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Abstract

Fluorescence lifetime imaging (FLIM) has been essential in capturing spatial distri-

butions of chemical species across cellular environments employing pulsed illumination

confocal setups. However, quantitative interpretation of lifetime data continues to face

critical challenges. For instance, fluorescent species with known in vitro excited state

lifetimes may split into multiple species with unique lifetimes when introduced into

complex living environments. What is more, mixtures of species, that may be both

endogenous and introduced into the sample, may exhibit; 1) very similar lifetimes; as

well as 2) wide ranges of lifetimes including lifetimes shorter than the instrumental re-

sponse function (IRF) or whose duration may be long enough to be comparable to the

interpulse window. By contrast, existing methods of analysis are optimized for well-

separated and intermediate lifetimes. Here we broaden the applicability of fluorescence
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lifetime analysis by simultaneously treating unknown mixtures of arbitrary lifetimes–

outside the intermediate, goldilocks, zone–for data drawn from a single confocal spot

leveraging the tools of Bayesian nonparametrics (BNP). We benchmark our algorithm,

termed BNP-lifetime analysis of BNP-LA, using a range of synthetic and experimen-

tal data. Moreover, we show that the BNP-LA method can distinguish and deduce

lifetimes using photon counts as small as 500.

Keywords: Fluorescence, Lifetime, Confocal imaging, Laser pulse, Instrumental response

function, Bayesian

Introduction

Amidst a number of fluorescence microscopy techniques1–8, fluorescence lifetime imaging mi-

croscopy (FLIM) has extensively contributed to our understanding of sub-cellular structures

and processes9–16. In FLIM experiments within a biological sample, multiple biomolecules

may be labeled with unique fluorophores characterized by different lifetimes17–20. To de-

duce how these labels are spatially distributed, a single (confocal) spot within the sample

is exposed to either modulated21,22 or pulsed23,24 excitation with the excitation spot even-

tually scanned across the sample. Here, we focus on pulsed illumination since it provides

time-stamped photon arrivals (and helps reduce phototoxicity). A train of such illumination

pulses is shown in Fig. 1a.

Once excited by a pulse, fluorophores emit photons whose arrival times at the detector

are recorded and used to infer lifetimes and corresponding photon ratios across species for

each spot25–27. By photon ratios we mean the probability (weight) that any given photon be

emitted by each species within the confocal area probed. The photon ratio is itself related

to the product of concentration of the species and excitation cross-section.

To deduce weights (photon ratios) and lifetimes present from photon arrival time data,
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analysis methods employ either model free techniques, such as phasors26,28 and deep learn-

ing29,30, or model based techniques, such as least-squares31,32, compressed sensing33, maxi-

mum likelihood34,35, and Bayesian methods27,36–39.
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Figure 1: A cartoon representation of laser pulses, designated by green spikes, and fluo-
rophore excitation and emission. (a) A train of laser pulses with interpulse window T . The
pink dashed lines represent the pulse centers. (b) Fluorophores can be excited during laser
pulses and may emit photons after multiple pulses due to long excited state lifetimes as com-
pared to the interpulse windows. Indeed, even lifetimes on par with the interpulse time can
appear after the subsequent pulse with probability e−1. (c) For fluorophores with lifetimes
shorter than the IRF, an excited fluorophore might emit photons even before the excitation
pulse is complete. Here, tex, tem and tre, respectively, stand for excitation, emission times
and the recorded photon arrival time. The difference between emission and recorded times
arises from the stochastic delay in detectors which, combined with the finite breadth of the
laser pulse, is termed the IRF.
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However, existing analysis methods are optimized for two well-separated lifetimes typi-

cally longer than the instrument response function (IRF) (see Fig. 1) but otherwise much

shorter than the interpulse window. This regime of lifetimes can be difficult to control in

vivo as lifetimes invariably drift in response to the local environment chemistry whose com-

position may further split apparent single lifetimes into multiple different lifetimes40–42. In

addition, existing lifetime analysis methods, starting from the single spot/pixel, face several

other key challenges including: 1) requiring the number of lifetime components as input

otherwise often truncated for simplicity to two species29,30,33–38; 2) require high photon bud-

gets due to information averaging arising from data pre-processing, e.g., data binning31,32,43;

and 3) provide full uncertainty over the estimated parameters originating from unavoidable

sources of stochasticity including random excitation times introduced by the IRF’s finite

breadth and exponential waiting times for excited state lifetimes29–35.

To address these challenges, we begin by considering photon arrival times. These pho-

ton arrival times are essentially a mixture of temporal data points generated from multiple

different sources, namely, fluorophore species, characterized by their lifetimes. As such,

mathematically, the output of a pulsed excitation experiment may be conceptualized as gen-

erating data drawn from a mixture model where the ultimate goal of an analysis method

would be to classify the arrival times into multiple categories corresponding to the under-

lying fluorophore species. More broadly, such classification tasks fall within the purview of

clustering algorithms. For instance, K-means44 is perhaps the simplest and most popular

clustering algorithm classifying a set of input data points into a given number, K, of clusters.

However, as the number of lifetime components is inherently unknown in photon arrival

analysis, we need to evoke more sophisticated clustering algorithms.

To be precise, to correctly propagate inherent uncertainties, we work within a Bayesian

paradigm where our inference is informed by sources of uncertainty including intrinsic stochas-

ticity in the photon arrival times, finite breadth of IRF, and finite interpulse time. Moreover,

we further specialize into working within a Bayesian nonparametric (BNP) paradigm to ac-
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comodate the unknown number of fluorophore species.

In particular, within BNPs, we leverage Dirichlet processes45–49 to allow inference over

the number of species warranted by the data while rigorously propagating uncertainty from

all the existing sources throughout the problem.

The Dirichlet process formally allows us to place priors on an infinite number of putative

species that could be warranted by the data45–49. As we will see, as we collect data, weights

associated to species contributing to the data will increase while the weights ascribed to

other species will reduce to negligible values; see Fig. 2.
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Figure 2: The Dirichlet process for lifetime analysis. (a) A spot within a sample is illuminated
with a green laser which, in turn, leads to photons from red and blue fluorophore species
staining different structures within the sample. The set of collected photon arrival times from
this experiment is modeled with a Dirichlet process with the first ten species, represented
by 10 different colors, shown. (b) When no photon arrival times have yet been collected,
the weights ascribed to all species coincide with the prior value (often it is reasonable to
assume uniform); (c) When 500 photon arrival times have been collected, the weights start
differing from the nominal prior value and, in this cartoon, the blue and red species gain
more weights; (d) At 5K photon arrival times most of weights are ascribed to the blue and
red species while the rest tend toward negligible values.

Here, building upon our previous work27,39, we propose a BNP lifetime analysis (BNP-LA)

method. This method leverages the Dirichlet process along with accurate likelihood model,
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informed by features such as IRF and pulsed excitation (see Fig. 1b-c), to simultaneously

addresses all the following challenges: it is capable of dealing with a broad range of lifetimes

ranging from values smaller than the IRF width to comparable to the interpulse time while

addressing the challenges 1)-3) above.

Before moving onto the results, a word on nomenclature is warranted. “Species" here is

defined as it normally is in the FLIM literature; i.e., as exponential components1,2. We thus

inherit all advantages and disadvantages of this definition. This nomenclature is historically

motivated by the fact that many fluorophore lifetime histograms are beautifully fit to a

single exponential36,39. As such, we may be (incorrectly) inclined to assume that a species is

a chemically distinct molecule. Indeed, we need to be careful as there exist cases where the

lifetime may differ from exponential50–52 and be, say, bi-exponential. This is the case where

two radiative pathways are available for de-excitation. In this case, the literature would

define these as two “species".

Results

Our BNP-LA method’s main objective is to learn the lifetimes and their corresponding

weights given a set of photon arrival times. As the BNP-LA method operates within the

Bayesian framework, to learn these parameters we work with a posterior, which is pro-

portional to the product of the likelihood and priors over these parameters (see Methods

Section). However, our nonparametric posterior does not attain a standard form and we

cannot deal with that analytically. Therefore, we develop a numerical strategy to efficiently

sample our posterior (see Methods Section). The results presented in this section are thus

histograms of samples drawn from the BNP-LA posterior.

Here, we use both synthetic and experimental data to evaluate the performance of our

BNP-LA analysis package. We first use synthetic data to benchmark our method against: 1)

a decreasing interpulse window (see Fig. 3) where photon detections occurring after pulses
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following the one inducing excitation become increasingly probable; 2) multiple lifetimes

smaller than the width of IRF distribution, and lifetimes with sub-nanosecond differences

(see Figs. 4-5); 3) photon counts (see Fig. 5); 4) a range of different weights associated to

species due to variations in photon counts across species (see Fig. 6); and 5) more than two

lifetimes (see Fig. 7).
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Figure 3: Interpulse window effect on lifetime estimation. (a-d) Histograms of photon arrival
data generated with two lifetimes of 1 ns and 8 ns and interpulse times of 51.2, 25.6, 12.8
and 6.4 ns, respectively. Pink dashed lines represent the interpulse window. PDF stands for
probability density function which is obtained by normalizing the area under histograms to
unity. (e-h) Marginal posterior of lifetimes corresponding to each generated data. Red dashed
lines represent ground truths. We retain the same convention throughout the manuscript.

Next, we employ experimental data to evaluate the robustness of our method in estimat-

ing lifetimes over a wide range, e.g., short lifetimes falling within the width of the IRF, with

short interpulse windows and different photon counts (see Fig. 8). Moreover, employing ex-

perimental data containing lifetimes of 0.6 ns, 2.3 ns and 4.6 ns, we will show that BNP-LA

can distinguish and deduce 3 lifetime species using as few as 30K photons (see Fig. 9).
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Synthetic Data

Here, we first illustrate how we simulate our data and then describe our BNP-LA analysis.

To generate synthetic photon arrival time traces, for each photon we would: first need

to sample the species being excited; then sample the stochastic excited state lifetime from

an exponential; and finally add to this lifetime a stochastic IRF time due to both finite size

of laser pulses, i.e., laser pulses are not infinitely narrow, and detector delay. As such, we

first sample the fluorophore species leading to the kth photon detection (sk ∈ {1, ...,M} for

M fluorophore species) from a categorical distribution; next excited state lifetime (∆tem,k)

from an exponential distribution; and then add to this the IRF time (∆tIRF,k) sampled from

a normal distribution.

To be clear, the categorical distribution is an extension of the Bernoulli distribution with

more than two options (species); the mean of the exponential distribution for each individual

species that we use in the simulation to sample lifetimes is set to that species’ lifetime; and

the Gaussian used in sampling the IRF time has a mean and standard deviation of 10.4 ns

and 0.66 ns (similar to values in our experimental data that we will see shortly)7. We also

assume a value for the interpulse window of T = 12.8 ns again inspired by values from our

experimental data.

In cases when the interpulse window is not much larger than both lifetimes and the IRF

offset, the data generated as described above can lead to photon arrival times larger than the

interpulse window. As such, to guarantee photon arrival times smaller than the interpulse

window, we have to introduce a third term as follows

∆tk = ∆tem,k +∆tIRF,k − T
⌊∆tem,k +∆tIRF,k

T

⌋
, (1)

for the kth photon arrival time. Here, ⌊⌋ gives the integer part of its argument.

Now, in order to test BNP-LA against different interpulse windows (for which the third

term in eq. 1 becomes increasingly important), we simulate data, as described above, using
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two lifetimes of 1 ns and 8 ns and interpulse windows of 51.2 ns, 25.6 ns, 12.8 ns and 6.4 ns

(see Figs. 3a-d).

ba c

Figure 4: Two lifetimes smaller than the IRF width(σIRF = 0.66 ns). (a-c) Marginal posterior
of lifetime with 500, 1K and 5K photons, respectively.

We start by describing results using the largest interpulse window as this is the easiest

case since we can safely ascribe arriving photons as having been generated from the excitation

pulse immediately preceding the photon arrival. In this case, the resulting weights ascribed

to two lifetimes are non-negligible and add up to more than 0.9. The histogram of the

lifetimes pertaining to these wights is shown in Fig. 3e. Here, our method infers both small

and large lifetimes with standard deviations of 0.01 and 0.35 ns, respectively. Next, in lower

panels f-g, we consider the more difficult case of decreased interpulse windows. This, in turn,

leads to larger uncertainties over lifetimes, although the mean of the histograms still coincide

with true values. Finally, panel h shows the resulting lifetimes corresponding to the data

in panel d with an interpulse window 6.4 ns. Here, again two important weights are found

associated to two lifetimes. However, our method begins under-estimating the lifetime (8

ns) larger than the interpulse window. To build an intuition as to why the method begins

to fail (as it should) for increasingly small windows, we consider infinitely small interpulse

windows. In this case, the photon arrival times are essentially uniform over that window

and no information can be extracted from a flat distribution. Conversely, as the interpulse

window duration increases, this uniform distribution in arrival times begin acquiring some

shape that, loosely speaking, any method can begin leveraging to deduce lifetimes.
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Figure 5: Robustness test against lifetimes and photon counts. (a-c) Marginal posteriors of
lifetimes for 1 ns and 1.7 ns with sub-nanosecond difference using different photon counts.
(d-f) Marginal posterior of lifetimes of 1 ns and 3 ns using different photon counts. (g-i)
Marginal posterior of lifetimes of 1 ns and 8 ns (close to interpulse window) using different
photon counts.

Next, we continue by considering the challenging case of multiple lifetimes whose value

is smaller than the width of the IRF (in shorthand, “lifetimes below the IRF"). We do so by

generating photon traces involving 500, 1K and 5K photons with two lifetimes of 0.2 ns and

0.6 ns, both below the IRF. We then show how many photons are needed to start discerning

that we have two lifetimes present. Here, we start by describing the results for the trace

containing 500 photons. For this data, while the BNP-LA method ascribes ≈ 0.95 weight

to a single lifetime component, the resulting lifetime histogram has a broad range covering
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both lifetimes (see Fig. 4a). Increasing the photon budget to 1K and 5K, our method begins

attributing non-negligible weights to two lifetimes whose sum is larger than 0.9 (see Fig. 4b-

c). We also note that the uncertainties over the estimated lifetimes decrease with increasing

photon counts.

After demonstrating our method for lifetimes below the IRF, we proceed to assess its

performance over a range of lifetimes, namely lifetimes with sub-nanosecond differences (but

not necessarily below the IRF), lifetimes comparable to the interpulse window (T = 12.8

ns), and lifetimes in the intermediate range. To do so, we analyzed synthetic photon traces

containing 500, 1K and 5K photons.

In Figs. 5a-c, we start by considering lifetimes with sub-nanosecond difference (lifetimes

of 1 ns and 1.7 ns). Using 500 photons, only a single lifetime is appreciably warranted by the

data with a weight much larger than the other lifetimes (see Fig. 5a). However, upon reaching

1K and 5K collected photons, BNP-LA begins ascribing important weight to two lifetimes

adding up to more that 0.9; Fig. 5b-c. Next, we examine larger lifetime gaps in Figs. 5d-i. In

these cases, the BNP-LA method attributes non-negligible weights to two lifetimes even for

datasets with as few as 500 photons; Fig. 5d & g. At larger photon counts, as expected, our

method recovers sharper histograms while accurately recovering both lifetimes with less than

8% difference between the histograms’ means (posterios’ means) and ground truth values;

Fig. 5e-f & h-i.

Now that we have benchmarked our BNP-LA algorithm using a wide range of lifetimes,

we continue by evaluating our algorithm in learning the lifetime weights, designated by

π ∈ [0, 1]. To be clear, the weights associated to different lifetimes is proportional to the

photon ratios from those lifetimes. In order to perform such evaluation, we simulate datasets

with two lifetimes of 1 ns and 3 ns containing 1K and 5K photons, the first and second rows

in Fig. 6, and weights of (0.5, 0.5), (0.33, 0.66) and (0.2, 0.8) for datasets used in Fig. 6 a-b,

c-d and e-f, respectively. As we now see, only weights associated to two lifetimes were found

to contribute non-negligibly. Fig. 6 represents histograms over these weights. As expected,
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cases with 500 photons have larger uncertainty (Fig. 6a-b) with uncertainty decreasing as

the photons considered in the analysis mount.
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Figure 6: Robustness test against lifetime weights, shown by π, and photon counts. (a-b)
Marginal posterior for the two weights found (when the ground truth is for 1/2 each) when
1K and 5K total photon counts are considered in the analysis, respectively. (c-d) Similar to
above except for when the ground truth of the weights is 1/3 and 2/3. (e-f) Same as above
excet for weights of 1/5 and 4/5.

Finally, in Fig. 7, we show that our method is capable of dealing with datasets containing

more than two lifetime components. As such, we generate data with three lifetimes of 0.5 ns,

2 ns and 5 ns. These traces are now, naturally, longer (contain more photons) as the inference

task is more difficult. In particular, we find that we need about 30K photons to analyze this

data though the exact number of photons required is specific to a number of parameters

(including how well separated the lifetimes are). The BNP-LA method returned three non-

negligible weights adding up to ≈ 0.9 with corresponding mean posterior lifetimes of 0.5

ns, 2 ns and 5 ns. As expected, the resulting lifetime histograms exhibit more uncertainty

for larger lifetimes, as measured by a wider posterior, on account of more photon emissions

occurring beyond the pulse subsequent to the one resulting in excitation.
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Figure 7: Posterior over 3 lifetimes using 30K synthetic photon arrival times.

Experimental Data

We now continue by benchmarking our BNP-LA method on experimental data. We start

with a dataset acquired using only two fluorophores, namely Calcein and Mito-tracker, with

lifetimes of 3.6 ns and 0.45 ns, respectively. Here, the shorter lifetime falls below the IRF,

where the IRF parameters as well as the interpulse window are the same as what were used

for the simulations. In Figs. 8a-c, we analyze photon traces from this dataset containing 500,

1K and 5K photons, respectively. Our BNP-LA method returns two non-negligible weights

adding up to ≈ 0.9 for all the cases. The corresponding lifetime histograms show that the

BNP-LA method deduces both lifetimes including the lifetime below the IRF even for as few

as 500 photons.
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a cb

Figure 8: Experimental data with two lifetimes including a lifetime (0.45 ns) below IRF width
(0.66 ns). (a-c) Marginal posterior of lifetimes for 500, 1K and 5K photons, respectively.

Lyso Red

TMRM

pHrodo

a b c

Figure 9: Experimental data containing 3 fluorophore species, namely, Lyso red, TMRM and
pHrodo with lifetimes of 4.6 ns, 2.3 ns and 0.6 ns, respectively. (a) For illustrative purposes,
we show the results using a phasor plot with 330K photons where the red dots represent
the three fluorophore species on the universal circle26,28. The corresponding lifetimes are
used as ground truth. (b) Results using a phasor plot with 30K photons (which is the same
number we analyze). (c) Marginal posterior of lifetimes from the BNP-LA method using
30K photons. The red dashed lines show lifetimes obtained using the phasor technique with
330K photons.

Finally, we test our method employing an experimental dataset containing 3 fluorophore

species, i.e., Lyso red, TMRM and pHrodo, characterized by lifetimes of 4.6 ns, 2.3 ns and

0.6 ns. These “ground truth" values are obtained by using 330K photons with commonly

employed phasor plots26 (see Fig. 9a).

Next, we process a trace of 30K photons from this data set using both our BNP-LA

method and the phasor technique (see Fig. 9b-c). Using only 30K photons, it is difficult

to extrapolate the three lifetimes from the phasor plot (Fig. 9b). However, analysis by our
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method results in three major weights adding up to ≈ 0.9 indicating presence of three lifetime

components within the input data. Fig. 9c illustrates the lifetime histogram corresponding

to these three weights. The histogram peaks match the values we use as ground truth. Here,

for reasons identical to synthetic data, uncertainty increases with larger lifetimes.

Methods

In this section, we illustrate our likelihood model formulation and inverse strategy. We begin

with the likelihood for a set of given photon arrival times ∆t

L
(
∆t|λ1:M , s

)
=
∏
k

L(∆tk|λsk) (2)

where L(∆tk|λsk) is the likelihood for the kth photon arrival time. The indicator parameter

sk allocates photons to different species, λsk and ∆tk, respectively, denote the inverse of

the lifetime and the kth photon arrival time. The bars over parameters denote the set of

parameters for all K photons, for example ∆t = {∆t1, ...,∆tK}.

The likelihood for the kth photon arrival time, assuming the photon is from a species

indicated by sk, can be derived by considering that ∆tk is sum of three random variables: 1)

the time the fluorophore spent in the excited state sampled from an exponential distribution;

2) the stochastic time added due to the IRF sampled from a Gaussian distribution; 3) the

number of pulses over which the fluorophore remains excited sampled from a categorical

distribution. As such, the likelihood is given by a convolution of the distributions arising

from these three contributions39

L(∆tk|λsk) =
N∑

n=0

[
erfc

(
τIRF −∆tk − nT − λskσ

2
IRF

σIRF

√
2

)

× λsk

2
exp

(
λsk

2
(2(τIRF −∆tk − nT ) + λskσ

2
IRF)

)]
, (3)
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where N, T, τIRF and σ2
IRF are, respectively, the maximum number of pulses after which pho-

ton emissions might occur, the interpulse window, offset, and IRF variance. This likelihood,

has been previously derived and employed within a parametric framework with known num-

ber of lifetime components39. Here, we go beyond the parametric framework and use this

likelihood in conjunction with a Dirichlet process to obtain a posterior within a nonpara-

metric Bayesian paradigm where the number of lifetime components is one of the unknowns.

We, now, proceed to derive our nonparametric posterior. The posterior is the joint prob-

ability over all unknowns we wish to learn including: the weight over each species denoted by

symbol πm for the mth species, inverse of the corresponding lifetimes (i.e., the rate) denoted

by λm for the mth species, and the indicator parameters for each photon designated by sk

and assigning the kth photon to one of the species. We collect all these parameters into

θ = (λ1:M , π1:M , s) where formally M → ∞ within the nonparametric framework. Next,

the posterior over θ, proportional to the product of the likelihood and priors over these

parameters, reads

p(θ|∆t) ∝ p(∆t|θ)p(θ), (4)

where p(θ) denotes the corresponding priors. This posterior, however, assumes a non-

standard form and we cannot jointly sample all parameters. Therefore, we invoke a Gibbs

sampling strategy for which we can sample individual parameters from the full conditional

posteriors53–60. That is, the posterior of the parameter of interest conditioned on the re-

maining parameters. The Gibbs sampling strategy of BNP-LA is as follows:

1) Sample the indicator parameters from their full conditional posterior given by

p(s|∆t, λ1:M , π1:M) ∝ p(∆t|θ)p(s|π1:M) (5)

where p(s|π1:M) is the prior over the indicator parameters.
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2) Sample weights using their corresponding full conditional posterior

p(π1:M |∆t, s, λ1:M) ∝ p(s|π1:M)p(π1:M) (6)

where p(π1:M) denotes the prior over weights.

3) Sample the inverse of the lifetimes employing their full conditional posterior given as

p(λ1:M |∆t, s, λ1:M) ∝ p(∆t|θ)p(λ1:M) (7)

where p(λ1:M) is the prior distribution over the lifetime inverse.

Now, for the sake of computational convenience, we opt for conjugate priors whenever pos-

sible such that those conditional posteriors assume analytical forms allowing for direct sam-

pling. As such, we put a categorical prior distribution over the indicator parameters

p(s|π1:M) = Categorical1:M(s;π1:M) (8)

leading to a closed form full conditional distribution that can be directly sampled. For

weights, we select a Dirichlet process prior

p(π1:M |απ,M) = Dirichlet1:M

(
π1:m;

απ

M
, ...,

απ

M

)
, (9)

conjugate to the categorical distribution. Here, απ is a positive hyper-parameter, which we

set to one. This results in a standard closed form distribution

p(π1:M |∆t, s, λ1:M) ∝ p(s|π1:M)p(π1:M |απ,M)

=

[∏
k

p(sk|π1:M)

]
Dirichlet1:M

(
π1:M ;

απ

M
, ...,

απ

M

)
= Dirichlet1:M

(
π1:M ;

απ

M
+
∑
k

δ1,sk , ...,
απ

M
+
∑
k

δM,sk

)
(10)
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where δ denotes the kronecker delta. there are two approaches that can be employed to draw

samples from the distribution in eq. 10: slice sampling and finite truncation46–49. Here, we

opt for finite truncation due its computational efficiency. This approach sets an upper limit

on the number of species by assuming a finite but large value for M facilitating sampling

from the above Dirichlet distribution. Finally, for the inverse of lifetimes, we use a gamma

prior to guarantee positive values

p(λ1:M |αλ, βλ) = Gamma(λ1:M ;αλ, βλ). (11)

Since the likelihood of eq. 3 does not have an associated conjugate prior, even with a choice

of gamma prior, we must use Metropolis-Hastings61–65 to numerically draw samples. Here

samples are proposed also using a gamma proposal distribution

λnew
1:M ∼ Gamma

(
αprop,

λold
1:M

αprop

)
, (12)

to avoid negative proposals. The proposed values are then accepted with probability

P =
p(∆t|s, π1:M , λnew

1:M)Gamma(λnew
1:M ;αλ, βλ)Gamma

(
αprop,

λold
1:M

αprop

)
p(∆t|s, π1:M , λold

1:M)Gamma(λold
1:M ;αλ, βλ)Gamma

(
αprop,

λnew
1:M

αprop

) . (13)

Using the Gibbs sampling strategy described above, we build a chain of samples by

iteratively sweeping the set of parameters. Finally, the generated chain can be used for the

subsequent numerical analyses.

Discussion

Fluorescence lifetime experiments provide a means to probe sub-cellular processes and struc-

tures. For instance, these techniques have been essential in cancer diagnosis66,67 and moni-

toring the effect of drugs on cancer cells67. However, quantitative assessment of FLIM data
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remains a challenge as the number of fluorescent lifetime species and their associated lifetimes

may vary within a biological sample due to exposure to variable chemical environments41,42.

These issues immediately require the development of methods capable of learning the

number of unique species, as well as their associated lifetimes and photon ratios. Ideally

such methods would be robust in treating lifetimes irrespective of what numerical value they

ultimately attain in experiments, whether they be shorter than the width of the IRF, on par

with the interpulse time, or similar to each other.

Here, we put forward BNP-LA capable of enumerating lifetime components using as few

photons as 500 from a single confocal spot while simultaneously deducing the corresponding

lifetimes over a wide range from below the IRF to the interpulse window. BNP-LA does so

by leveraging tools, such as Dirichlet processes, from the BNP paradigm.

We benchmark BNP-LA using both synthetic and experimental data over a broader range

of conditions than was previously accessible. That is, we benchmarked our method against

lifetimes shorter than the IRF width, comparable to the interpulse window, and lifetimes

with sub-nanosecond gaps with different photon ratios.

In terms of computational cost, the scaling grows is linear with number of photons.

While, the exact absolute cost depends on the number of iterations required for the sampler

to converge which is, in turn, related to the number of lifetimes and how close they are. For

instance,for typical lifetimes in Fig. 8, the computation took approximately 1 minute on a

regular scientific desktop. We expect this value to vary depending on the exact CPU specs.

Although, here we only assume Gaussian IRFs, BNP-LA can be extended to consider

non-Gaussian IRFs by modifications to the likelihood in eq 3. Furthermore, BNP-LA can

be used to construct a pixel-by-pixel spatial map of species distributions over a large field

of view by independently analyzing data obtained from individual confocal spots across a

specimen.

While we have advanced the capability of analysis, there are questions neither we, nor

any existing methods can address. Answering these questions, may inspire alternatives to
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lifetime experiments.

For instance, we cannot learn lifetimes when arrival times far exceed the interpulse win-

dow; as a corollary, we cannot avoid posterior broadening for larger lifetimes, e.g., lifetimes

comparable to the interpulse window; we cannot determine whether two exponential compo-

nents coincide with the same chemical species or two different chemical species; we cannot

distinguish chemical species with too small differences, e.g., as of the current date of pub-

lication less than approximately 0.2 ns, with the number of photons we typically analyze

(far higher photon counts would then introduce high computational cost which may require

greater resources not yet available). Finally, we can only quantify photon ratios, not con-

centrations nor absorption cross-sections as the latter two quantities always appear as one

quantity (a product of both fundamental quantities) in the likelihood.
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