identify overlapping neurons. (B) Example of a 675 
neuron that was active during every probe 0 – 6 and showed a stable activity pattern. Rows show normalized 676 
activity on every trial from every probe session. The neuron’s spatial footprint is highlighted to the right of each 677 
probe session. (D) Anatomical distance vs spatial footprint similarity for every registered (same cell) cell pair in the 678 
dataset. For each cell pair, we plotted the distance between the two cells versus the correlation coefficient of their 679 
cell mask spatial correlations. (E) Same as B, but for unregistered (different cells) cell pair. (E) Median spatial 680 
correlations for every registered cell pair from each probe session pair for each group. (F) Same as E, but with 681 
anatomical distance between centers of each cell.  682 

 683 

 684 

 685 
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 686 

Supplemental figure 4. The relationship between ensemble similarity and time. (A) The average time between 687 
every imaging session is shown for both the structured and Unstructured training groups. (B) We modelled the 688 
effect of time on reactivation scores by fitting a truncated normal distribution to the ensemble overlap and mean 689 
activity similarity values obtained by comparing all pairwise combinations of imaging sessions from the 690 
Unstructured training group. Mean overlap in bins spanning time is shown in black. The fit model curve is shown in 691 
red. We obtained the time-corrected (excess) overlap values by subtracting the effect characterized by the fit 692 
curve from the observed overlap values. (C) Like B, but with the mean activity similarity across cells that were 693 
active any two sessions. (D) The ensemble overlap between every pair of sessions during Structured training is 694 
shown in terms of the observed values and the excess values. (E) Same as C, but for Unstructured training. (F-G) 695 
Like D and E, but with mean activity similarity. 696 

 697 

 698 

 699 

 700 

 701 
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Supplemental figure 5. Learning related neuronal activity is incorporated into a reactivated ensemble, time 702 
corrected. (A) We modelled the effect of time on reactivation scores by fitting a truncated normal distribution to 703 
the reactivation scores obtained by comparing all pairwise combinations of imaging sessions from the 704 
Unstructured training group. (B) The observed and time-corrected mean reactivation score values for all pairwise 705 
Structured training group imaging session comparisons. (C) The observed and time-corrected mean reactivation 706 
score values for all pairwise Structured training group imaging session comparisons. There was a significant group 707 
(structured vs Unstructured training) X session 1 X session 2 interaction for the time-corrected reactivation scores 708 
(linear mixed model with fixed effects for session 1, session 2, and group, and a random effect for subject, t(4344) 709 
= 7.34, p < 0.001). (D) The reactivation probe ensembles during subsequent training problems increased with 710 
training for the Structured training group (F(5,35) = 5.39, p < 0.001; left) and but not the Unstructured training 711 
group (F(5, 20) = 1.55, p = 0.22; right). (E) The reactivation of probe ensembles during subsequent common 712 
problems are shown for both groups. Only the structured group showed an increased reactivation score late in 713 
learning (fixed effects for group and session and a random effect for subject, group X session interaction, t(22) = 714 
2.37, p < 0.05). (F) The reactivation of probe ensembles during subsequent problems was predicted by first day 715 
discrimination accuracy (fixed effect for discrimination accuracy and a random effect for subject, t(75) = 3.15, p < 716 
0.01). (G) The Structured training group showed increased reactivation of later training session ensembles during 717 
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the final probe session (F(5,35) = 6.12, p < 0.001; left), while the Unstructured training group did not (F(5,20) = 718 
0.24, p = 0.93, right). (H) Only the Structured training group showed an increase at the common training problems 719 
(fixed effects for group and session and a random effect for subject, group X session interaction, t(21) = 2.18, p < 720 
0.05). (I) The reactivation of training ensembles during the final probe was predicted by the reactivation of probe 721 
ensembles during training (fixed effect for training reactivation and a random effect for subject, t(21) = 2.18, p < 722 
0.05). (J) Like G, but with the reactivation of probe ensembles during the final probe session (Structured training, 723 
F(5,35) = 6.94, p < 0.001; Unstructured training, F(5,20) = 0.92, p = 0.49). (K) Like H, but with probe ensembles 724 
(fixed effects for group and session, group X session interaction, t(21) = 3.75, p < 0.01). (L) The reactivation of 725 
probe ensembles during the final probe was predicted by the reactivation of probe ensembles during subsequent 726 
training problems (fixed effect for training reactivation and a random effect for subject, t(74) = 7.40, p < 0.001). 727 
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Methods 747 

Animals 748 

All experiments conformed to the guidelines set forth by the Canadian Council for Animal Care and the 749 

Animal Care Committee at the Hospital for Sick Children. For the behavior-only study, we used 80 wild 750 

type mice aged 8-10 weeks at the start of training. These mice were derived from crossing C57BL6n and 751 

129SvEv mice (breeding mice were sourced directly from Taconic). For the imaging study, we used 13 752 

transgenic mice expressing the fluorescence calcium indicator GCaMP6f under the Thy1 promoter 753 

(GP5.17 mice, Jackson Laboratories, stock no. 025393; Dana et al., 2014). All mice were weaned at 21d, 754 

housed 4 to a cage, and maintained on food restriction at 80-85% of their free-feeding weight for the 755 

duration of the experiment. The housing room was maintained on a 12h-12h light-dark cycle with the 756 

lights coming on at 8am. All experiments were performed between 9am and 6pm. Cages of mice were 757 

randomly assigned to experimental groups. 758 

GRIN lens implantation surgery for calcium imaging 759 

Mice were pretreated with atropine sulfate (0.1mg/kg, ip), anesthetized with chloral hydrate (400mg/kg, 760 

ip), injected with dexamethasone (5mg/kg, ip), and placed in a stereotaxic frame. An incision was made 761 

to expose and clean the skull, and then a craniotomy was drilled above the right dorsal hippocampus (AP 762 

= -2.0mm, ML = 1.5mm from bregma). To gain access to CA1, the cortex and corpus callosum above the 763 

hippocampus were gently aspirated while the craniotomy was constantly irrigated with artificial 764 

cerebrospinal fluid. A baseplate with an attached 2.0mm GRIN objective lens was slowly lowered into 765 

the craniotomy to a depth of 1.5mm below the surface of the skull and secured with jeweler screws and 766 

dental cement. The mice were then treated subcutaneously with meloxicam (5mg/kg) for analgesia. 767 

Imaging and behavior began 3-6 weeks later when calcium activity was observed. 768 

Behavioral apparatus 769 

Operant conditioning chambers (Med Associates, VT, USA, ENV-307W-CT) were enclosed in sound 770 

attenuating cubicles (ENV-016MD). A tall liquid delivery cup (Med Associates, ENV-303LPHDW-4.25) was 771 

recessed in the center of the front wall and a nose poke (Med Associates, ENV-313W) was placed to the 772 

left of the liquid delivery cup. Both the liquid delivery cup and the nose poke were outfitted with 773 

infrared beams to detect head entries. A tweeter speaker (Med Associate, ENV-324D; pure tone range 774 

from 5 - 35 kHz) was mounted above the nose poke. We 3D printed custom face panels to improve 775 

functionality for mice with head-mounted microscopes. During imaging, the ceiling of the operant 776 
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chamber was removed, and a small hole was opened at the top of the sound attenuating chamber to 777 

run imaging cables between the microscope and a commutator (NeuroTek Inc., ON, Canada). Operant 778 

boxes were controlled with custom code (Med Associates, Med-PC) running on a desktop computer in 779 

an adjacent room.  780 

Auditory stimuli 781 

Mice were exposed to 41 logarithmically spaced tone frequencies that spanned their auditory range. 782 

The frequencies for all subjects were (1) 5000, (2) 5249, (3) 5511, (4) 5786, (5) 6074, (6) 6377, (7) 6695, 783 

(8) 7028, (9) 7379, (10) 7747, (11) 8133, (12) 8538, (13) 8964, (14) 9411, (15) 9880, (16) 10372, (17) 784 

10890, (18) 11432, (19) 12002, (20) 12601, (21) 13229, (22) 13888, (23) 14581, (24) 15307, (25) 16070, 785 

(26) 16872, (27) 17713, (28) 18596, (29) 19523, (30) 20496, (31) 21518, (32) 22590, (33) 23716, (34) 786 

24899, (35) 26140, (36) 27443, (37) 28811, (38) 30247, (39) 31755, (40) 33338, (41) 35000 kHz. To avoid 787 

mice using volume information when learning to discriminate between tones, we applied a volume 788 

correction based on R-weighting (Björk et al., 2000) to account for how hearing sensitivity varies across 789 

frequencies. The resulting volumes for each tone in decibels were (1) 83, (2) 83, (3) 83, (4) 83, (5) 83, (6) 790 

83, (7) 83, (8) 83, (9) 83, (10) 83, (11) 83, (12) 83, (13) 83, (14) 82, (15) 81, (16) 81, (17) 80, (18) 79, (19) 791 

79, (20) 78, (21) 77, (22) 76, (23) 76, (24) 75, (25) 74, (26) 74, (27) 73, (28) 73, (29) 73, (30) 72, (31) 72, 792 

(32) 73, (33) 74, (34) 74, (35) 75, (36) 76, (37) 77, (38) 78, (39) 81, (40) 83, (41) 83. Tone volume was also 793 

randomly modified +/- 5% on each trial. All frequencies and volumes were controlled by a dedicated 794 

programmable audio generator (Med Associates, ANL-926). 795 

Behavioral procedures 796 

Pretraining 797 

Pretraining involved a series of training days that first shaped the mice to nose poke for 0.04 mL 798 

chocolate milk rewards delivered in the adjacent food cup, and then shaped them to wait longer and 799 

longer for rarer and rarer rewards. The first day of nose poke training involved placing hungry mice into 800 

the operant box, with chocolate milk smeared on the nose poke port and in the liquid delivery cup. 801 

Chocolate milk was then automatically delivered at 1 min +/- 30s intervals, while nose pokes were 802 

reinforced with chocolate milk delivery in the liquid delivery cup. On subsequent days, chocolate milk 803 

delivery was contingent on a nose poke followed by a head entry into the liquid delivery cup within 5s. 804 

We shaped the mice to steadily increase the amount of time they were willing to wait for a reward after 805 

head entry from 0s to approximately 12s over days by increasing the time between head entry and 806 
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reward delivery. By the end of pretraining, wait times on every trial were randomly drawn from a 807 

distribution based on a negative power distribution (min = 0 s, max = 56.80 s, mean = 6.35 s, median = 808 

2.69 s). At the same time that wait times were increasing, the probability of receiving a reward given a 809 

sufficient wait response was steadily decreased from 100% to 50%. Pretraining typically lasted between 810 

11 and 20 days. 811 

Session order and progression criteria 812 

After pretraining, mice began the task protocol. Mice were trained on six training problems (problems 1-813 

6) interleaved with 7 probe tests (probes 0-6). Training began with a pre-probe (probe 0) to test for any 814 

pre-existing tone preferences. This was followed by the first problem (problem 1) and then probe 1, 815 

followed by problem 2 and then probe 2, and so on until the last problem (problem 6), which was 816 

followed by the final probe (probe 6). Probe sessions were administered on a single day, whereas 817 

problem sessions were administered daily until the mice achieved a behavioral criterion (described 818 

below). After achieving criterion, mice were given one additional day of training (i.e., the last day of 819 

training), after which they progressed to the probe test. 820 

Training problem sessions 821 

During a training problem session, mice learned to wait longer in response to a rich tone than to a poor 822 

tone. A trial began when the mouse nose-poked and then entered their head into the food cup within 823 

4s, waited until the tone started playing (1 +/- 0.5s after head entry) and then waited for an additional 824 

2s (i.e., the minimum wait). After achieving the minimum wait, a mouse could abandon the trial by 825 

exiting the food cup or it could wait for a delay of 0-60s for a possible reward. However, successfully 826 

waiting for the duration of the delay did not ensure a reward, since rewards were only available on 50% 827 

of trials on average. Therefore, mice learned to use the tones to determine how long to wait (i.e., how 828 

much time to invest on that trial) for a potential reward. On each trial, the tone was randomly selected 829 

from two possible tones: the “rich” tone, which indicated that the trial had a 90% chance of having an 830 

available reward, and the “poor” tone, which indicated a 10% chance. The tone frequencies for every 831 

problem are shown in Table 1 (also see Figures 1B-C). We measured the animal’s preference for a tone 832 

in terms of how long it was willing to wait on trials when that tone was playing but no reward was 833 

available. We defined successful discrimination learning (i.e., the behavioral criterion) as significantly 834 

longer waits in response to the rich tone than to the poor tone as indicated by a significant t-test with an 835 

alpha level of 0.01 (see Supplemental figure 1A-B). Individual sessions lasted for 100 trials or 1 hour, 836 
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whichever came first. Sessions with fewer than 41 trials were repeated. The number of days required to 837 

learn a problem varied with the prior experience of the animal and can be seen in Figure 1F. 838 

Problem Structured, rich Structured, poor Unstructured, rich Unstructured, poor 

1 13229 23716 13229 23716 

2 16872 8538 28811 10890 

3 11432 27443 8964 33338 

4 15307 6377 19523 5249 

5 10372 7379 6074 16070 

6 13229 7379 13229 7379 

 839 

Table 1. The tone frequencies used for each training problem. All frequencies are shown in kHz. The 840 

tones used in problem 1 were common between both groups, as were the tones used in problem 6 841 

(both rows are shaded). To control for presentation order, half of the subjects were trained on the 842 

problems in reverse order. 843 

Probe test sessions 844 

Probe test sessions were identical to training problem sessions except that during a probe test session, 845 

mice were exposed to all 41 tones used in the study to test their preferences. Tones were presented in 846 

random order, twice each, such that a reward was available on exactly one trial for each tone, resulting 847 

in an average reward probability of 50% (the same as in the problem training sessions). There was no 848 

behavioral criterion during probe test sessions. Individual sessions lasted for 82 trials or 1 hour, 849 

whichever came first. Each probe test (0-6) was only administered once unless the mice performed 850 

fewer than 41 trials, at which point the session was repeated. 851 

Calcium imaging 852 

Imaging mice were acclimated to the weight of the imaging scope and cables during pretraining by 853 

slowly introducing heavier and heavier dummy scopes as the mice learned to nose poke for a reward. 854 

During the training protocol, we only collected video data during probe tests and during the first and last 855 

session of each training problem. To minimize the effect of bleaching over the course of a session, the 856 

LED light was kept off except for the period on each trial between nose poke and two seconds after 857 

reward delivery. If a mouse abandoned a trial before reward delivery, then the LED was turned off as 858 
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soon as they left the food cup. The microscope LED was controlled by the MED-PC code so that the ON 859 

and OFF times were synchronized with task performance. 860 

To encourage the imaging mice to perform a sufficient number of trials on every session, the 861 

probe test and training problem sessions were modified so that rewards were available on two thirds of 862 

trials (instead of half) by doubling the number of reward available trails (on probe tests) and by 863 

increasing the number of rich tone trials (on training sessions). Additionally, the delay times between 864 

minimum wait and reward delivery were shortened by approximately 2s on average (distribution min = 865 

0s, max = 54.63s, mean = 4.22s, median = 1.49s). 866 

Histology 867 

Lens placement was determined post-mortem. Mice were transcardially perfused with 4% 868 

paraformaldehyde in phosphate buffered saline. Brains were removed and stored for at least 24 h in 4% 869 

paraformaldehyde before being transferred to a 30% sucrose solution for storage until they could be 870 

sliced at 50 µm, DAPI stained, and examined. 871 

Data analysis 872 

Subject-level comparisons 873 

We compared behavioral responses and reactivation scores using standard approaches. We used t-tests 874 

to evaluate differences between two groups at a single time point, between one group at two time 875 

points, or to compare one group at a single time point to zero. We used one-way repeated measures 876 

ANOVA tests to evaluate the inequality of one group at multiple time points, and mixed ANOVA tests to 877 

evaluate the interaction between two groups at multiple time points. In cases where the groups were 878 

unbalanced, such as in the imaging conditions, we used linear mixed effects models in place of mixed 879 

ANOVA tests. All statistics were performed in MATLAB (MathWorks, Natick, MA). 880 

Modeling probe test responses 881 

We fit a model to probe wait times for every subject to estimate their preferences for every tone. This 882 

allowed us to estimate preferences similarly for all subjects even if a subject did not provide data about 883 

their preference for a particular tone of interest (for example, if they did not run enough trials to sample 884 

all tones). To do this we used the nlinfit function in MATLAB to fit a curve to the wait times of each 885 

subject on each probe. We chose a linear combination of a normal and a logistic function (Supplemental 886 

figure 1H) as these described the various curve shapes observed in this study (Figure 2A-B). To ensure 887 
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that we fit the most parsimonious model to each session, we first fit four separate models (intercept-888 

only, intercept + logistic, intercept + normal, and intercept + logistic + normal) and then compared them 889 

by iteratively withholding a single data point from a session, fitting each model to the remaining wait 890 

times, and then measuring the error between each model and the withheld data point. After computing 891 

the error rates of each model, we selected the model with the lowest mean error rate as follows: we 892 

first selected a partial model by comparing the intercept + normal vs intercept + logistic models and kept 893 

the one with the lower error rate; we then compared the partial model vs the intercept-only model, and 894 

if the intercept-only model had the lower error rate we selected the intercept-only model; however, if 895 

the partial model had the lower error rate, then we compared the partial model vs the full (intercept + 896 

logistic + normal) model and selected the model with the lower error rate. In this way, we only selected 897 

the full model if it was more effective at predicting withheld data than any of the simpler models. 898 

The intercept model was simply the mean wait time response in seconds. The intercept + logistic 899 

model was defined as  900 

𝛼 +
𝛽

1 + ⅇ𝜆−𝑥
 901 

where 𝛼 is the intercept, 𝛽 is the height of the curve (in seconds), 𝜆 is the midpoint of the curve (the 902 

tone number, any value from 1 to 41). The intercept + normal model was written to constrain the width 903 

of the curve (in number of tones) so that it was proportionate to the height, defined as  904 

𝛼 + 𝜃ⅇ
−
(𝑥−𝜓)2

𝜃3 2⁄  905 

where 𝛼 is the intercept, 𝜃 is the height of the curve and is proportional to the width of the curve, and 𝜓 906 

is the midpoint of the curve. The intercept + logistic + normal model was defined as  907 

𝛼 +
𝛽

1 + ⅇ𝜆−𝑥
+ 𝜃ⅇ

−
(𝑥−𝜓)2

𝜃3 2⁄  908 

where 𝛼 is the intercept, 𝛽 is the height of the logistic curve, 𝜆 is the midpoint of the logistic curve, 𝜃 is 909 

the height and determines the width of the normal curve, and 𝜓 is the midpoint of the normal curve. 910 

Preprocessing calcium imaging data 911 

Each imaging session produced as many videos as there were trials, along with the timestamps for each 912 

frame. We concatenated the imaging videos into a single session video using custom Python software, 913 

and then processed the resulting session video using CNMFe (Zhou et al., 2018) to identify the spatial 914 
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footprints of, and to extract calcium signals from, individual neurons. The resulting calcium signals were 915 

then linearly up sampled to 100 Hz to match the sampling rate of the behavioral hardware. 916 

Cell registration across sessions 917 

In order to determine which neurons were active in each session, we used CellReg (Sheintuch et al., 918 

2017) to align and register neuronal spatial footprints across all 19 imaging sessions for each mouse. 919 

Gross rotational differences between session videos, identified by comparing vasculature observable in 920 

maximum projection images, were manually corrected using custom rotation software written in 921 

MATLAB. We then registered the resulting footprints using rigid rotation and transformation in CellReg 922 

(Supplemental figure 3). 923 

Time warping fluorescence signals 924 

We obtained calcium signals from each trial for the series of events starting with nose poke and ending 925 

either when the mouse left the food cup or 2 s after reward delivery. To correct for slight differences in 926 

the time between each event on different trials, we linearly interpolated the observed calcium signals 927 

from each trial into a universal trial timeline with fixed durations between each event. The fixed 928 

durations (as seen in Figure 5) were approximately the median observed time between each event. 929 

Mean activity correlations 930 

We determined the similarity of neuronal activity patterns across pairs of sessions by first finding the 931 

mean time-warped activity pattern for each cell across all trials within a session and then computing the 932 

correlation between the mean activity patterns of a neuron in one session and the mean activity pattern 933 

of that same neuron in a second session. This analysis only included the portion of each trial that was 934 

common to both rewarded and unrewarded trials. The included events were the nose poke exit, the 935 

head entry into the food cup, the moment the tone on came on, and the end of the minimum wait time 936 

(2 s after tone on). Lastly, we computed the mean activity correlation between two sessions as the 937 

average correlation among all of the neurons that were active in both sessions. 938 

Reactivation scores 939 

We measured the reactivation of hippocampal ensemble activity in terms of the proportion of neurons 940 

that were active in two different sessions (proportion overlap) and how similar the activity of each 941 

neuron was across the two sessions (mean activity correlation). To do this, we used a reactivation score 942 

computed as 943 
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R = O + (O * A) 944 

where R is the reactivation score, O is the proportion overlap, and A is the mean activity correlation. A 945 

score of 0 will occur if there is no overlap between the two sessions (no neurons are active in both 946 

sessions) or if all of the overlapping neurons have perfectly anticorrelated activity patterns between the 947 

two sessions. A score of 2 will only occur if there is perfect overlap (the exact same population of 948 

neurons is active in both sessions) and all of the neurons have perfectly correlated activity patterns. 949 

Correcting for time between imaging sessions 950 

Because the Structured training group learned new problems faster than the Unstructured training 951 

group (Supplemental figure 2D-F), there were slight differences in the number of days between the 952 

corresponding imaging sessions of each group (Supplemental figure 4A). We controlled for this in all of 953 

our measures of population similarity (population overlap, mean activity correlations, and reactivation 954 

scores) with the same general approach. We first computed the population similarity measure between 955 

every pair of imaging sessions within each Unstructured training group mouse and then pooled all of 956 

these values together. We only used Unstructured training sessions because these sessions showed a 957 

clear temporal trend that was unadulterated by learning related effects, and because the Structured 958 

training group did not have any long (> 50 days) durations between imaging sessions. However, similar 959 

results were obtained if we used sessions from both groups. We then estimated the effect of days 960 

between imaging sessions by fitting a truncated normal curve to the scatterplot of population similarity 961 

measurements using the nlinfit function in MATLAB with parameters for the intercept, height, width, 962 

and mid-point of the curve. For the mean activity correlation model, we assumed an intercept of 0 (no 963 

correlation between activity states as the time between imaging sessions approaches infinity) and 964 

therefore only fit parameters for height, width, and mid-point. Fit curves can be seen for population 965 

overlap and mean activity correlations in Supplemental figures 4B-C and for reactivation scores in 966 

Supplemental figure 5A. We then computed the new (time-corrected) population similarity 967 

measurements as the original measurement minus the value of the fit normal curve at the 968 

corresponding x-value (days between imaging sessions). This resulted in both positive and negative 969 

values, with negative values corresponding to population similarity below what was expected by the 970 

number of days between the two imaging sessions. 971 

 972 

  973 
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