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Abstract

Inferring the rate at which a clonal population grows, or its fitness, is important for many
biomedical applications. For example, measuring the fitness of mutated cells in a patient with
cancer may provide important information about prognosis and treatment. Similarly, measuring
the fitness of new viral strains that emerge during a pandemic can inform how to plan an
effective response. In previous work, the lineage trees constructed from individuals randomly
sampled from the population at the final time-point have been used to infer the fitness and the
times at which the mutation providing the fitness advantage arose in a diverse set of systems,
such as blood cancers [1], [2] and the influenza virus [3]. However, it is not clear to what extent
the inferred values depend on the exact biological details assumed in the models used for the
inference. In this paper we show that coalescent statistics of lineage trees are invariant to
changes in key parameters underlying the expansion, such as the distribution of the number of
progenies produced by each individual and heterogeneity in the expansion rate. In addition, we
show that competition between drift and selection imply that the fitness of the mutated
population and when the mutation occurred can be inferred without knowledge of the mutation
rate per generation even though the population size itself cannot be inferred. Lastly, we show
that our results also generalize to cases where multiple competing mutations result in multiple
distinct subclones with different values of fitness. Taken together, our results show that inferring
fitness from lineage trees is robust to most model assumptions.

Introduction

In many biological processes, a single individual generates identical copies of itself which in turn
generate additional identical copies of themselves and so on, resulting in an exponentially
growing clonal population. For example, certain types of blood cancers occur when a blood
stem cell accrues a mutation that gives it a selective advantage. The mutated stem cell then
divides repeatedly and gives rise to an exponentially growing clone of progenies that carry the
same mutation [1], [2], [4], [5]. Similarly, infections can occur when a virus infects a host cell and
generates thousands of new progenies which in turn infect other cells resulting in an
exponentially growing population of virus particles [6]. In these systems and others, we would
like to know when the exponential growth started and the rate at which the population grew,
referred to as fitness.

One way to obtain these quantities is to directly observe the expanding population. However, in
most cases direct observations are not feasible –we cannot follow individual cancer cells as
they divide in each patient or track the number of virus particles in a host over time. Rather, in
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most cases we only have access to a subset of individuals randomly sampled from the
population at the final time-point. The only information that can be obtained from a sample of
individuals at the final time-point is their degree of relatedness or their lineage tree. To obtain
the lineage tree, we can sequence the genomes of the sampled individuals and use the pattern
of randomly occurring neutral mutations accrued over time to establish who is related to whom.
Here, we will show that fitness of an exponentially growing clonal population can be inferred
from the lineage tree of a subset of individuals randomly sampled at the final time-point.
Importantly, we will argue that fitness can be inferred accurately without knowledge of the details
of the biological process that gave rise to the tree.

The biological processes giving rise to exponentially growing clonal populations vary
significantly across different species and systems. For example, cancer cells undergo binary cell
divisions that produce precisely two children whereas viruses infect host cells and produce
thousands of progenies. Even among different clones of the same system, for example the
same type of cancer initiated by the same mutation but occurring in two distinct patients, the
average time between replication events, the number of progenies produced, and the timing of
death events could vary as well as the degree to which these quantities fluctuate. It might be
expected that the fitness inferred from a lineage tree should sensitively depend on the details of
the underlying biological process that generated the tree. Surprisingly, however, we will show
that the coalescence structure of lineage trees only depends on fitness and is invariant to other
parameters.

To do so, we start off with the well-known observation that the coalescent structure of the
lineage tree of individuals randomly sampled from a population with fixed population size
undergoing neutral dynamics is given by Kingman coalescence [7]. In Kingman coalescence,
the most recent common ancestor of two randomly chosen individuals occurs generations𝑇

back with probability , where is the population size. When the population size changes𝑒
− 𝑇

𝑁 𝑁

across generations, this probability is given by . Therefore, the coalescent times of the𝑒
− 

0

𝑇

∫ 1
𝑁(𝑡) 𝑑𝑡

lineage tree should allow us to infer and in turn the rate of growth of the population. For𝑁(𝑡)
most applications, however, we cannot measure the lengths of the branches of the lineage tree
in number of generations. Instead, the branch lengths are measured in units of number of
mutations. Therefore, the population size can only be inferred up to a constant proportional to
the mutation rate given in mutations per generation. For example, two individuals that differ by a
large number of mutations can be close relatives in a small population with a high mutation rate
or conversely distant relatives in a large population with a slow mutation rate.

First, we will show that fitness can be inferred without knowledge of the mutation rate per
generation. This is counterintuitive because we might expect that if the population size is
unknown then the rate of growth of the population should also be unknown. This is because the
mutated population starts off as one individual and if its rate of growth is known then naively we
should be able to determine the size of the population at any time point. As we will argue, this
naive argument neglects the stochastic fluctuations in the population size caused by drift when
the population size is small. With drift accounted for, fitness can be inferred without knowledge
of the mutation rate.
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Second, we will show that the time at which the first mutated individual appeared (time of onset)
can also be inferred without knowledge of the mutation rate per generation. This is a
counterintuitive result because we might expect that if the population size is not known then we
cannot determine the time at which the population size was equal to one. We will show that the
inferred time of onset is different from the true time on average by at most the duration of one
generation. Therefore, the age of onset of the cancer mutation in a patient can be inferred
accurately from the reconstructed phylogenetic tree of the cancer cells without knowing how
many divisions the cancer cells have undergone.

Third, we will show that changing the distribution of the number of progenies rescales the
population size (much like the mutation rate) while leaving the coalescent structure of the
lineage tree invariant. Therefore, fitness can be inferred without any knowledge of the number of
progenies produced at each generation and their degree of fluctuations. An expanding
population of cancer cells that always generate exactly two progenies at each division will give
rise to lineage trees that are identical to that of viruses that generate thousands of new
progenies with large fluctuations at each generation as long as the cancer cells and the viruses
have the same fitness (Figure 1). In addition, we will show that coalescent statistics of trees are
invariant to fluctuations in fitness of each individual, as long as these fluctuations are
independent and not passed on to the progenies. This implies that average fitness can be
inferred accurately from trees even if there is heterogeneity in a population.

Lastly, we will show that these same principles apply to the lineage trees of populations with
multiple competing mutations such as a cancer with multiple driver mutations or multiple
competing strains of a virus. As a result, the fitness values and times of onset of each individual
clone can be inferred from the lineage tree of the population without knowledge of the mutation
rate, the distribution of progeny, or non-heritable fluctuations in fitness across the individuals of
the population.

Taken together, our results imply that inference of fitness and time of onset from empirically
observed lineage trees is robust to many details of the models used for the inference. For
example, in Bayesian inference, we can simulate a specific model of an exponentially growing
population for different values of fitness and retain the values that produce trees that are
sufficiently close to the observed tree. Even if this model makes drastically incorrect
assumptions about the biological process, for example an incorrect mutation rate, neglects
heterogeneity in fitness across the population, or if it assumes that the distribution of progenies
is that of a virus instead of cancer cells, the inferred fitness would still be correct.
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Figure 1. Trees constructed from simulated cancer cell divisions look the same as trees
constructed from simulated replication of HIV as long as the fitness is the same. Simulated
trees were constructed using realistic parameter values from MPN bone marrow cancers and HIV
replication under different fitness values. lineages were randomly sampled at the final22
time-point and the corresponding trees were plotted. The trees on the left hand side were
constructed from simulated cancer expansions, while the trees on the right hand side from
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simulated HIV expansions. The trees on the top row have the same fitness even though𝑠
𝑦

= 0. 1
the biological details differ, and have different fitness values to the trees on the bottom row which
have fitness . As expected the trees on the top row look different to the trees on the𝑠

𝑦
= 0. 1

bottom row because their fitness values differ. However, the trees on the left column are
indistinguishable from the corresponding tree on the right column because only the biological
details have changed.

Description of the model

We will show that fitness and time of onset of the mutant population can be inferred correctly
even when many assumptions of the model used for the inference are wrong. To do so, we will
show that the coalescent statistics of the lineage tree of a subset of mutant individuals randomly
selected at the final time point are invariant to changes in some of the key model parameters.
We initially use the Wright-Fisher model with selection where only a single driver mutation
produces the exponential growth because it is easy to change the biological assumptions of the
model, extend it to more complex scenarios, and compute the coalescent statistics. In particular,
the Wright-Fisher model with selection has generations that are discrete and non-overlapping
which simplifies the calculations.

Our model begins with a total population of identical individuals. We assume that remains𝑁 𝑁
fixed over time. can be thought of as the carrying capacity of the environment. At each𝑁
generation the individuals at the current generation give birth to a new generation of 𝑁
individuals and immediately die off. Each individual in the new generation can descend from any
individual in the previous generation with equal probability. This process is iterated until at some
random generation (referred to as the time of onset) one individual acquires a mutation that
gives it a selective advantage . From then on, the probabilities of descent change. Each𝑠
individual in the new generation descends from wild-type individuals in the previous generation
with probability , and from mutant individuals in the previous generation with probability𝑝

. Note that as expected, when all individuals in the previous generation are(1 + 𝑠)𝑝 𝑠 = 0
equally likely to be the parent of a given individual in the new generation. If is the number of𝑛
mutant individuals in the previous generation, then can be derived from the condition that𝑝
probabilities must sum to 1:

(1)𝑛 1 + 𝑠( )𝑝 + 𝑁 − 𝑛( )𝑝 = 1

We then define to be the total number of generations of the Wright-Fisher process, and to be𝐿 𝑔
the number of generations from the time at which the mutant individual arose all the way to the

generation at which the process terminates. Lastly, we define to be the age of the𝐿𝑡ℎ 𝑎
population, or the amount of time (for example in years) that has elapsed from the first
generation to the . Note that the number of generations per unit time is then .𝐿𝑡ℎ 𝐿

𝑎

The intuition for why fitness can be inferred without knowledge of the number of
generations
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In the following section, we argue intuitively why it makes sense that we can generally infer the
percent growth per year, or fitness, from the lineage tree of a random sample at the final
time-point without knowing the total number of generations spanned by the lineage tree.

To begin, let’s consider a population that evolves according to the Wright-Fisher process with
selection as defined in the previous section. Let’s assume that we know the total number of
generations and the age of the population . We assume that the clone has not gone extinct𝐿 𝑎
so that individuals from the mutant clone can be sampled at the final time-point. We also
assume that mutations are accrued at a constant rate and that each site in the genome is
mutated only once. The lineage tree can then be reconstructed from the number of mutations
that are shared across different individuals in the sample, for example using the UPGMA
algorithm [8]. We can estimate the number of mutations per unit time as the average number of
mutations in the genomes of each individual in the sample divided by a. This allows us to
convert the lengths of branches of the tree from number mutations to the amount of time. Since
there are fluctuations in the number of mutations accrued per individual per generation, this tree
is only an estimate of the actual genealogy of the sample. Although in practice we will only be
able to estimate the genealogy, we will ignore the uncertainty introduced by fluctuations in the
number of mutations and assume that we have perfect knowledge of the genealogy of the
sample with branch lengths measured in units of time. If is known, we can use the number of𝐿
generations per unit time to convert the branch lengths of the tree from units of time to𝐿

𝑎

number of generations.

We can then ask how the structure of the reconstructed trees change when , or the selective𝑠
advantage, is changed for fixed . A clone with selective advantage grows exponentially as𝐿 𝑠

[1] where is the number of generations since the mutation arose. When is~(1 + 𝑠)𝑡 𝑡 𝑠
increased, the number of mutant individuals over time also increases, especially for larger
values of t. Conversely, when is decreased, the number of mutant individuals over time𝑠
decreases. When the number of mutant individuals is large, the probability that the sampled
individuals are closely related is small, therefore, the lineages take a longer time to coalesce
(merge together) when going from the bottom of the tree to the top [7]. Conversely, when the
number of mutant individuals is small, the probability that the sampled individuals are closely
related is large, and so the lineages will tend to coalesce closer to the bottom of the tree. Thus
different values of give rise to different coalescent statistics of trees, in particular, larger𝑠 𝑠
means that fewer coalescence events occur towards the bottom of the tree. Since we can
distinguish trees with different values of , in general, we can infer from observed trees𝑠 𝑠
whenever is known.𝐿

When is unknown, we cannot infer the population size because we cannot convert the lengths𝐿
of branches of the tree from units of time to number of generations. We also cannot infer the
selective advantage , or equivalently the percent growth rate per generation, but we can still𝑠
infer the percent growth rate per unit time, referred to as fitness. The distinction between these
two quantities is important. For example, blood cancer cells may undergo multiple cell divisions
per year on average so that the number of cells more than double in a year even though
precisely two cells are produced from each cancer cell at each generation.
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We now derive the relationship between and fitness. If the average growth per generation of a𝑠
clone is a factor , and the Wright-Fisher process has gone on for generations or units1 + 𝑠 𝐿 𝑎

of time, then the growth per unit time of the clone is a factor of , and so the fitness is:(1 + 𝑠)
𝐿
𝑎 𝑠

𝑦

(2)𝑠
𝑦

= (1 + 𝑠)
𝐿
𝑎 − 1 =  𝑒

𝐿
𝑎 𝑙𝑜𝑔(1+𝑠)

− 1  ≈  𝑒
𝑠𝐿
𝑎 − 1  𝑤ℎ𝑒𝑛 𝑠 ≪ 1

The clone then grows as , where is given in units of time.~(1 + 𝑠
𝑦
)τ τ

Our central claim is that can be inferred without any knowledge of . To motivate this claim,𝑠
𝑦

𝐿

we consider the average growth of the mutant clone. First, note that when , scaling s by𝑠 ≪ 1 1
𝑐

and by leaves unchanged. Intuitively this makes sense: when the average number of𝐿 𝑐 𝑠
𝑦

offspring per mutant individual or is reduced, but the number of generations is increased or𝑠 𝐿
equivalently the timing between generations is decreased, then the percent growth per unit time
remains unchanged. This is shown as a cartoon in Figure 2 where the viruses produce more
children on average than the bacteria, but the timing between viral replication events is longer
so that fitness of both populations is the same.

Figure 2. The schematic of a genealogical tree of a bacterial cell clonal expansion (left) and a
viral clonal expansion (right) are shown side by side. The top node of the trees on the left and
right represent the first cell and viral particle respectively that subsequently undergo replication
events where children are produced, shown as nodes of the tree that branch off, and death
events, shown as terminal red x marks. Time occurs from the top of the tree to the bottom of the
tree in units of years, and only occurs in the vertical direction so that the time between any two
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points of the tree is their vertical distance. Reproduction events occur at a faster rate for the
bacterial clonal expansion, but more children are produced at each replication event in the virus
clonal expansion, and so the percent growth per year or fitness of both expansions is identical. A
small number of cells is randomly sampled at the final time-point and their lineage tree is shown.
Because both processes have the same fitness, the lineage trees look the same.

We then consider a clonal expansion with parameter values and , and then another clonal𝑠 𝐿
expansion with parameter values and so that remains the same for both clonal𝑠

𝑐 𝑐𝐿 𝑠
𝑦

expansions. In the first clonal expansion, the selective advantage is and so the number of𝑠
mutant individuals must fluctuate to to escape drift and grow deterministically and1

2𝑠

exponentially [1], [9]. Under the rescaled parameters, the selective advantage is smaller, ,𝑠
𝑐

and since the trajectories are more neutral and drift more, the number of mutant individuals
must fluctuate to a larger population size of to escape drift and grow deterministically. As a𝑐

2𝑠

result, the average number of mutant individuals through time is increased by a factor of 𝑐
(Figure 3). Increasing the number of mutant individuals decreases the rate of coalescence since
the probability that randomly selected lineages are closely related at each generation
decreases. However, increasing the number of generations from L to cL also increases the rate
of coalescence since there are more opportunities for lineages to coalesce per unit time [7], [11].
Taken together, these effects cancel and produce indistinguishable trees. Therefore, fitness
determines the statistics of coalescence of lineage trees independent of the number of
generations or equivalently the mutation rate per generation.

Figure 3. A schematic diagram showing how the number of individuals through time of a clonal
expansion is scaled in the same way as the number of generations after escaping drift. The blue
dots and line alone, ignoring the orange, is a schematic of the number of individuals through time
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of a characteristic clonal expansion. The blue line is just a trajectory on a log scale plotted against
the time in years, and the blue dots represent the individuals at each generation and are not
drawn to scale. Since the horizontal axis denotes time in years, and each vertical slice of blue
dots represents a generation, then the spacing between the vertical slices of dots informs us
about the timing between generations. If we now consider a clonal expansion where the timing
between generations has decreased by a factor of two, denoted by the blue and orange dots
combined, but the percent growth per year or fitness is kept the same, then the selective
advantage decreases and the population size required to initially escape drift increases by a
factor of two. This scales the population size through time by a factor of two, represented by the
orange line. In summary, the population size through time is scaled by the same factor as the
number of generations.

The intuitive arguments made in this section fall short of establishing the statistical invariance of
trees for a given fitness. This is because our argument was based on the average size of the
mutant clone. We did not account for the fact that there are fluctuations in the number of mutant
individuals over time, and so every realization of a clonal expansion will have a different
trajectory. These fluctuations in the number of mutant individuals mostly occur in the early
history when drift dominates before the growth is deterministic and exponential. In particular, the
clone of mutant individuals escapes drift when the number of mutants is and takes on~ 1

2𝑠

average generations to do so, but the time it takes to escape drift is a fluctuating quantity~ 1
2𝑠

[9]. Importantly, the trajectories do not converge to the average trajectory after a sufficient
number of generations but always retain the variability inherited from the drift phase. This
variability in the set of possible trajectories means that the coalescent statistics of trees must be
computed across the set of all possible trajectories and cannot be computed using the average
number of mutant individuals over time.

Proof that fitness is invariant to the assumed number of generations

In the previous section we argued that when the number of generations is scaled by a factor of 𝑐
in the Wright-Fisher model with the fitness (growth rate per unit time) kept constant, then the
average number of mutant individuals over time will also be scaled by a factor of so that the𝑐
lineage trees will have the same coalescent statistics. This argument ignores the fluctuations in
the number of mutant individuals over time that can also impact the coalescent statistics. To
show that the invariance of coalescent statistics holds, we need to extend our argument from
the average trajectory of the mutant clone size to all possible trajectories. Namely, we need to
show that each possible trajectory that can be generated by the parameter values and will𝑠 𝐿
be scaled by a factor of when using the parameter values and , and that the scaled𝑐 𝑠

𝑐 𝑐𝐿
trajectory occurs with the same probability as the original trajectory. Although we do not have a
way of specifying the distribution of trajectories in a simple form, we can specify the distribution
of the number of mutant individuals at each time-point using Kimura’s diffusion approximation to
the Wright-Fisher model with selection [10]. We will then use this distribution to prove the
invariance of the coalescent statistics across the set of possible trajectories.
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Kimura’s diffusion approximation is a version of the Fokker-Planck equation with a solution that
gives the probability density , at any generation of the frequency of mutant individualsφ(𝑥, 𝑡) 𝑡 𝑥
within a population of individuals. If is the selective advantage of mutant individuals and is𝑁 𝑠 σ2

the variance in the number of offsprings produced by each mutant individual per generation,
then the diffusion approximation to the Wright-Fisher model with selection is [10]

(3)∂φ(𝑥,𝑡)
∂𝑡 = σ2

2𝑁
∂2

∂𝑥2 𝑥 1 − 𝑥( )φ{ } − 𝑠 ∂
∂𝑥 {𝑥(1 − 𝑥)φ}

In the above PDE, is expressed in number of generations, and for the Wright-Fisher𝑡 σ2 = 1
model. However, to show our results, we first need to convert to units of time. If the age of the𝑡
population in units of time (such as years) is , and is the total number of generations, then𝑎 𝐿
the conversion from generations to time is given by the differential . We then use the𝑑τ = 𝑎

𝐿 𝑑𝑡
chain rule along with the differential to obtain:

(4)∂φ
∂𝑡 = 𝑑τ

𝑑𝑡
∂φ
∂τ = 𝑎

𝐿
∂φ
∂τ

Plugging back into the PDE and multiplying both sides of the equation by gives us𝐿
𝑎

(5)∂φ(𝑥,τ)
∂τ = σ2𝐿

2𝑎𝑁
∂2

∂𝑥2 𝑥 1 − 𝑥( )φ{ } − 𝑠𝐿
𝑎

∂
∂𝑥 {𝑥(1 − 𝑥)φ}

It is easy to see that when we replace the parameter values with𝑠,  𝐿,  𝑁
above, then the PDE and hence its solution or the frequency𝑠

𝑐
=  𝑠

𝑐 ,  𝐿
𝑐

= 𝑐𝐿,  𝑁
𝑐

=  𝑐𝑁 

distribution over time remains unchanged. We scale the total population size N also by a factor c
so that while the frequency of the mutant individuals is unchanged, the number of mutant
individuals is scaled by c as expected. It is also clear from this scaling that the fitness, or
percent growth per unit time, of the clone remains unchanged (refer back to the expression we
derived for ).𝑠

𝑦

Importantly, scaling only will not leave the PDE invariant. In this case, although the term that𝑠,  𝐿
gives rise to the exponential growth (second term on the right-hand side of the equation) will
remain unchanged, the drift term (first term on the right-hand side) will increase by a factor of 𝑐
and will require a larger total population size to obtain cancellation. The way to interpret this𝑐𝑁
scaling is that scaling the total number of generations will increase the degree of fluctuations𝐿
in the growing clone as a result of the decrease in (the expansion dynamics become𝑠
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effectively more neutral per generation). Scaling by counteracts the increase in fluctuations𝑁 𝑐
because scaling also increases the number of mutated individuals associated with any x at𝑁
each time-point by a factor of , which decreases the fluctuations due to drift. Taken together,𝑐
the decrease in fluctuations due to the larger population size cancels the increase in fluctuations
from scaling s.

A naïve argument might immediately suggest that fitness can be inferred without knowledge of
the total number of generations or equivalently the mutation rate per generation. Scaling the𝐿
parameter values in the equation in the way we described leaves the PDE and hence the
distribution of the frequency of the mutant clone over time unchanged. Since the size of the
mutated population through time is scaled by a factor of , and since is also scaled by a factor𝑐 𝐿
of then the coalescent statistics of the lineage tree should not change. However, this argument𝑐
incorrectly assumes that the initial frequency does not change. In our model, we know that the
clonal expansion begins with a single mutant individual, which corresponds to an initial
frequency of at the time at which the mutation occurs. Under this initial condition, if we scale1

𝑁

the parameter values in the way described, the PDE remains invariant but the initial condition
changes which changes the solution.

To correctly account for how changing the initial conditions changes the solution of the
Fokker-Planck equation, we first need to condition the solutions on trajectories that do not go
extinct. This is because when calculating the coalescent statistics, we are implicitly assuming
that the mutant clone has survived extinction so that a lineage tree could be reconstructed at the
final-time point. First, we need to make this assumption explicit in the Fokker-Planck formalism.

To do this, we define the random variable as the frequency of mutant individuals as a function𝑋
𝑡

of time. The solution to the Kimura diffusion (Fokker-Planck) approximation would give the
distribution of at each . We then relate the distribution of conditioned on surviving𝑋

𝑡
𝑡 𝑋

𝑡

extinction to the unconditional . As done earlier, define the unconditional frequency𝑋
𝑡

distribution of the mutant clone as . Then define to be the set ofφ(𝑥, 𝑡) 𝐹 = {𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑙𝑙 𝑜𝑐𝑐𝑢𝑟}
trajectories that have escaped stochastic extinction. The distribution of the conditioned which𝑋

𝑡

is can then be rewritten asφ(𝑥, 𝑡 | 𝐹)

(6)φ(𝑥, 𝑡 | 𝐹) =  𝑃 𝐹 | 𝑥( )
𝑃(𝐹) φ(𝑥,  𝑡)

where we have used Bayes’ Theorem and have set , since the probability𝑃 𝐹 | 𝑥,   𝑡( ) =  𝑃 𝐹 | 𝑥( )

of fixation only depends on the clone frequency.

The probability of fixation of a clone with frequency within a sufficiently large population of size𝑥

and with fitness is derived from Kimura’s diffusion approximation [12]. We therefore𝑁 1 + 𝑠

have
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(7)𝑃 𝐹 | 𝑥( ) =  1−𝑒
−2𝑠𝑁𝑥

σ2

1−𝑒
−2𝑠𝑁

σ2

(8)𝑃  𝐹 ( ) =  1−𝑒
−2𝑠

σ2

1−𝑒
−2𝑠𝑁

σ2

The probability of fixation independent of the clone frequency is simply the probability that𝑃  𝐹 ( )

a clone with frequency will eventually fix, since we always begin with one mutated𝑥 = 1
𝑁

individual. Substituting both probabilities back into the density function expression gives us

(9)φ(𝑥, 𝑡 | 𝐹) =  1−𝑒
−2𝑠𝑁𝑥

σ2

1−𝑒
−2𝑠

σ2
φ 𝑥,  𝑡( ) ~ σ2

2𝑠 1 − 𝑒
−2𝑠𝑁𝑥

σ2( )φ 𝑥,  𝑡( ) 

where we have assumed that . The unconditional gene frequency distribution is then𝑠

 σ2  ≪1 φ

given as the solution to Kimura’s diffusion approximation [10]:

(10)φ 𝑥,  𝑡( ) =  
𝑘=0

∞

∑ 𝐶
𝑘
𝑒

−λ
𝑘
𝑡+𝑤𝑥

𝑉
1𝑘
1( )(𝑧)

where

𝑧 = 1 − 2𝑥 

𝑤 = 𝑁𝑠

σ2

𝑉
1𝑘
1( ) 𝑧( ) =  

𝑛=0,1

'

∑ 𝑓
𝑛
𝑘𝑇

𝑛
1 𝑧( )
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𝑉
1𝑘
1( ) 𝑧( ) =  

𝑛=0,1

'

∑ 𝑓
𝑛
𝑘𝑇

𝑛
1(𝑧)             (𝑓𝑜𝑟 𝑘 = 1,  2,  3,  …)

𝐶
𝑘

=  
(1−𝑟2)𝑒

− 𝑤
2 (1−𝑟)

𝑉
1𝑘
1( )(𝑟)

𝑛=0,1

'

∑ (𝑛+1)(𝑛+2)

(2𝑛+3)(𝑓
𝑛
𝑘)

2

𝑟 = 1 − 2𝑥
0

= 1 − 2
𝑁

In the above equation, are constants, are Gegenbauer polynomials, and are𝑓
𝑛
𝑘 𝑇

𝑛
1 λ

𝑘

eigenvalues [10]. The primed summation is over even values of n whenever k is even, and odd
values of n whenever k is odd.

We then rewrite in a way that will allow us to ignore second order terms:𝐶
𝑘

(11)𝐶
𝑘

=  
[1− 1− 2

𝑁( )2
]𝑒

−𝑤[1−(1− 2
𝑁 )]

𝑉
1𝑘
1( )(1− 2

𝑁 )

𝑛=0,1

'

∑ (𝑛+1)(𝑛+2)

(2𝑛+3)(𝑓
𝑛
𝑘)

2

= 4
𝑁  

𝑒−2𝑠𝑉
1𝑘
1( ) 1− 2

𝑁( )

𝑛=0,1

'

∑ 𝑛+1( ) 𝑛+2( )

2𝑛+3( ) 𝑓
𝑛
𝑘( )2

+  𝑂( 1

𝑁2 )

If we let and in the above expression, then since is differentiable and𝑁≫1 | 𝑠

σ2 |≪1 𝑉
1𝑘
1( )

thus continuous (see time independent ODE for below) on the interval (-1, 1), and also has𝑉
1𝑘
1( )

finite boundary conditions which are imposed to obtain the correct solution, we can
continuously extend at to obtain𝑉

1𝑘
1( ) 𝑧 = 1

(12)𝐶
𝑘

≈ 4
𝑁  

𝑉
1𝑘
1( ) 1( )

𝑛=0,1

'

∑ 𝑛+1( ) 𝑛+2( )

2𝑛+3( ) 𝑓
𝑛
𝑘( )2

Then define , so that𝐴
𝑘

=
𝑉

1𝑘
1( ) 1( )

𝑛=0,1

'

∑ 𝑛+1( ) 𝑛+2( )

2𝑛+3( ) 𝑓
𝑛
𝑘( )2
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(13)𝐶
𝑘

≈ 4
𝑁 𝐴

𝑘

Substituting into , and then into and for gives us:𝐶
𝑘

φ 𝑥,  𝑡( ) φ 𝑥,  𝑡( ) φ(𝑥, 𝑡 | 𝐹) 𝑠𝑁

σ2 𝑤

(14)φ(𝑥, 𝑡 | 𝐹) ~ σ2

𝑠𝑁 1 − 𝑒
−2𝑠𝑁𝑥

σ2( )
𝑘=0

∞

∑ 2𝐴
𝑘
𝑒

−λ
𝑘

𝑠, 𝑁, 𝑡, 𝐿( )𝑡+ 𝑠𝑁𝑥

σ2

𝑉
1𝑘
1( )(𝑧)

where we have changed the notation of to explicitly show the dependence of with respectλ
𝑘

λ
𝑘

to the parameter values we will scale. By substituting for𝑠
𝑐

=  𝑠
𝑐 ,  𝐿

𝑐
= 𝑐𝐿,  𝑁

𝑐
=  𝑐𝑁,  𝑡

𝑐
= 𝑐𝑡 

in , it is easy to see that remains unchanged whenever𝑠,  𝐿,  𝑁,  𝑡 φ φ

. λ
𝑘

𝑠
𝑐
,  𝐿

𝑐
,  𝑁

𝑐
 ,  𝑡

𝑐( ) =
 λ

𝑘
(𝑠, 𝐿, 𝑁, 𝑡)

𝑐

To show that , we first note that the unconditional solution to is a λ
𝑘

𝑠
𝑐
,  𝐿

𝑐
,  𝑁

𝑐
 ,  𝑡

𝑐( ) =
 λ

𝑘
(𝑠, 𝐿, 𝑁, 𝑡)

𝑐 φ

linear combination of solutions = (refer back to Eq. 10). When plugged back intoφ
𝑘

𝑒
−λ

𝑘
𝑡+ 𝑠𝑁𝑥

σ2

𝑉
1𝑘
1( )

the Fokker-Planck equation, we get an ODE for each and its corresponding :𝑉
1𝑘
1( ) λ

𝑘

(15)𝑥 1 − 𝑥( )
𝑑2𝑉

1𝑘
1( )

𝑑𝑥2 + 2 1 − 2𝑥( )
𝑑𝑉

1𝑘
1( )

𝑑𝑥 − 2 + 𝑐2𝑥 1 − 𝑥( ) −
2𝑁λ

𝑘

σ2{ }𝑉
1𝑘
1( ) = 0

For a given set of parameter values , there are infinitely many solutions to the above𝑠,  𝐿,  𝑁,  𝑡
ODE, one for each eigenvalue . If we rescale the parameters as before, then increasesλ

𝑘
2𝑁λ

𝑘

by a constant factor of . After rescaling, the eigenvalues in the equation must be divided by𝑐 λ
𝑘

a factor of to be associated with the same solution . Therefore, for the parameter values𝑐 𝑉
1𝑘
1( )

, is also a solution with eigenvalue . The invariance of then𝑠
𝑐
,  𝐿

𝑐
,  𝑁

𝑐
 ,  𝑡

𝑐
𝑉

1𝑘
1( )(𝑧)

 λ
𝑘

𝑐 φ(𝑥, 𝑡 | 𝐹)

follows from the fact that , and from the fact that the scaled λ
𝑘

𝑠
𝑐
,  𝐿

𝑐
,  𝑁

𝑐
 ,  𝑡

𝑐( ) =
 λ

𝑘
(𝑠, 𝐿, 𝑁, 𝑡)

𝑐

eigenvalue is associated with the same so that each is unchanged in the solution.𝑉
1𝑘
1( ) 𝑉

1𝑘
1( )

Therefore, we have shown that the distribution of conditioned on survival remains unchanged𝑋
𝑡

when the parameters are scaled, and thus the frequency of the mutant clone over time remains
unchanged. However, since is one of the parameters being scaled and the frequencies over𝑁
time remain the same, then the number of mutant individuals at every time-point is scaled by a
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factor of . Scaling the size of the population of the mutant clone by the same factor as the𝑐
number of generations leaves the coalescent statistics unchanged.

Taken together, we have shown that the coalescent statistics of lineage trees do not change
when the number of generations and population size are scaled by , and the growth rate𝐿 𝑁 𝑐
per generation is scaled by . Importantly, this scaling does not change the growth rate per𝑠 1

𝑐

unit time or fitness . Conversely, this conclusion implies that we can infer the fitness from𝑠
𝑦

observed lineage trees by assuming an arbitrary mutation rate to convert the branch lengths in
number of mutations to number of generations. The inferred number of mutant individuals will
also be scaled by an arbitrary number that depends on the assumed mutation rate; however, the
inferred fitness will match its true value.

To complete the proof, we note that in the above derivation we only showed that the distribution
of the frequency of the mutant clone at every time-point is invariant to the proposed scaling.
This does not necessarily imply that the frequency of the mutant clone as a function of time
(referred to as the trajectory) is also invariant. To show this, we write down a stochastic
differential equation for the frequency of the mutant clone [13]:

(16)δ𝑥 = 𝑠𝑥 𝑡( )(1 − 𝑥 𝑡( ))δ𝑡 + 𝑥 𝑡( )(1−𝑥 𝑡( ))∂𝑡
𝑁 𝐺(0,  1)

Here is the frequency in number of mutant individuals, is time in number of generations,𝑥 𝑡 𝑥 𝑡( )
is the value of at time , is the total number of individuals, and is a Gaussian𝑥 𝑡 𝑁 𝐺 0,  1( )
distribution with mean zero and variance one. We can then convert time from number of
generations to years using the differential and obtain∂𝑡 = 𝐿

𝑎 ∂τ

(17)δ𝑥 = 𝑠𝐿
𝑎 𝑥(1 − 𝑥)δτ + 𝐿

𝑎
𝑥(1−𝑥)∂τ

𝑁 𝐺(0,  1)

If we scale the parameter values of this equation as before by replacing with𝑠,  𝐿,  𝑁
, the equation remains unchanged provided we begin with the same𝑠

𝑐
= 𝑠

𝑐 ,  𝐿
𝑐
= 𝑐𝐿,  𝑁

𝑐
= 𝑐𝑁

initial frequency. This remains true even if we condition the equation on no stochastic extinction.
However, as before if we begin with an initial number of one mutant individual then the initial
condition of changes when we scale the parameters. To circumvent this problem we𝑥 0( ) = 1

𝑁

can use the Fokker-Planck equation conditioned on surviving extinction. Previously in this
section, we showed that the distribution of frequencies at each time-point conditioned on
survival remains unchanged under the proposed scaling, even when we begin with an initial
condition of one mutant individual. This invariance breaks down near generation when the𝑡 = 0
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initial frequencies differ by a factor of , but holds true for all generations . Although we do𝑐 𝑡 > ε
not have a way of computing directly, as described in the next section, we can bound the errorε
on the inferred time at which the first individual of a population arose by relating to its effect onε
the coalescent structure in the early history of the expansion.

Taken together, above results show that the coalescent statistics of phylogenetic trees are
invariant when model parameters are scaled from to .𝑠,  𝐿,  𝑁 𝑠

𝑐
= 𝑠

𝑐 ,  𝐿
𝑐
= 𝑐𝐿,  𝑁

𝑐
= 𝑐𝑁

Importantly, the fitness remains constant under this scaling (for an intuitive explanation for why
must also be scaled even though fitness is independent of , see Figure 4). Therefore, if𝑁 𝑁

fitness is inferred by fitting the model to an observed phylogenetic tree, the correct value of
fitness can be obtained even if the duration of each generation was chosen arbitrarily and only
correct up to a scaling with respect to the true value of the underlying biological process that
generated the observed tree.

Figure 4. Schematic shows why must also be scaled by a factor of when scaling and by a𝑁 𝑐 𝑠 𝐿
factor of . When a clonal expansion is generated under the scaled parameter values and ,𝑐 𝑠

𝑐 𝑐𝐿
the number of mutant individuals over time increases by a factor of and so must be scaled by𝑐 𝑁
a factor of so that saturation is reached at the same time as the unscaled process which is𝑐
necessary to preserve the coalescence statistics. The left hand side shows the unscaled process
and the right hand side shows the process with scaled parameter values. The white dots are the
mutant individuals, and the yellow dots show the point of coalescence of the trees which are
similar in both figures.
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The error in the inferred time at which the first mutant individual arose is at most one
generation

Above we showed that fitness can be inferred without knowledge of the mutation rate per
generation or equivalently without knowledge of the duration of each generation. In addition to
fitness, for many applications, we would like to infer the time at which the first mutated individual
arose. For example, we would like to infer the age at which the cancer mutation first occurred in
a patient from the phylogenetic tree of individual cancer cells obtained from the patient. Here,
we will show that the time at which the first mutant individual arose (time of onset) can be
inferred from the phylogenetic tree without knowledge of the duration of each generation. In
particular, we show that the inferred time of onset is different from the true time of onset on
average by at most the duration of one generation. We will show this first for the simpler case of
the Wright-Fisher model with , where is the variance in the number of offspring perσ2 = 1 σ2

individual, and then generalize the results to any value of . More formally, we will show that ifσ2

the time between subsequent generations in the model is assumed to be and the true time𝑇
𝑐

between subsequent generations is , then the mean of the distribution of inferred time of onset𝑇
is shifted into the past by at most if and into the present by at most if𝑇 −  𝑇

𝑐
𝑇 >  𝑇

𝑐
𝑇

𝑐
− 𝑇 

. For example, if we assume that an expanding population of cancer cells divides once𝑇 <  𝑇
𝑐

per year in the model , then the inferred time of onset will be shifted to the past by at most one
year on average if the cancer cells divide at a rate of once every two years and by half a year
into the present if they divide twice per year. To understand where these bounds come from, we
first note that when a population is expanding according to the Wright-Fisher model and is in the
drift phase, the average population size grows linearly by one individual per generation when
conditioned on surviving extinction [13]. We then consider trajectories of the mutant population
size (expressed in terms of frequency, or fraction of the total population) and also𝑥(𝑡) 
trajectories where we have rescaled the parameters describing the population growth by a𝑥

𝑐
(𝑡)

factor of , replacing with . We then define and as the𝑐 ≥ 1 𝑠,  𝐿,  𝑁 𝑠
𝑐

= 𝑠
𝑐 ,  𝐿

𝑐
= 𝑐𝐿,  𝑁

𝑐
 = 𝑐𝑁 𝑇 𝑇

𝑐

duration of each generation for and respectively. For each generation of the original𝑥(𝑡) 𝑥
𝑐
(𝑡)

process, generations pass in the scaled process, and hence . As described in the𝑐 𝑇
𝑐

= 𝑇
𝑐

previous section, the original trajectory and the scaled trajectory eventually become statistically
identical (See Figure 5 to see how both trajectories differ by approximately a factor of even𝑐
during the linear drift phase. This is equivalent to their frequencies being identical since their
total population sizes differ by a factor of ). However, because both trajectories must start with𝑐
one individual at time when the first mutant individual arose, or since and𝑡 = 0 𝑥(0) = 1

𝑁  

, they cannot be identical for sufficiently close to . Since both trajectories𝑥
𝑐
(0) = 1

𝑐𝑁 𝑡 <  ε 𝑡 = 0

grow linearly with the same slope per unit time during drift, and since begins at a smaller𝑥
𝑐
(𝑡)

frequency, we can get the average values of the original and scaled trajectories to match exactly
if we start the scaled trajectory earlier by some . We can then find such that∆𝑇 ∆𝑇

, and such that by time , . satisfies , which𝑥
𝑐
(− ∆𝑇) = 1

𝑐𝑁 𝑡 = 0 𝑥
𝑐
(0) = 1

𝑁 ∆𝑇 1 +  1
𝑇

𝑐
∆𝑇 = 𝑐

we can use to obtain . Using the definition of , it follows that the required offset∆𝑇 = (1 − 1
𝑐 )𝑇 𝑇

𝑐
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for the average of two trajectories to agree is . This argument only holds for . For𝑇 − 𝑇
𝑐

𝑐 ≥  1

the required shift is into the present using a similar argument that shifts the start𝑐 < 1  𝑇
𝑐

− 𝑇

of the original trajectory backwards in time with respect to the scaled trajectory.

Figure 5. Schematic plots show how the number of individuals as a function of time, shown in red
circles, is scaled in the drift phase for two clonal expansions that differ in the timing between
generations but where the percent growth per year or fitness is the same after the growth of the
clones become deterministic and exponential. The vertical axis is n(t), the number of individuals,
and the horizontal axis is time in years, but tick marks to denote the number of generations per
unit time are superimposed to show how the timing between generations differ across both plots.
On the right hand side the timing between generations is shorter by a factor of two. Since the
percent growth per year or fitness is the same for both processes after escaping extinction, and
since the selective advantage is smaller by a factor of two for the process plotted on the right
because the number of generations is larger, then the number of generations required to escape
drift is twice as large keeping the time in years to escape drift the same across both plots.
However, the decrease in selective advantage also increases the population required to escape
drift by a factor of two.

Although the offset introduced above results in perfect agreement between the means of the
original and scaled trajectories, it does not do so for all the higher moments. In fact, all higher
moments are exactly equal to that of without introducing any offset. To show this, we𝑥(𝑡) 𝑥

𝑐
(𝑡)

will show that conditioned on surviving extinction, the higher order centered moments during𝑘𝑡ℎ

drift in terms of frequency are

(18)𝐸[(𝑥(𝑡) − µ)𝑘] ≈  𝑂( ( 𝑡
𝑁 )

𝑘
)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2022. ; https://doi.org/10.1101/2022.09.09.507320doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.09.507320
http://creativecommons.org/licenses/by-nc/4.0/


We can then replace , with , in the expression above to show that the higher𝑁 𝑡 𝑁
𝑐

= 𝑐𝑁 𝑡
𝑐

= 𝑐𝑡

moments do not change even when is replaced with such that the fitness remains the𝑠 𝑠
𝑐

= 𝑠
𝑐

same. As a result, the fluctuations in the frequency of mutant individuals agree perfectly when
no offset is introduced. Therefore, we can either introduce an offset between the original
trajectory and the scaled trajectory to bring their means into agreement or introduce no offset
and have all their higher moments in agreement. Any inference framework will use a
combination of the moments of the trajectories, obtained indirectly from the coalescent statistics
of the reconstructed phylogenetic tree, to infer the time of onset. Therefore, the inferred time of
onset will be different from the true time of onset by at most the required offset to align the
means at the expense of aligning the higher moments.

To complete our argument, we now derive the expression for the moments conditioned on
surviving extinction. We first derive the moments without conditioning on surviving extinction and
then relate the conditional moments to higher order unconditional moments.

Since the dynamics of clonal expansions break down only in the early history, we can ignore
the deterministic term in the stochastic differential equation, include so that our results areσ2

more general, and rewrite it in a modified form to model the drift phase as:

(19)𝑥(𝑡 +  ∂𝑡) ≈ 𝑥 𝑡( ) +  𝑥 𝑡( ) ∂𝑡
𝑁 𝐺(0, σ2),  𝑖𝑓 𝑥(𝑡) >  0

0,  𝑖𝑓 𝑥(𝑡) ≤  0

Since is a function of the random variables and , and since and 𝑥(𝑡 +  ∂𝑡) 𝑥 𝑡( ) 𝐺(0,  σ2) 𝑥 𝑡( )

are independent and where is the density of , we can𝐺(0,  σ2)
−∞

∞

∫  𝑃(𝑔) 𝑑𝑔 =  1 𝑃(𝑔) 𝐺(0,  σ2)

compute the expectation value as:

= , (20)𝐸[𝑥(𝑡 +  ∂𝑡)] =
−∞

∞

∫  
𝑥(𝑡)≥0

∑ 𝑥(𝑡 +  ∂𝑡)𝑃(𝑥(𝑡))𝑃(𝑔) 𝑑𝑔 =
𝑥(𝑡)≥0

∑ 𝑥(𝑡)𝑃(𝑥(𝑡)) 𝐸[𝑥(𝑡)]

where the second equality is justified by replacing for the cases and𝑥(𝑡 +  ∂𝑡) 𝑥(𝑡) >  0
. 𝑥(𝑡) =  0

By recursing and then using the initial condition we obtain:𝑥(0) = 1
𝑁
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(21)𝐸[𝑥(𝑡)] =  1
𝑁

To obtain the unconditioned second moment, we first square both sides of the stochastic
differential equation:

(22)𝑥2(𝑡 +  ∂𝑡) ≈ 𝑥2(𝑡) + 2𝑥
3
2 (𝑡) ∂𝑡

𝑁 𝐺(0,  σ2) + 𝑥 𝑡( )∂𝑡
𝑁 𝐺2(0,  σ2),  𝑖𝑓 𝑥(𝑡) >  0

0,  𝑖𝑓 𝑥(𝑡) ≤  0

We then compute the expectation value in a similar manner as before by remembering to
replace for both cases and , except in addition we use𝑥2(𝑡 +  ∂𝑡) 𝑥(𝑡) >  0 𝑥(𝑡) =  0

which is the expectation we previously computed,
𝑥(𝑡)≥0

∑ 𝑥(𝑡)𝑃(𝑥(𝑡)) = 1
𝑁

−∞

∞

∫  𝑔2 𝑃(𝑔) 𝑑𝑔 =  σ2

because the expectation of is the second moment of a Gaussian with mean zero, and𝐺2(0,  σ2)

which causes the middle term to vanish:
−∞

∞

∫ 𝑔 𝑃(𝑔) 𝑑𝑔 =  0

𝐸[𝑥2(𝑡 +  ∂𝑡)] =
−∞

∞

∫  
𝑥(𝑡)≥0

∑ 𝑥2(𝑡 +  ∂𝑡)𝑃(𝑥(𝑡))𝑃(𝑔) 𝑑𝑔 =  
𝑥(𝑡)≥0

∑ 𝑥2(𝑡)𝑃(𝑥(𝑡)) +   
𝑥(𝑡)≥0

∑ 𝑥(𝑡)𝑃(𝑥(𝑡)) ∂𝑡
𝑁 σ2

(23)=  𝐸[𝑥2(𝑡)] + ∂𝑡

𝑁2 σ2

We then solve the recursion with an initial condition of to obtain:𝐸[𝑥2(0)] = 1

𝑁2

(24)𝐸[𝑥2(𝑡)] = 1

𝑁2 + σ2𝑡

𝑁2

A similar procedure can be used to compute the third moment and the higher order moments
too:
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(25)𝐸[𝑥3(𝑡)] = 3
2

σ4𝑡2

𝑁3 + 3 σ2𝑡

𝑁3 + 1

𝑁3

We can then relate any conditional moment to the unconditional moment. This is𝑘𝑡ℎ (𝑘 + 1)𝑡ℎ

done by first defining to be the conditioning event of the set of all trajectories that escape𝑆
extinction which depends on the parameter , and then computing𝑠

𝐸[𝑥𝑘(𝑡) | 𝑆] =
𝑥(𝑡) > 0

∑ 𝑥𝑘(𝑡) 𝑃(𝑥(𝑡) | 𝑆) =
𝑥(𝑡) > 0

∑ 𝑥𝑘(𝑡) 𝑃(𝑥(𝑡))𝑃(𝑆 | 𝑥(𝑡))
𝑃(𝑆) = 𝑁

𝑥(𝑡) ≥ 0
∑ 𝑥𝑘+1(𝑡) 𝑃(𝑥(𝑡)) 

(26)= 𝑁𝐸[𝑥𝑘+1(𝑡)]

where we have used Bayes’s Theorem and in the third equality the probabilities of surviving

extinction and assuming𝑃(𝑆 | 𝑥(𝑡)) = 1−𝑒
− 2𝑠𝑁

σ2 𝑥(𝑡)

1−𝑒
−2𝑠𝑁

σ2
≃ 2𝑠𝑁

σ2
1

1−𝑒
−2𝑠𝑁

σ2
𝑥(𝑡) 𝑃(𝑆) = 1−𝑒

− 2𝑠

σ2

1−𝑒
−2𝑠𝑁

σ2
≃ 2𝑠

σ2
1

1−𝑒
−2𝑠𝑁

σ2

[12], and changed the sum to include .𝑠 ≪ 1 𝑥(𝑡) = 0

Using this expression and the unconditional moments we can then derive:

= = (27)𝐸[𝑥(𝑡) | 𝑆] 𝑁𝐸[𝑥2(𝑡)] 1
𝑁 + σ2𝑡

𝑁

= (28)𝑉𝑎𝑟(𝑥(𝑡) | 𝑆) =  𝑁𝐸[𝑥3(𝑡)] − (𝐸[𝑥(𝑡) | 𝑆])2 1
2 ( σ2𝑡

𝑁 )
2

+ σ2𝑡

𝑁2

By iterating this procedure, we can then show that all the centered moments are .∼ 𝑂(( σ2𝑡
𝑁 )

𝑘
)

Simulations that validate this result are shown in Figure 6a-c and the details of computation are
discussed in the later section titled `Centered moments of simulated expansions match their
theoretical values.’ Figure 7 shows the impact of an incorrect number of generations on the
inferred time of onset from simulated data and the details are found in the later section titled
‘The impact on the inferred age of onset when ABC model has incorrect assumptions’.
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Figure 6. To show the k-th centered moments grow as in the initial drift phase, 10,000𝑂(( σ2𝑡
𝑁 )

𝑘
)

clonal expansions with fitness were simulated according to the Wright-Fisher process𝑠
𝑦

= 0. 1
with selection for 200 generations and conditioned on surviving extinction at the final time-point
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(orange dots). Another set of 10,000 clonal expansions were simulated using 10 times as many
generations per year but keeping the same fitness value (blue dots). A third set was simulated
under the same parameters as the first set except that only 10% of the population was retained at
each generation (green dots). The total population size was scaled by a factor of in the last𝑁 10
two simulations to keep the extent of drift the same across all three simulations. a) Offsetting the
scaled process aligns the means initially. Plot on the top left hand side shows the mean frequency
x as a fraction of over time in years across the simulated expansions. Since all three𝑁 10, 000 
processes begin with individual, and the latter two processes have a larger , their frequencies1 𝑁
differ and the means do not line up initially. However, if we offset the processes by the predicted
value , the means perfectly coincide and are shown on the top right. The bottom two plots1 − 1

10

are identical to the top two except the mean values are shown for a longer period of time. As
predicted, the means will coincide eventually even if their frequencies initially differ shown on the
bottom left. On the bottom right, we see that even though initially we can get the means to match,
the mean trajectories will eventually diverge. b) centered moments grow as O( ) initially.𝑘𝑡ℎ 𝑡𝑘

vs plots for the centered moments 2-7 of x for the same𝑙𝑜𝑔
2
(𝑘 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑥) 𝑙𝑜𝑔

2
(𝑡)

expansions. Consistent with the predictions that the plots should be linear and that the plotted
values should coincide, the centered moments match well with no offset introduced except for a
slight deviation from the expected behavior in the initial generations for the expansions that
underwent large sequential bottlenecks (green dots). c) For each of the plots in b), a line was fit
for each of the three processes (blue dots covered by orange dots because they match perfectly)
and the slopes and y-intercepts plotted as a function of k on the left and right respectively. The
slight deviations of the green dots is likely due to the initial deviation at in the plots in𝑙𝑜𝑔

2
(𝑡) = 0

b).

Figure 7. Inferred age of onset is shifted by at most the duration of one generation ABC
inferences were carried out repeatedly on the same simulated data tree constructed from a
simulated cancer for a 34 year old patient while varying the number of generations assumed in
the ABC model. The mean of the inferred age of onset is plotted for each ABC inference against
the particular value of , where the model used for ABC inference assumed times as many𝑐 𝑐
generations as the true number of generations in the data tree (which was generations per2
year). Error bars denote std, and the exact value of each std is plotted against on the right1 𝑐
hand side. As expected, as the value of increases, the error in the inferred age of onset𝑐
approaches the theoretical bound of generation.1
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Finally, the arguments made in this section can be easily extended to arbitrary values of . Thisσ2

is because more generally the population size increases by at each generation on averageσ2

during drift as opposed to one (when we assume ). Therefore, more generally, theσ2 = 1
inferred time of onset is off by at most the time that it takes the mutant population to increase in
size by one individual. This time can be shorter than one generation if in the underlyingσ2 > 1
process. In the next section, we will consider the implications on the inferred time of onset and
fitness if the true value of itself is not known.σ2

Coalescent statistics do not depend on the specific distribution of the number of
offspring or fluctuations in the timing between generations

The Wright-Fisher model assumes that the distribution of the number of offspring generated by
each individual in the population at each generation takes on a specific form. It also assumes
discrete and fixed timing between generations across all lineages. Our results would not be very
interesting if our derivations only held for the Wright-Fisher process, which is a very specific
model that is unlikely to be correct in most applications. For example, the specific distribution of
the number of offspring may be unknown or could exhibit large fluctuations or functional forms
not well approximated by the Wright-Fisher process, and there may be additional fluctuations in
the timing between replication events across the lineages. We therefore set out to show in the
following section that the coalescent statistics of lineage trees are independent of the
distribution of the number of offspring per individual which is also equivalent to incorporating
fluctuations in the timing between generations (see Figure 8)

Figure 8. Schematic showing how changing the variance of the number of offsprings produced by
each individual every generation, is equivalent to introducing fluctuations in the time betweenσ2,
generations across the lineages. The top figure shows a birth-death process where the number of
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generations fluctuates, and the bottom figure shows a different birth-death process with discrete
generations. In the process illustrated at the top, we assume is the average time between∆𝑡 1
generation. The process shown on the bottom has discrete generations of duration . Since the∆𝑡
distribution of the number of offspring produced is the same after time in both processes, these∆𝑡
processes will produce similar coalescent statistics across many generations.

We can make an intuitive argument for why the coalescent statistics of lineage trees should not
depend on the specific distribution of the number of offspring produced by each individual.
When we scale the variance in the distribution of the number of offspring, we increase the
amount of drift and so the minimum population size required to escape extinction is scaled by a
similar amount. This implies that the average number of mutant individuals at each time-point is
scaled by the same factor which decreases the rate of coalescence. However, if there is a
higher variance in the number of offspring, then a smaller fraction of the mutant individuals are
giving rise to the subsequent generation at any time point, which speeds up the rate of
coalescence. These two opposing effects cancel leaving the coalescent statistics of the lineage
trees unchanged.

To show this mathematically, we consider the Canning model [14], [15] which is similar to the
Wright-Fisher model except that the distribution in the number of offspring produced by each
mutant individual at each generation is arbitrary but identical across the mutant individuals, and
has a variance . We then present our derivation that the rate of coalescence scalesσ2

proportionally to and inversely to , and does not depend on the specific form of theσ2 𝑁
distribution. We then revisit the equations in the previous sections to show that the frequency
over time remains unchanged after scaling both parameters and by the same factor ofσ2 𝑁 𝑐
which implies the population size as a function of time increases by a factor of . Taken𝑐
together, this shows that the increase in the rate of coalescence from scaling is canceled byσ2

the decrease in the rate of coalescence from the increasing population size. Since the fitness of
the population does not change when scaling and (recall fitness only depends on , , andσ2 𝑁 𝑠 𝐿

), and since the statistics of trees also do not change under this scaling for a given fitness𝑎
value, then the fitness of a population can be inferred from lineage trees even if the assumed
distribution in the number of offspring does not match the true distribution in the underlying
process.

We now derive the coalescent rate per generation under an arbitrary distribution of the number
of offspring per individual per generation with variance , and with mean so that theσ2 1 + 𝑠
frequency of mutant individual grows by a factor of per generation. We also assume that1 + 𝑠
the number of mutant individuals is large so that the frequency grows deterministically, and that

. We assume that there are mutant individuals at generation , and compute the rate of𝑠 ≪ 1 𝑛 𝑡
coalescence when the clone size grows from at time to at time .𝑛 𝑡 𝑛 1 + 𝑠( ) 𝑡 + 1

We define the probabilities of each mutant individual at generation having children as .𝑡 𝑐 𝑝
𝑐

Since is just the fraction of individuals that have c children at generation , then the probability𝑝
𝑐

𝑡

we randomly sample at an individual derived from a parent with children is , where𝑡 + 1 𝑐 𝑐𝑓
𝑐
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. To compute the probability of coalescence at any generation given individuals at𝑓
𝑐

=
𝑝

𝑐

𝑐'
∑𝑐'𝑝

𝑐'

𝑡 𝑘

, we compute 1 minus the probability that no coalescence occurs. To determine the𝑡 + 1
probability that no coalescence occurs across the k individuals, we begin by calculating the
probability of the second individual not coalescing with the first individual. This is given by

which is just the probability that the second individual does not share a parent with[1 −  
𝑐

1
−1

𝑛(1+𝑠) ]
the first individual given that the first individual is the child of a parent with children, and then𝑐

1

averaging across all possible (see Figure 9 to better understand the indices ) to obtain𝑐
1

𝑐
𝑖

, (29)≈
𝑐

1
=0

∞

∑ 𝑐
1
𝑓

𝑐
1

[1 −  
𝑐

1
−1

𝑛 ]

where we have assumed . To simplify the math, we will always replace with𝑠 ≪ 1 1 + 𝑠 1
whenever it shows up at any step in the derivation because will become in the final1 + 𝑠 1
answer anyways when we let .𝑠 ≪ 1

Figure 9. Schematic showing what each represents in Eq. 29-31. In particular, is the number𝑐
𝑖

𝑐
𝑖

of individuals in a given generation that produce offspring in the next generation.𝑖

We then include the probability of the third individual not coalescing with individual 2 or
individual 1, again averaging over all possible . This process is iterated up to individual k,𝑐

2

resulting in the following nested sum

𝑐
1
=0

∞

∑ 𝑐
1
𝑓

𝑐
1

[1 −  
𝑐

1
−1

𝑛 ]
𝑐

2
=0

∞

∑ 𝑐
2
𝑓

𝑐
2

1 −  
𝑐

1
+𝑐

2
−2

𝑛
⎡⎢⎣

⎤⎥⎦
 … 

(30)
𝑐

𝑘−2
=0

∞

∑ 𝑐
𝑘−2

𝑓
𝑐

𝑘−2

1 −  
𝑐

1
+𝑐

2
…+𝑐

𝑘−2
−(𝑘−2)

𝑛
⎡⎢⎣

⎤⎥⎦𝑐
𝑘−1

=0

∞

∑ 𝑐
𝑘−1

𝑓
𝑐

𝑘−1

1 −  
𝑐

1
+𝑐

2
...𝑐

𝑘−1
−(𝑘−1)

𝑛
⎡⎢⎣

⎤⎥⎦

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2022. ; https://doi.org/10.1101/2022.09.09.507320doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.09.507320
http://creativecommons.org/licenses/by-nc/4.0/


Note that we can distribute the innermost sum and use the equalities
𝑐

𝑘−1
=0

∞

∑ 𝑐
𝑘−1

𝑓
𝑐

𝑘−1

= 1 + 𝑠  ≈ 1

and where is the random variable denoting the
𝑐

𝑘−1
=0

∞

∑ 𝑐
𝑘−1
2 𝑓

𝑐
𝑘−1

=
𝑐

𝑘−1
=0

∞

∑
𝑐

𝑘−1
2 𝑝

𝑐
𝑘−1

1+𝑠 ≈ 𝐸 𝐶2[ ] 𝐶

number of offspring per individual per generation to obtain

(31)
𝑐

𝑘−1
=0

∞

∑ 𝑐
𝑘−1

𝑓
𝑘−1

1 −  
𝑐

1
+𝑐

2
…+𝑐

𝑘−2
+𝑐

𝑘−1
−(𝑘−1)

𝑛
⎡⎢⎣

⎤⎥⎦
= 1 −

𝑐
1
+𝑐

2
+…+𝑐

𝑘−2

𝑛 − 𝐸 𝐶2[ ]
𝑛 + 𝑘−1

𝑛

If we continue to iteratively multiply innermost terms followed by distributing the innermost sum
and therefore working our way from the inside out, we can show that the sequence of nested
sums is equal to

(32)1 − 1
𝑛

𝑖=1

𝑘−1

∑ 𝑖 * (𝐸 𝐶2[ ] − 1) + 𝑂( 1

𝑛2 )

Then note that .𝐸 𝐶2[ ] = 𝑉𝑎𝑟 𝐶( ) + 𝐸2 𝐶[ ] = σ2 + (1 + 𝑠)2 ≈ σ2 + 1

Substituting and letting second order terms vanish since gives us𝑛 ≫ 1

(33)≈1 − σ2
𝑘
2( )
𝑛

It then follows that the rate of coalescence per generation is

(34)≈ σ2
𝑘
2( )
𝑛

Comparing this to the classical Kingman coalescent probability, we observe that the variance σ2

in the number of offspring has effectively rescaled the population size of the mutant clone from n
to such that the coalescent rate has increased to the coalescent rate of a population under𝑛

σ2

the Wright-Fisher model but with population size . Increasing by a factor of therefore𝑛

σ2 σ2 𝑐
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effectively decreases by a factor of which requires a factor of increase in to preserve the𝑛 𝑐 𝑐 𝑛
rate of coalescence. We now revisit the equations previously derived to show that the mutant
population size is also scaled by a factor of .𝑛 𝑐

To show that the mutant population size scales by the same factor of as , we can follow the𝑐 σ2

steps of the invariance proof identically except that we instead replace and with𝑁 σ2 𝑁
𝑐

= 𝑐𝑁

and in the Fokker-Planck equation to show that the frequency over time is(σ2)
𝑐

= 𝑐σ2 𝑥

unchanged. Since is scaled by a factor of , associated with any is scaled by a factor of𝑁 𝑐 𝑛 𝑥 𝑐
as well implying that the mutant population size over time is also scaled by a factor of . We can𝑐
then rescale these same parameter values in the stochastic differential equation to show the
invariance of individual trajectories as well.

Similar to scaling the number of generations, rescaling and in the Fokker-Planck and the𝑁 σ2

stochastic differential equation only show that the trajectories over time are scaled by a factor of
for , but are not scaled by a factor of near because there is an initial condition of𝑐 𝑡 > ε 𝑐 𝑡 = 0

one individual. If we account for the added variance in the number of offspring, we can show
that the inferred time of offset is incorrect by at most the time it takes for the population size of
the mutant clone to increase by . To show this we first note that the clone size grows as 1+1 σ2𝑡
on average, and the second and higher moments expressed as frequency of the total population

size are given by after conditioning on surviving extinction. Since and are𝑁 ∼ 𝑂(( σ2𝑡
𝑁 )

𝑘
) σ2 𝑡

expressed as the product in the moment expressions, it follows that scaling by isσ2𝑡 σ2 𝑐
equivalent to scaling the number of generations by , which is equivalent to scaling the𝑡 𝑐 
duration of a generation by . Intuitively, this makes sense because shortening the duration1

𝑐

between the generations means that the clone grows more per unit time, which also happens
when is increased. Therefore, as we argued in the previous section, we can get the averageσ2

values of the original trajectories and the scaled trajectories that use the parameter (σ2)
𝑐

= 𝑐σ2

to match exactly if we begin the scaled trajectory earlier by the same amount of time required to
align the average values of the original trajectory with a trajectory whose generation time has
been scaled by by . In the previous section, we showed that the inferred time at which the1

𝑐

mutant population arose is different from its true value by at most one generation. Using a
similar mathematical procedure and the equivalence of scaling with scaling time, we canσ2

obtain a more general expression that bounds the difference between the true time of onset and
the inferred time of onset by the average time it takes the mutant population to increase by one
individual.

Coalescent statistics do not change if the fitness of each individual fluctuates

In the previous sections we had assumed that the fitness of each individual is identical.
However, in most practical applications, the notion of fitness is a coarse-grained average growth
rate which may vary from individual to individual and across generations. To show that
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heterogeneity in fitness does not change the coalescent statistics of lineage trees, we will
assume that the fitness of each individual at each generation is chosen identically and
independently from a fixed fitness distribution. We emphasize that the fitness of a parent is
uncorrelated with that of its children. If differences in fitness are passed onto the next
generation, the coalescent structure of lineage trees clearly changes as individuals with the
highest fitness start to dominate the population (see [16], [3], [17]). To incorporate heterogeneity
in fitness, we modify the Wright-Fisher model with selection as follows. As before, at each
generation, individuals give birth to a new generation and immediately die out. Each individual in
the new generation descends from a wild type individual with probability and from the𝑝 𝑖𝑡ℎ

mutant with probability (for ). Since probabilities must sum to , we have1 + 𝑠
𝑖( )𝑝 𝑖 = 1,  …,  𝑛 1

the condition:

(35)
𝑖=1

𝑛

∑ (1 + 𝑠
𝑖
)𝑝 + 𝑁 − 𝑛( )𝑝 = 1

This means that the probability an individual at generation descends from the mutant𝑡 + 1 𝑗𝑡ℎ

individual is:

(36)
1+𝑠

𝑗

𝑁+
𝑖=1

𝑛

∑ 𝑠
𝑖

The number of times the mutant is picked is therefore a binomial distribution with parameters𝑗𝑡ℎ

N and , conditional on the values which are i.i.d. random variables. If we assume that
1+𝑠

𝑗

𝑁+
𝑖=1

𝑛

∑ 𝑠
𝑖

𝑠
𝑖

, the expected number of children produce by the mutant is , which means𝑁 ≫ 
𝑖=1

𝑛

∑ 𝑠
𝑖

𝑖𝑡ℎ 1 + 𝑠
𝑗

the dependence on all has vanished. Since is the conditional mean number of𝑠
𝑖

≠ 𝑠
𝑗

1 + 𝑠
𝑗

children, then the unconditional mean number of children must be , where is the mean1 + 𝑠
µ

𝑠
µ

of the distribution .𝑆

Now recall that our results in the previous section show that the statistics of trees from a random
sample at the final time-point do not depend on the distribution in the number of offspring per
individual per generation and only on fitness. It then follows that the mean value of fitness can
be inferred from the coalescent statistics of the lineage trees even if the fitness distribution is not
known.

Age of onset and fitness values of multiple clones competing within a population can be
inferred simultaneously

Throughout this paper, we have made the simplifying assumption that lineage trees are
constructed from randomly sampled individuals of an exponentially growing population where
only a single, selectively advantageous mutation produced the exponential growth. This
assumption ignores many realistic scenarios, such as when cancer cells acquire subsequent
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driver mutations that produce new subclones with higher fitness values, or when HIV infects
cells for multiple generations and various mutations with differing fitness values arise in different
lineages and compete with each other (i.e. clonal interference). We can extend our results to
these more complex scenarios to show that the lineage trees constructed from randomly
sampled individuals from populations that contain multiple competing mutations can be used to
infer the history of expansion of multiple subclones and the times at which the subclones
emerged without knowing the specific biological details of each expanding clone.

To illustrate this point, we can define a simple model of multiple driver mutations that builds off
of the Wright-Fisher process with selection. The new model is identical to the Wright-Fisher
process with selection we defined previously, except a secondary mutation with a different
fitness advantage to the first arises in the population either in the same lineage, such as a
cancer with a subsequent driver mutation where a subclone of the cancer cells is expanding
more rapidly than the other cancer cells, or in a different lineage such as two strains of a virus
that each have a distinct mutation and compete with each other. The only difference in the new
model occurs when the secondary mutation arises. At this point, say generation , the𝑡
individuals at generation descend from an individual without a mutation with probability ,𝑡 + 1 𝑝
from an individual with the initial driver mutation with probability and with the1 + 𝑠

1( )𝑝

secondary mutation with probability . If and are the number of individuals with1 + 𝑠
2( )𝑝 𝑛

1
𝑛

2

the initial and secondary mutations respectively, then is derived from the condition:𝑝

(37)1 + 𝑠
1( )𝑛

1
𝑝 +  1 + 𝑠

2( )𝑛
2
𝑝 + (𝑁 − 𝑛

1
− 𝑛

2
)𝑝 = 1

At generation , the value of is of course defined to be , but the procedure is iterated until𝑡 𝑛
2

1

the final time-point so the value of can change.𝑛
2

This model can be easily extended to include a larger number of competing mutations, and is
very similar to the one defined in the previous section that includes fluctuations in fitness values
except in this case the selection parameter is inherited.

Assuming this model of multiple driver mutations, it is clear that rescaling the parameter values
in the way described in this paper while keeping the fitness values of both clones fixed will result
in trees that are indistinguishable. This is because scaling or will naturally rescale the𝐿 σ2

population size over time of both clones by the same factor, and the total population size that
contains them will also be scaled by the same factor. As a result, both clones will be found in𝑁
similar proportions at the final time-point under any scaling of , and any set of randomly𝑐
sampled lineages will produce trees that are indistinguishable. Figure 10 demonstrates this idea
using simulations (for details of simulations see next section).
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Figure 10. Trees constructed from populations with multiple competing mutations are similar
even when the biological details are drastically different. Clonal expansions were simulated for 40
years and included a secondary driver mutation with increased fitness that occurred after 20
years of the initial expansion. Random bottlenecks at each generation were also imposed. Each
of the 4 panels corresponds to different simulated expansions. For each of the four panels, the
initial driver mutation had fitness , the secondary driver mutation had fitness in𝑠

𝑦
= 0. 4 𝑠

𝑦
= 0. 8

the top two panels, but in the bottom two. The simulations corresponding to the right𝑠
𝑦

= 1. 4
hand columns assumed times as many generations and a bottleneck that was 10 times10
smaller than the left hand column so that the the population sizes over time of the subclones
differed by a factor of across both columns. The population sizes over time of each of the100
expansions were plotted in each panel, where the orange dots denote the number of mutants with
the initial driver mutation, and the blue dots denote the number of mutants that have either the
initial driver mutation or both mutations. For each expansion, 50 lineages were randomly sampled
from individuals with either the first or secondary mutation and their trees are shown. As
expected, the trees from the top row look qualitatively different from the bottom row since the
fitness of the secondary mutation is different, but the trees from the left column are qualitatively
similar to their corresponding trees on the right column because they share the same fitness
values.

We can further extend this idea to scenarios where mutations that increase the fitness of a
population are regularly introduced into a population. To do this, we can assume that selectively
advantageous mutations are introduced into the population randomly per individual per
generation with a mutation rate . This mutation rate is different from the mutation rate earlier𝑈
which refers to neutral mutations that do not provide a fitness advantage to the individuals in
which they occur and are used only to construct the tree. Whenever a mutation arises in an
individual, a value is drawn from a distribution that increases the selection value of the𝑞 𝐷 𝑠
individual that contains the mutation so that the new selection value is . The value of any𝑠 + 𝑞 𝑠
given individual is therefore the sum of the values accrued over time determined by the𝑞
number of mutations accrued by its ancestral lineage and . Under this model, we can also𝐷
rescale the parameter values in a similar way as before, including the number of generations ,𝐿
each of the selection values generated from by a factor of , and the total population size𝐷 1

𝑐 𝑁
by a factor of . Under this scaling, the fitness of each possible mutation introduced into the𝑐
population in growth per year remains the same because of the increase in , and although the𝐿
decrease in increases the probability of extinction by a factor of of any mutation, the increase𝑠 𝑐
in increases the rate at which the mutations are introduced into the population. As a result, the𝐿
same number of mutations with equivalent fitness arise and establish in the population, but with
population sizes over time scaled by a factor of . Since is also scaled by a factor of , the𝑐 𝑁 𝑐
individual subclones expand to similar proportions of the population and their rates of growth are
identical to the unscaled process. As a result, we can infer the fitness values and times at which
the different mutations arose from the lineage tree of a random sample of individuals at the final
time-point without knowing the specific biological details, such as the number of generations,
the distribution of number of offspring, or fluctuations in the timing between generations.
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Simulations

Simulated trees show cancer and virus trees look similar whenever their fitness values
are the same

In the previous sections, we have shown that fitness can be reliably inferred from lineage trees
independent of the total number of generations and the value of . If this is true, then a treeσ2

constructed from a cancer and from a virus should look identical whenever their fitness values
are the same, but look different whenever their fitness values differ.

To show this, simulated example trees were constructed using realistic parameter values from
MPN bone marrow cancers (parameter values obtained from [1], [2], [18]), and HIV replication
(parameter values obtained from [6], [19], [20]), under different fitness values. In the simulated
cancer expansions, the driver mutation was acquired at the generation, and the subsequent10𝑡ℎ

clonal expansion was simulated for an additional generations. generation (or equivalently25 1 
one cell division) per year on average was assumed and the time between generations for each
cell throughout the history of the expansion was drawn from a Gamma distribution with shape
parameter and scale . For each draw from the Gamma distribution, the cell would make= 5 = 1

5
a decision and either divide or undergo cell death with equal probability if it was wild-type, and
divide with probability and undergo cell death with probability if it was a mutant. An1+𝑠

2
1−𝑠

2
average of neutral, somatic mutations drawn from a Poisson distribution was inherited by20
each cell per cell division. The lineage tree was then constructed by randomly sampling 22
cancer cells at the final time-point. Two cancer trees were simulated using this procedure, one
for , and another for . HIV growth dynamics were also simulated where cells are𝑠 = 0. 1 𝑠 = 0. 7
infected and sequential bottlenecks are applied. Similar to the cancer simulations, a mutation is
acquired at generation (the replication cycle) by one of the viral particles and a10 10𝑡ℎ

subsequent clonal expansion is simulated for generations. In contrast to the cancer25
simulations, 1 generation is instead assumed to be hours on average and is drawn from a48
Gamma distributed with shape parameter . At the end of each generation, the HIV particle= 5
has a chance of producing offspring. If it produces offspring it will produce offspring on10% 103

average drawn from a poisson distribution if it is wild-type and if it is a mutant. A103(1 + 𝑠)
bottleneck is then applied to the remaining progeny by drawing the final number of progeny𝑋
from . Each viral particle inherits neutral mutations on average drawn from a~ 𝐵𝑖𝑛(𝑋,  0. 01) 30
poisson distribution per replication event [20]. The lineage tree is then constructed by randomly
sampling viral particles at the final time-point. Two HIV trees were simulated using this22
procedure, one for , and another for . All four trees are plotted in Figure 1. As𝑠 = 0. 1 𝑠 = 0. 7
expected, the trees from both the cancer and virus look the same when their fitness is the same.

Centered moments of simulated expansions match their theoretical values

To verify our derived expressions for the moments of the population size in the early drift phase,
we show computationally that the k-th centered moment of the population size over time grow
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as . To do this, we simulated 10,000 clonal expansions according to the Wright-Fisher𝑂(( σ2𝑡
𝑁 )

𝑘
)

process with selection. The trajectories were each simulated for generations and𝐿 = 200
conditioned on surviving extinction at the final time point, and the parameter values used were

, , and generation per year was assumed. We then simulated another 10,000𝑠 = 0. 1 𝑁 = 215 1
trajectories identically to the first set of trajectories except we assumed times as many10
generations so that , , and assumed 10 generations per𝐿

𝑐
= 200 * 10 𝑠

𝑐
= 𝑠

10 𝑁
𝑐

= 215 * 10

year. We then simulated a third set of trajectories in the same way as the first set of10, 000 
trajectories, but instead rescaled by a factor . This was accomplished by subsamplingσ2 10 10%
of the total population size at each generation using a hypergeometric distribution, and by𝑁
letting the next generation of individuals descend from the remaining wild type individuals that𝑁
survived the bottleneck with probability , and from the remaining mutant individuals that𝑝
survived the bottleneck with probability . The mean population size over time both with(1 + 𝑠)𝑝
and without the appropriate offsets predicted to align the means and the central moments𝑘𝑡ℎ

are plotted in Figure 6.

The impact on the inferred age of onset when ABC model has incorrect assumptions

To verify our theoretical calculations that the impact on the inferred time of onset is at most one
generation, we simulated data trees and carried out ABC on them. Out of those data trees,10
we selected the tree where ABC most accurately inferred the true parameter values. The
parameter values of that data tree were , , , ,𝑔 =  50 𝐿 = 70 𝑠 = 0. 264911 𝑁 = 109 𝑎 =  35
years, and the mutation rate was . We then carried out ABC many times on the same data723

69

tree using generations for different values of . The inferred age of onset was then plotted𝑐𝐿 𝑐
against in Figure 7 to show that the offset in the inferred age of onset approaches 1 generation𝑐
which is consistent with the theoretical bound derived above.

Trees constructed from simulated expansions with multiple competing driver mutations
look identical whenever the fitness values of each subclone are the same

Here we show that the coalescent structure of lineage trees only depends on the fitness values
and time of occurrence of mutations even when multiple driver mutations are present. To do so,
we simulated clonal expansions according to the Wright-Fisher process with selection, except
that a secondary driver mutation occured within the expanding clone with a higher fitness value.
In addition, we included bottlenecks at each generation similar to the bottleneck applied in the
simulations in the previous section. We first simulated clonal expansions where the initial5
driver mutations had fitness , the secondary driver mutation had fitness , and𝑠

𝑦
= 0. 4 𝑠

𝑦
= 0. 8

the first driver mutation expanded for years while the secondary mutation expanded for the40
last . The duration of each generation was half a year. 20 neutral mutations were accrued per20
lineage per year, and a bottleneck of out of a total population size was used.50% 𝑁 = 4 * 105

50 lineages were randomly sampled at the final time-point from the set of individuals carrying
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either the first or secondary mutation and trees were constructed. We then simulated another 5
trees in the exact same way except in this case the secondary mutation instead had fitness

. Lastly, we simulated two more sets of trees, each set containing 5 trees as well,𝑠
𝑦

= 1. 2

identically to the first two except that the number of generations was times as large and the10
bottleneck size was times as small. Therefore, the total population size was times10 𝑁 100
larger because the population size of both clones is naturally rescaled by a factor of . From100
each set of trees, we chose representative example and show them in Figure 10. The trees1
constructed from the populations having different fitness values for the secondary mutation look
different, while trees constructed from the populations having similar fitness values for the
secondary mutation look similar even though the number of generations and bottleneck sizes
differ by a factor of and the total population sizes over time of each subclone by a factor of10

. Lastly, here we have only chosen a representative example from each ensemble of trees.100
Although the structure of trees fluctuate within each ensemble, the ensemble of trees were
qualitatively different when the fitness of the secondary mutation differed, but qualitatively
similar when the fitness was the same.

Inference of fitness and time of onset using simulated trees

In this section, we will use simulations to validate the above theoretical results on robustness of
fitness inference to the assumptions in the model used for the inference. We will first briefly
discuss a computational method for inference, and then show that we can reliably infer fitness
and age of onset from simulated trees even when the biological details of the clonal expansions
are drastically different from those assumed in the model for inference.

To infer fitness and age of onset from the trees of simulated clonal expansions, we use an
algorithm called Approximate Bayesian Computation (ABC). To carry out ABC, we generate
simulated trees under many different parameter values drawn from a prior distribution. The
simulated trees are then compared to the data tree using a metric distance. If the distance
between a simulated tree and the data tree is smaller than a predefined threshold, the
parameter values associated with the simulated tree are kept, and otherwise discarded. After
many iterations, we obtain a posterior distribution of parameter values that capture the best
estimates of the ground truth parameter values in the data tree.

In our particular implementation of ABC, we use the Wright-Fisher model with selection to
generate clonal expansions that arise when a mutation is acquired by an individual in the
population randomly at some generation. Neutral mutations are also accrued along the lineages
by drawing the number of mutations from a Poisson distribution with a mean of ~20 mutations
per generation. 22 cells are randomly sampled at the final time-point, and the lineages are
traced backwards in time to construct a tree where the branch lengths are measured in number
of mutations. The simulated tree is then compared to the data tree using a metric distance. To
compute the distance, we first convert each tree to an LTT curve, which plots the number of
extant lineages as a function of time expressed in number of mutations. The distance between
two lineage trees corresponds to the area between their LTT curves.
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To verify our theoretical results, we generated data trees by simulating clonal expansions where
s was drawn independently for each mutated individual from a uniform distribution on (0,  2 * 𝑠)
. In addition, 10 percent of the individuals at each generation were killed so that the individuals
in the next generation descended from only 90 percent of the population increasing the variance
in the number of offspring per individual. In contrast, the model used to generate the simulated
trees to perform ABC assumed a constant value of s for each individual and did not kill any
fraction of individuals. In addition, the model used for the inference incorrectly assumed that the
number of generations were 10 times smaller than the number of generations in the data. Figure
11 shows the inferred value of fitness, the times in years at which the mutations were acquired,
and the number of mutant individuals at the final time-point.

Figure 11. Inferences from simulated data trees where the biological details of the model
used for the inference were completely different from the model used to simulate the data
trees. Many data trees were simulated under different parameter values and ABC carried out on
each one to infer the fitness, age of onset, and final population size. Data trees were generated
using times as many generations as assumed in the ABC, which was . The generations10 𝐿 = 35
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occur over a total time of years. Heterogeneity was included in the selection parameter by𝑎 = 34
drawing its value from a uniform distribution for each individual of the clone, but the average
fitness was kept a constant value. Furthermore, at each time step, of the population was10%
randomly killed so that each generation descended from of the individuals in the previous90%
generation increasing the variance in the number of children . The ABC model did not includeσ2

this fitness heterogeneity and increased variance. The average fitness, number of generations,
and time of onset was drawn randomly and the corresponding value used to simulate each data
tree. Inferences were carried out with the ABC model that did not incorporate this heterogeneity
and the values were plotted. Each plot shows the means of the inferred vs true parameter values
for all the inferences shown as dots with error bars denoting std. As expected, fitness and age1
of onset can be reliably inferred, while the number of mutant individuals at the final time point
(show in the bottom right panel) are under inferred since the expansions in the data fluctuated to
a larger population size because of the increased number of generations and a larger .σ2

As expected by our theoretical calculations, we are able to correctly infer the fitness and the
time at which the mutation arose despite the incorrect assumption in the models used for the
inference. Also as expected, the inferred number of mutant individuals at the final time-point is
smaller than the true value. This makes sense because the true model had a smaller average
growth rate per generation s and a larger compared with the inference model. Therefore, theσ2

population in the true model experienced larger fluctuations and had to drift to a larger size
before exponentially growing. Importantly, despite the fact that the inferred population size is a
scaled version of the true value, the inferred fitness matches the true value.

Discussion

In this paper we have shown that fitness and age of onset can generally be inferred from the
lineage trees of a random sample at the final time-point from a population that has grown
exponentially, independent of the underlying biological details. The important limitation is that
the population must be clonal or consist of multiple expanding clones where the stochastic
behavior of each mutant individual at each generation within each expanding clone is identical.
This assumption could break down if the value or the timing between generations changedσ2

rapidly over time within an individual clone so that individuals in the later history after escaping
extinction had very different statistics. This assumption can also be broken if selectively
advantageous mutations are introduced extremely rapidly into the population so that new
mutations arise within any given clone before the clone has the opportunity to establish and
escape extinction. This is because our results rest on the assumption that a clone escapes
extinction after reaching population size which could break down considerably if it accrued𝑂( 1

𝑠 )
many selectively advantageous mutations beforehand. We have also not considered
mathematically the impact on trees when the timing between generations takes on the form of
an atypical distribution, such as a power-law which could conceivably model dormant cancer
cells for example.

A further limitation of this work is that we have ignored the noise introduced by fluctuations in
the number of mutations per generation per individual when constructing trees. We have also
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assumed that the mutation rate is constant, or at the very least that we have measurements of
the mutation rate as a function of time which can be used to convert the branch lengths of a tree
from number of mutations to absolute time. Lastly, we are assuming that whatever model we are
using can correctly account for the biological scenarios we are trying to infer. For example, if
there are multiple driver mutations within a cancer expansion and the model used for the
inference only incorporates a single driver mutation, then the model clearly cannot account for
the fitness value of the multiple mutations. Importantly, our results do not tell us what biological
scenarios to model, but merely that once we have chosen the biological scenario to model, we
don’t need to get the details of replication correct.

In this work, we also made some explicit mathematical assumptions which we will further
highlight. In particular, the Fokker-Planck and stochastic differential equation approximation to
the Wright-Fisher process are derived in a large and small s limit. Furthermore, the𝑁
expressions for deriving coalescent statistics are also derived in a large population size limit,
and so there may be some deviations to the derived tree statistics that occur in the initial phase
of the clonal expansion when the number of mutant individuals is small. Minor deviations of this
sort were observed by eye in some of the trees but likely will not have a large impact on the
inferred values as seen in Figures 5 and 8. However, any large deviations from these limits will
impact the statistics of trees.

Even with these caveats in mind, it appears that fitness and the timing of mutations can
generally be reliably inferred from lineage trees, even with little knowledge of the biological
details and a large amount of heterogeneity included. As a result, using lineage trees to infer
fitness and the timing of mutations in exponentially growing clones is likely robust and a reliable
method for inference.
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