Confirmatory Results
Sequence-based Optimized Chaos Game Representation and Deep Learning for Peptide/Protein Classification
View ORCID ProfileBeibei Huang, Eric Zhang, Rajan Chaudhari, Heiko Gimperlein
doi: https://doi.org/10.1101/2022.09.10.507145
Beibei Huang
1Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
Eric Zhang
1Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
Rajan Chaudhari
1Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
2Eurofins Beacon Discovery, San Diego CA 92121, USA
Heiko Gimperlein
3Maxwell Institute for Mathematical Sciences and Department of Mathematics, Heriot–Watt University, Edinburgh, EH14 4AS, UK

- Supplementary Materials[supplements/507145_file03.docx]
Posted October 29, 2022.
Sequence-based Optimized Chaos Game Representation and Deep Learning for Peptide/Protein Classification
Beibei Huang, Eric Zhang, Rajan Chaudhari, Heiko Gimperlein
bioRxiv 2022.09.10.507145; doi: https://doi.org/10.1101/2022.09.10.507145
Subject Area
Subject Areas
- Biochemistry (13924)
- Bioengineering (10604)
- Bioinformatics (33729)
- Biophysics (17365)
- Cancer Biology (14451)
- Cell Biology (20441)
- Clinical Trials (138)
- Developmental Biology (11014)
- Ecology (16256)
- Epidemiology (2067)
- Evolutionary Biology (20569)
- Genetics (13538)
- Genomics (18851)
- Immunology (13985)
- Microbiology (32634)
- Molecular Biology (13585)
- Neuroscience (71128)
- Paleontology (533)
- Pathology (2228)
- Pharmacology and Toxicology (3788)
- Physiology (5978)
- Plant Biology (12185)
- Synthetic Biology (3410)
- Systems Biology (8265)
- Zoology (1879)