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Abstract 8 

Spectral slope and neural complexity are affected in many neurophysiological disorders such as ADHD, 9 

autism or epilepsy and are modulated by sleep, anesthesia, and aging. Yet, these two parameters are 10 

rarely studied in relation to each other. Here, we evaluated the effects of sleep stage and task demands 11 

on spectral slope and neural complexity within a narrow- (30 – 45Hz) and broadband (3 – 45Hz) 12 

frequency range in 28 healthy male adults (21.54 ± 1.90 years) over three consecutive recordings with 13 

a set of tasks (resting, attention and memory). We show that the slope steepens, and complexity 14 

decreases from wakefulness to N3. Importantly, slope and complexity are not only modulated by sleep 15 

but also differ between tasks, with flatter slopes and higher complexity being associated with more 16 

demanding tasks. While the slope and complexity are strongly correlated within 3 – 45Hz, we observe 17 

a functional dissociation in the 30 – 45Hz range. Critically, only the narrowband slope is steepest during 18 

REM sleep and associated with better task performance in a Go/Nogo task. Our results demonstrate 19 

that both markers are powerful indices of sleep depth, task demand and cognitive performance. 20 

However, depending on the frequency range, they provide distinct information about the underlying brain 21 

state.  22 

Introduction  23 

To date, neural oscillations are still the most prominent electrophysiological signature of human 24 

brain activity. For instance, wakeful resting is typically characterized by pronounced alpha-band activity 25 

(8 – 12Hz), which is suppressed in active task engagement (Kirstein, 2007; Klimesch et al., 1993; 26 

Klimesch, 1999). During sleep, different stages are best described by characteristic oscillatory events 27 

like sleep spindles and slow oscillations (Davis et al., 1938; Richard et al., 2012; Terzano et al., 2002). 28 

However, recent evidence suggests that irregular and aperiodic brain activity by means of neural 29 

complexity (Lempel & Ziv, 1976 and Welch, 1984) and the spectral exponent ß (i.e., the magnitude of 30 

decay in power with increasing frequency; He, 2014), also carries meaningful information about different 31 

brain states. Specifically, the spectral exponent has been discussed as a marker of the brain’s excitation 32 

and inhibition (E/I) balance (Gao et al., 2017), which is impaired in a variety of clinical conditions such 33 

as the attention deficit hyperactivity disorder (ADHD, Karalunas et al., 2022; Robertson et al., 2019), 34 

autism (Gao & Penzes, 2015; Rubenstein & Merzenich, 2003) and epilepsy (Symonds, 1959; Wong, 35 

2010). In addition, epilepsy has further been associated with alterations in neural complexity (Aarabi & 36 

He, 2012; Zhu et al., 2017). 37 
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Conceptually, the spectral exponent and neural complexity are regarded as two distinct 38 

measures as they are derived by different analytical approaches from the underlying electrophysiological 39 

signal. Neural complexity computed as Lempel-Ziv-Welch complexity (Welch, 1984) expresses the 40 

regularity and compressibility of a signal in time-domain (Lau et al., 2022) and is thought to be still 41 

strongly influenced by oscillatory activity (González et al., 2022; Tosun et al., 2019). In contrast, the 42 

spectral exponent reflects the absolute value of the slope (i.e., steepness) of a signal’s power spectrum 43 

in frequency-domain, which is thought to be mainly aperiodic (Donoghue et al., 2020). In the following, 44 

we always use and refer to the spectral slope instead of the spectral exponent (which would be the 45 

absolute value of the slope) in order to avoid any ambiguity due to different terms that are often used to 46 

describe the same parameter (e.g., 1/f signal and scale free or aperiodic activity).  47 

Despite the apparent differences between the spectral slope and neural complexity, the 48 

literature suggests that both can capture changes in brain states in a surprisingly similar fashion. 49 

Regarding consciousness and sleep, multiple studies showed that the spectral slope steepens (i.e., 50 

becomes more negative) during anesthesia compared to wakefulness (Colombo et al., 2019; Gao et al., 51 

2017; Lendner et al., 2020; Waschke et al., 2021), while others showed the same pattern for neural 52 

complexity, which also decreases from wakefulness to anesthetized states (Ferenets et al., 2007; Zhang 53 

et al., 2001). This mirrors findings of the transition from wakefulness to sleep, where spectral slope 54 

(Lendner et al., 2020; Ma et al., 2018; Miskovic et al., 2019; Pereda et al., 1998) and neural complexity 55 

(Andrillon et al., 2016; Schartner et al., 2017) both decrease with increasing sleep depth (i.e., from 56 

wakefulness to N3 sleep). Besides changes in consciousness, recent evidence from Waschke et al. 57 

(2021) further suggests that the spectral slope can even track the level of attention, whereby higher 58 

levels of attention and quicker response times are indexed by flatter slopes. This is in line with findings 59 

from other studies, which showed that the slope is indicative of cognitive processing speed (Ouyang et 60 

al., 2020; Pathania et al., 2022) and modulated by cognitive decline in ageing (Dave et al., 2018; Voytek 61 

et al., 2015; Voytek & Knight, 2015). Interestingly, Mediano et al. (2020) recently showed that higher 62 

neural complexity values also relate to faster reaction times on a trial-by-trial basis, thus likewise serving 63 

as a proxy of attention or processing speed. 64 

With respect to the influence of different frequency contents on the estimation of the spectral 65 

slope and neural complexity, no optimal frequency settings are established yet for any of the two 66 

parameters. The heterogeneity of frequency content on which the calculations of both measures are 67 

based might be responsible for some disparate results in the current literature, thus further hampering 68 

our understanding of the contribution of aperiodic brain activity to healthy brain functioning. For instance, 69 

González et al. (2022) suggest that particularly for neural complexity, lower frequencies (≤ 12Hz) are 70 

more informative than higher frequencies when differentiating between sleep and wakefulness. For the 71 

estimation of the spectral slope, researchers have argued either in favor of broadband (Karalunas et al., 72 

2022; Podvalny et al., 2015; Waschke et al., 2021) or narrowband (Gao et al., 2017; Lendner et al., 73 

2020) frequency ranges. While broadband ranges encompass more of the total signal power and result 74 

in better overall slope-fits (Donoghue et al., 2020; Gerster et al., 2022), narrowband ranges are less 75 

affected by low-frequency oscillatory activity and are therefore reflecting mostly pure aperiodic activity 76 

(Gao et al., 2017; Lendner et al., 2020).  77 
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Taken together, the slope and complexity research findings suggest a functional overlap of 78 

neural complexity and spectral slope in tracking different brain states. However, to date a direct 79 

comparison of these two measures across different brain states during sleep and wakefulness is still 80 

missing. Thus, the relationship between slope and complexity across different brain states still remains 81 

unclear as it has only been compared between rested wakefulness and anesthesia so far (Medel et al., 82 

2020). Additionally, little is known about the sensitivity of the spectral slope and neural complexity to 83 

changes in brain activity during wakefulness in general. As potential markers of arousal and attention, 84 

the two parameters might likely be so affected by varying levels of task demands, which require different 85 

amounts of cognitive resources. Finally, it is unclear how the two measures are affected by selecting 86 

different frequency contents for their calculation. 87 

Here, we leverage an expansive, within-subject design with multiple sleep and wake recordings 88 

to investigate (1) whether the spectral slope and neural complexity are modulated by different brain 89 

states during sleep and wakefulness and (2) to what extent they are related to each other as well as 90 

their functional significance for cognition. Using multiple recording sessions per subject, we try to 91 

overcome a limitation of most previous research that only relies on single session recordings, thus, 92 

limiting insights into the robustness of the observed effects. First, we assess the performance of the 93 

spectral slope and neural complexity in delineating sleep from wakefulness. Second, we investigate the 94 

influence of task demands on both measures by increasing task difficulty form simple resting sessions 95 

to an auditory attention (Go/Nogo) and a declarative memory task. Third, we analyze the relationship 96 

between the spectral slope and neural complexity across brain states and tasks using either narrow- or 97 

broadband frequency ranges for estimation. Finally, we probe whether the two parameters track 98 

behavioral performance in the Go/Nogo and declarative memory tasks. 99 

Results 100 

We utilized the data from a recently published study (Höhn et al., 2021; Schmid et al., 2021) 101 

that investigated the effects of different light conditions on alertness, sleep and memory consolidation. 102 

The subjects underwent the same experimental protocol on three different days under highly controlled 103 

and standardized lighting conditions. On three consecutive experimental nights, multiple tasks were 104 

conducted before and after sleep, including two resting sessions with either eyes closed or open, an 105 

auditory attention task (Go/Nogo) and a declarative memory task (cf., Figure 1A). We calculated spectral 106 

slopes and neural complexity (using Lempel-Ziv complexity) for all sleep stages and tasks in a narrow- 107 

(30 – 45Hz) and broadband (3 – 45Hz) frequency range (cf., Figure 1B and C).  108 
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 109 
Figure 1. (A): Overview of the experimental protocol. EEG was recorded throughout all tasks and during sleep (with 110 

full-night polysomnography) on the experimental days 7, 10 and 13. The tasks, which are highlighted by a dashed, 111 

dark-green rectangle were primarily used to analyze the effects of task demand. The adaptation session only served 112 

familiarization purposes and was not considered in any of the analyses. Results from the entrance examination 113 

questionnaires are presented in Supplementary file – Table 1. (B): Example of the spectral slope estimation during 114 

N1 sleep. For illustration purposes, data is shown for the electrode Pz averaged over all subjects and sleep 115 

recordings. The spectral slope was fitted within 3 – 45Hz (broadband, dashed green line) and 30 – 45Hz 116 

(narrowband, dashed red line). (C): Schematic overview of the neural complexity calculation based on a random 4s 117 

epoch from electrode Pz of a subject during resting with closed eyes. First, the raw signal, filtered within the broad- 118 

or narrowband frequency range (in this case within the 3 – 45Hz broadband range), is Hilbert transformed. Second, 119 

the resulting data is binarized around its median amplitude and stored as a vector of zeros and ones. Lastly, the 120 

Lempel-Ziv-Welch algorithm (Welch, 1984) is applied on this binary sequence in order to obtain a neural complexity 121 

value, which is driven by the number of unique repetitions of ones and zeros. 122 

Spectral slope and neural complexity delineate brain states during sleep 123 

First, we strived for replicating previous findings, which showed that sleep stages could be 124 

differentiated solely based on the spectral slope and neural complexity. The effect of sleep stage was 125 

assessed for the spectral slope and neural complexity in each frequency range (30 – 45Hz and 3 – 126 

45Hz) with semi-parametric Wald-Type Statistics (WTS; Friedrich et al., 2019) averaged over all 127 

electrodes while considering the three repeated measurements. 128 

The narrowband (30 – 45Hz) spectral slope model (WTS (4) = 133.57, p < .001) and the neural 129 

complexity model (WTS (4) = 14.11, p = .030) both indicated significant modulations by sleep stage. In 130 

line with previous research, the narrowband slope was significantly steeper in all sleep stages compared 131 
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to wakefulness with the steepest slope during REM sleep. In contrast, the narrowband neural complexity 132 

slightly increased from wake to sleep and showed a diverging pattern in comparison to the spectral 133 

slope (see Figure 2). When the broadband (3 – 45Hz) frequency range was used for estimation, the 134 

effect of sleep stage was much more pronounced in both parameters (spectral slope: WTS (4) = 560.01, 135 

p < .001; neural complexity: WTS (4) = 601.92, p < .001). Both, the broadband slope and complexity 136 

significantly decreased from shallow (N1) to deep NREM sleep (N3). For REM sleep, however, both 137 

markers increased again in remarkably similar ways (see Figure 3), arguably reflecting more wake-like 138 

brain activity in the broadband range.  139 

We found no significant effects of the repeated measurements (all padj. ≥ .166 after correcting 140 

for multiple comparisons), revealing that the effect of sleep stage robustly emerged in all individual 141 

recordings per subject. To evaluate the topographical distribution of the spectral slope and neural 142 

complexity, we additionally ran a multivariate pattern analysis (MVPA) with multi-class linear 143 

discriminant analyses (LDA). With this MVPA, we quantified how well the sleep stages could be decoded 144 

by taking the topographical distribution of the slope and complexity values into account. In both 145 

frequency ranges and for both parameters, classification accuracies were always significantly above 146 

chance level (20%, p < .001) and in general higher for the broadband (3 – 45Hz) than for the narrowband 147 

(30 – 45Hz) frequency range (WTS (1) = 643.36, p < .001). For both frequency ranges, the spectral 148 

slope was more informative about the underlying brain state (i.e., yielded higher classification 149 

accuracies) than the neural complexity (WTS (1) = 123.88, p < .001), especially in the narrowband range 150 

(spectral slope: 31.83%, neural complexity: 22.67%; see Figure 3 – Figure Supplement 1). 151 
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 152 

Figure 2. Spectral slope (green, A) and neural complexity (purple, B) from 30 – 45Hz across sleep, averaged over 153 

all lab-sessions per subject. Center figures show the data averaged over all electrodes and topographical maps are 154 

provided below (color-coding refers to z-values of slope or complexity computed from the grand average across all 155 

sleep stages). In (A), the power spectra in log-log space are provided for each sleep stage to illustrate the 156 

narrowband slope changes across different sleep stages. Classification accuracies are shown on the right-hand 157 

side. A: The spectral slope decreases from wakefulness across all sleep stages to REM sleep with a small 158 

temporary increase during N3 sleep. B: Neural complexity increases from shallow N1 to light N2 sleep and is in 159 

general less modulated by sleep stages than the spectral slope. ***: p < .001, **: p ≤ .010, *: p ≤ .050, n.s.: p > .050; 160 

all p-values are adjusted for multiple comparisons; error-bars represent 95% confidence intervals (N = 27). 161 

 162 
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 163 

Figure 3. Spectral slope (green, A) and neural complexity (purple, B) from 3 – 45Hz across sleep, averaged over 164 

all lab-sessions per subject. Center figures show the data averaged over all electrodes and topographical maps are 165 

provided below (color-coding refers to z-values of slope or complexity computed from the grand average across all 166 

sleep stages). In (A), the log-log power spectra for each sleep stage are provided to illustrate the broadband slope 167 

differences across sleep stages. Classification accuracies are shown on the right-hand side. (A): Spectral slope 168 

steepens from wakefulness to N3 sleep but flattens to some extent during REM sleep. (B): Neural complexity shows 169 

the same pattern as the spectral slope and likewise decreases from wakefulness to N3 with a subsequent increase 170 

in REM sleep. ***: p < .001, **: p ≤ .010, *: p ≤ .050, n.s.: p > .050; p-values are adjusted for multiple comparisons; 171 

error-bars represent 95% confidence intervals (N = 27). 172 

Figure 3: Supplement 1. Direct comparison of the classification accuracies across sleep between neural 173 

complexity and spectral slope for the narrow- (30 – 45Hz) and broadband (3 – 45Hz) frequency ranges. 174 

 175 
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Spectral slope and neural complexity vary as a function of task demand 176 

Next, we investigated whether spectral slope and neural complexity track varying levels of task 177 

demand. We calculated both markers from resting sessions with eyes closed (REC) and eyes open 178 

(REO), an auditory Go/Nogo task (GNG), an encoding session (ENC) from a declarative memory task 179 

as well as its according retrieval session (RET). For these analyses, we focused on the task data from 180 

the evening recordings (see dashed dark-green rectangle in Figure 1A). Theoretically, task demands 181 

should have been comparable between resting sessions with closed and open eyes, whereas the 182 

Go/Nogo and encoding tasks were considered to be more demanding since they required active task 183 

participation and higher cognitive control. The retrieval task was deemed to be the most challenging as 184 

it was necessary to make an additional active memory recall as quickly as possible. 185 

In the narrowband frequency range (30 – 45Hz), we observed a significant flattening (i.e., values 186 

closer to zero) of the slope (WTS (4) = 56.64, p < .001) but a decrease in complexity (WTS (4) = 199.55, 187 

p < .001) with increasing task demands (see Figure 4). The flattening of the narrowband spectral slope 188 

was most pronounced when contrasting resting states with the Go/Nogo (REC vs. GNG: WTS (1) = 189 

21.05, padj. < .001; REO vs. GNG: WTS (1) = 16.53, padj. = .001) and encoding (REC vs. ENC: WTS (1) 190 

= 20.73, padj. < .001; REO vs. ENC: WTS (1) = 15.56, padj. = .001) sessions. However, further flattening 191 

of the slope was observable during the retrieval task (GNG vs. RET: WTS (1) = 6.44, padj. = .021; ENC 192 

vs. RET: WTS (1) = 13.66, padj. = .001). The narrowband neural complexity did not differ between the 193 

resting and Go/Nogo sessions (all padj. > .110) but decreased from the Go/Nogo to the encoding session 194 

(GNG vs. ENC: WTS (1) = 16.64, padj. < .001) and was lowest during retrieval (GNG vs. RET: WTS (1) 195 

= 98.74, padj. < .001, ENC vs. RET: WTS (1) = 31.11, padj. < .001). 196 

When investigating the broadband frequency range (3 – 45Hz), we found that the diverging 197 

pattern between spectral slope and neural complexity disappeared and both parameters were 198 

increasing (i.e., higher complexity values and flatter slopes indexed by less negative values) across 199 

tasks (Slope: WTS (4) = 101.04, p < .001; Complexity: WTS (4) = 80.28, p < .001; see Figure 5). In the 200 

broadband frequency range, neural complexity also differed between the two resting sessions (eyes 201 

closed and eyes open), likely reflecting a difference in alpha power (8 – 12Hz) between the two 202 

conditions, thus supporting a greater influence of oscillations on estimates of neural complexity. Again, 203 

we did not observe any effects of the repeated measurements (all padj. ≥ .252). 204 

During wakefulness, the MVPA results indicated an above chance classification performance 205 

for all tasks (20%, p < .001). Similar to the results during sleep, classification accuracy was higher when 206 

using the broadband instead of the narrowband frequency range (WTS (1) = 397.08, p < .001). The 207 

spectral slope was again more informative in the narrowband range (Slope: 35.03%, Complexity: 208 

25.98%, WTS (1) = 71.93, p < .001) while the complexity yielded better results in the broadband range 209 

(Slope: 48.10%, Complexity: 52.69%, WTS (1) = 13.61, p = .002; see Figure 5 – Figure Supplement 1). 210 
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 211 

Figure 4. Spectral slope (green, A) and neural complexity (purple, B) from 30 – 45Hz across tasks, averaged over 212 

all lab-sessions per subject. Center figures show the data averaged over all channels and topographical maps are 213 

provided below (color-coding refers to z-values of slope or complexity computed from the grand average across all 214 

tasks). In (A), the log-log power spectra for each task are provided to illustrate narrowband slope differences across 215 

tasks. Classification accuracies are shown on the right-hand side. (A): The slope flattens with increasing task 216 

demands but does not differ between the resting or the Go/Nogo and encoding sessions. (B): Neural complexity 217 

decreases across tasks and is minimal during the retrieval session. ***: p < .001, **: p ≤ .010, *: p ≤ .050, n.s.: p > 218 

.050; p-values adjusted for multiple comparisons; error-bars show 95% confidence intervals (N = 28). 219 

Figure 4: Supplement 1. Slope and complexity from 30 – 45Hz across tasks averaged over all timepoints. 220 
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 221 
Figure 5. Spectral slope (green, A) and neural complexity (purple, B) from 3 – 45Hz across tasks, averaged over 222 

all lab-sessions per subject. Center figures show the data over all channels and topographical maps are provided 223 

below (color-coding refers to z-values of slope or complexity computed from the grand average over all tasks). In 224 

(A), the log-log power spectra for each sleep stage are provided to illustrate broadband slope differences across 225 

tasks. Classification accuracies are shown on the right-hand side. (A): The slope flattens from the resting to the 226 

Go/Nogo sessions and is flattest during retrieval. (B): Neural complexity increases already from resting with closed 227 

to open eyes and is further elevated in all active tasks, peaking during retrieval. ***: p < .001, **: p ≤ .010, *: p ≤ 228 

.050, n.s.: p > .050; p-values adjusted for multiple comparisons; error-bars show 95% confidence intervals (N = 28). 229 

Figure 5: Supplement 1. Comparison of the classification accuracies across tasks between neural complexity and 230 

spectral slope for the narrow- (30 – 45Hz) and broadband (3 – 45Hz) frequency ranges. 231 

Figure 5: Supplement 2. Slope and complexity from 3 – 45Hz across tasks averaged over all timepoints. 232 

Figure 5: Supplement 3. Spectral slope and neural complexity between tasks after correcting for the resting eyes 233 

open condition as baseline. 234 
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To control whether the results were confounded by the task order and thus solely reflect an 235 

increase in exhaustion or decrease in motivation, we repeated the analyses with the task data averaged 236 

over all available time points (cf., Figure 1A for all time points at which each task was conducted). These 237 

control analyses confirmed the same patterns as in the original analyses with a very similar flattening of 238 

the broad- and narrowband spectral slopes across tasks and an increase in broadband but a decrease 239 

in narrowband complexity with increasing task demands (see Figure 4 – Figure Supplement 1 and Figure 240 

5 – Figure Supplement 2). 241 

An overview of the pairwise classification accuracies for all sleep stage and task pairings is 242 

presented in Supplementary file – Tables 2 and 3. All tasks and sleep stages could be differentiated 243 

above chance-level (50% in this context). As described above, the classification accuracy was in general 244 

higher for the broadband than the narrowband frequency range. However, in the narrowband frequency 245 

range, the accuracies for the spectral slope were consistently higher than for neural complexity. 246 

Collectively, the results so far suggest that spectral slope and neural complexity are both 247 

sensitive markers, which can track brain state changes during sleep and wakefulness due to changes 248 

in sleep depth or because of varying levels of task demand and cognitive load. However, while the two 249 

parameters are modulated in remarkably similar ways when using a broadband frequency range (3 – 250 

45Hz), they express diverging patterns when a restricted narrowband frequency range (30 – 45Hz) is 251 

used. Therefore, we next assessed the relationship between spectral slope and neural complexity. 252 

Relationship between the spectral slope and neural complexity 253 

First of all, we assessed the robustness of the spectral slope and neural complexity estimations 254 

over the different recordings per subject. We correlated each parameter (in the narrow- and broadband 255 

frequency range) with itself between the different lab-sessions for each sleep stage and task. Between 256 

all lab-sessions, the parameters were strongly positively correlated, indicating a substantial overlap of 257 

information over the different recordings (see Supplementary file - Table 4). To identify the relationship 258 

between the spectral slope and neural complexity for each of the two frequency ranges, we further 259 

computed the correlations between the two parameters. In the broadband frequency range, the slope 260 

and complexity were consistently positively correlated across all sleep stages and tasks (see Figure 6A 261 

and B, right columns). However, this relationship vanished in the narrowband frequency range where 262 

the correlations between the two parameters were inconsistent and ranged from significant negative to 263 

positive ones (see Figure 6A and B, left columns). These results imply that the two parameters do not 264 

share a lot of information in the narrowband range. In contrast, the information is almost entirely 265 

redundant in the broadband frequency range. This fits well to our previous results (cf., Figures 2 – 5) 266 

where only the narrowband slope and complexity were differentially modulated by sleep stage and task 267 

demand.  268 

Taken together, this suggests that the narrowband spectral slope and neural complexity actually 269 

track different features of brain activity that are only explicitly captured when using a restricted frequency 270 

range as for instance 30 – 45Hz. In broader frequency ranges, the dominance of other, especially lower 271 

frequencies might blur these effects, thus making them indistinguishable. 272 
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 273 

Figure 6. Summary of correlations between the spectral slope and neural complexity from 30 – 45Hz and 3 – 45Hz. 274 

The sleep (A) and task (B) data per subject were averaged across all lab-sessions. For task data, only the evening 275 

assessments highlighted by the dashed dark-green rectangle in Figure 1 were considered. Significant correlations 276 

(p ≤ .050 after correcting for false discovery rate) are highlighted with a cross on the topographical maps (color 277 

codes for the size and directionality of the correlation coefficients). The 30 – 45Hz slope and neural complexity 278 

showed no consistent positive or negative relationship across tasks and sleep stages. In contrast, the 3 – 45Hz 279 

slope and neural complexity were consistently positively correlated over all tasks and sleep stages (N = 28). 280 

Figure 6: Supplement 1. Correlation of the slope and complexity with themselves in the narrow- or broadband 281 

frequency range during sleep (A) and wakefulness (B). Only the spectral slope was consistently positively correlated 282 

with itself, whereas the complexity was slightly negatively correlated with itself between the two frequency ranges.  283 

Lastly, we assessed how strongly the spectral slope and neural complexity were correlated with 284 

themselves in the different frequency ranges. The narrow- and broadband slopes were always positively 285 

correlated, whereas the opposite was true for neural complexity (see Figure 6 – Figure Supplement 1). 286 

Thus, flatter narrowband slopes were usually associated with flatter slopes in the broadband range, but 287 

lower narrowband complexity was often even associated with higher broadband complexity. This 288 

suggests that especially the narrowband spectral slope might measure a facet of the underlying brain 289 

activity that is not represented in the narrowband neural complexity. 290 

The spectral slope as an electrophysiological marker of task performance 291 

Having established that spectral slope and neural complexity are not only modulated by sleep 292 

but also differ between tasks in a frequency range specific manner, we next investigated their 293 

relationship with task performance. Thus, we correlated the spectral slope and neural complexity from 294 

the narrow- and broadband frequency ranges during the Go/Nogo task with the according performance 295 
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scores (percentage of correct trials divided by median reaction time) over multiple sessions. Again, this 296 

allowed us to test the robustness of any correlations with behavior. Only flatter slopes in the narrowband 297 

range (30 – 45Hz) were consistently related to better task performance (see Figure 7). Neural 298 

complexity, on the other hand, did not correlate with performance, neither in the narrow- nor in the 299 

broadband (3 – 45Hz) range (see Figure 7 and Figure 7 – Figure Supplement 1). In the broadband 300 

range, the relationship with task performance was still consistently positive for both parameters but did 301 

not reach statistical significance. The fact that this positive relationship was strengthened and actually 302 

turned significant only for the slope in the narrowband range again suggests a distinct role of the 303 

narrowband slope, which might also be interpreted as a specific marker of task performance. 304 

 305 

Figure 7. Relationship between Go/Nogo task performance and spectral slope (A) or neural complexity (B) within 306 

30 – 45Hz across different assessment times. For the large scatterplots, the data was averaged across all lab-307 

sessions (small scatterplots show the relationship in each lab-session). The topoplots depict the strength of the 308 

correlation for each electrode. Electrodes forming a significant cluster are highlighted with asterisks. Those showing 309 

a significant correlation after false discovery rate correction but did not from a significant cluster are marked with a 310 

cross. Only the narrowband spectral slope showed a consistent positive relationship with task performance (N = 311 

26). 312 
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Figure 7: Supplement 1. Results when using the broadband (3 – 45Hz) frequency range. No significant 313 

relationships emerged for the spectral slope and neural complexity, even though the correlation was consistently 314 

positive for both parameters. 315 

Next, we determined whether the narrowband spectral slope can even be used to track memory 316 

performance. Therefore, we correlated the spectral slope and neural complexity during the retrieval 317 

sessions of a declarative memory task with the recall performance scores (i.e., percentage of correctly 318 

recalled word pairs). Even though the overall pattern was similar to the Go/Nogo task, most correlation 319 

coefficients only showed a trend towards statistical significance (see Figure 8). Despite the lack of 320 

statistical significance on most electrodes, the narrowband spectral slope was again consistently 321 

positively correlated with recall performance. This indicates that flatter slopes, especially in the 322 

narrowband frequency range, are not only related to better attentional performance but might also 323 

benefit declarative memory. In contrast, the narrowband complexity was not positively correlated with 324 

memory performance and even expressed a negative relationship on some electrodes. Since we 325 

observed a positive relationship between overnight decreases in resting state slopes and memory 326 

performance in another study (Lendner et al., 2022), we further assessed whether the overnight change 327 

in slope during the retrieval task is also correlated with sleep-dependent memory consolidation. 328 

However, we did not obtain a significant relationship, indicating that while flatter slopes during the 329 

retrieval were associated with slightly better memory performance in the according session, overnight 330 

changes in the slope or complexity were not related to performance changes in our study. 331 

 332 

Figure 8. Relationship of declarative memory recall performance and spectral slope (A) or neural complexity (B) 333 

within 30 – 45Hz. Results are shown for the immediate recall during the evening and the delayed recall in the next 334 
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morning as well as for the overnight change. For the large scatterplots, the data was averaged across all lab-335 

sessions (small scatterplots show the relationship for each session). The topoplots represent the strength of the 336 

correlations on each electrode and color codes for the size and directionality of the correlation coefficients. Even 337 

though the spectral slope was consistently positively correlated with recall performance, no electrodes formed a 338 

significant cluster. Significant single electrodes that survived false discovery rate correction are highlighted with a 339 

cross (N = 28). 340 

Figure 8: Supplement 1. Results when using the broadband 3 – 45Hz frequency range. No relationship observable 341 

between recall performance and the slope or complexity. 342 

In the broadband frequency range, both parameters did not show a consistent relationship with 343 

recall performance (see Figure 8 – Figure Supplement 1). Finally, we analyzed whether the similar 344 

results between the Go/Nogo and declarative memory task performance could be traced back to better 345 

overall attention and higher task engagement but there was no significant relationship between the 346 

performance scores from the two tasks (evening: rho = 0.10, p = .611; morning: rho = 0.06, p = .766). 347 

Thus, subjects that performed well in the Go/Nogo task did not necessarily achieve a high recall 348 

performance score in the declarative memory task. 349 

Discussion 350 

In this study comprising three experimental recordings with multiple measurements per subject, 351 

we demonstrated that the spectral slope and neural complexity both reliably delineate sleep stages and 352 

are modulated by task demand during wakefulness. Critically, we provided evidence that the correlation 353 

between spectral slope and neural complexity strongly depends on the frequency content, which alters 354 

their modulation across task demands and sleep stages. The narrowband (30 – 45Hz) spectral slope 355 

was best suited to differentiate REM sleep from wakefulness, even though the broadband (3 – 45Hz) 356 

slope and neural complexity were more strongly modulated by sleep stages in general. During 357 

wakefulness, increasing task demands are associated with flatter slopes in the narrow- and broadband 358 

range, but only with higher complexity in the broadband range. Critically, solely the narrowband spectral 359 

slope tracked task performance in an auditory attention task (Go/Nogo) as well as in a declarative 360 

memory task. 361 

Sleep stage specific alterations of spectral slope and neural complexity 362 

Our findings corroborate previous research which demonstrated that the spectral slope and 363 

neural complexity are sensitive markers of sleep depth (Abásolo et al., 2015; Bódizs et al., 2021; 364 

Lendner et al., 2020; Pascovich et al., 2022; Schartner et al., 2017; Tagliazucchi et al., 2013). Building 365 

upon these findings, we leveraged repeated EEG recordings per subject and confirmed that the two 366 

parameters can robustly differentiate all sleep stages from wakefulness. Overall, sleep stages could be 367 

better delineated when a broadband frequency range (3 – 45Hz) was used for calculation of the spectral 368 

slope and neural complexity. This is probably due to the fact that the broadband range encompasses 369 

the frequencies typically used for traditional sleep scoring, such as slow wave activity (0.5 – 4Hz) and 370 

sleep spindles (11 – 15Hz; Dijk, 1995), thereby increasing the sleep stage specific information in the 371 

underlying signal. However, only the spectral slope within the narrowband frequency range (30 – 45Hz) 372 

clearly distinguished REM sleep from all other sleep stages, which is in line with recent findings by 373 
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Lendner et al. (2020). This behavior of the narrowband spectral slope contradicted the overall 374 

modulation of slope and complexity in the broadband range, where both parameters showed a relative, 375 

more wake-like, increase during REM sleep. Since REM sleep (sometimes called ‘paradoxical sleep’; 376 

Peigneux et al., 2001 or Siegel, 2011) is characterized by wake-like, but non-oscillatory brain activity 377 

(Blumberg et al., 2020; Peever & Fuller, 2017), these disparate results between the two frequency 378 

ranges suggest that the narrowband slope mainly measures non-oscillatory, aperiodic brain activity. The 379 

relative increase in broadband complexity during REM sleep has been attributed to higher levels of 380 

conscious content that accompany vivid dreaming and thus require more complex brain activity than 381 

deeper, mostly dreamless sleep stages (Lau et al., 2022; Mateos et al., 2018). 382 

Recent modeling work has also linked especially the narrowband spectral slope with the 383 

excitation to inhibition (E/I) balance in the brain (Gao et al., 2017). Within this framework, steeper slopes 384 

during REM sleep potentially reflect stronger inhibitory brain activity. This might allow the brain to 385 

decouple from its environment and, by maintaining muscle atonia, to enable the consolidation of 386 

emotional memories and the experience of vivid dreams (Aime et al., 2022) without the danger of acting 387 

them out. The narrowband (30 – 45Hz) complexity, however, expressed a diverging pattern compared 388 

to the narrowband slope and stayed almost constant across all sleep stages with even a slight increase 389 

from N1 to N2 sleep. Even though our study is the first to directly compare spectral slope and neural 390 

complexity during sleep, the congruency of both measures within the broadband frequency range might 391 

not be surprising, since previous studies investigating the parameters individually have shown their 392 

decrease across sleep (Aamodt et al., 2021; Lendner et al., 2020; Miskovic et al., 2019; Pereda et al., 393 

1998; Schartner et al., 2017). Although we were able to classify sleep stages consistently above chance 394 

level with both parameters, it should be noted that our classifier was trained and tested only on our data. 395 

Furthermore, we did not compare the performance of the spectral slope and neural complexity to other 396 

potentially powerful biomarkers. Therefore, it would be interesting to see how accurate sleep stages can 397 

be scored exclusively by means of the slope or complexity and how the two markers perform in 398 

comparison to other indices of sleep depth like heart rate variability and blood pressure (Kuula & 399 

Pesonen, 2021; Mitsukura et al., 2020; Radha et al., 2019; van de Borne et al., 1994) or accelerometric 400 

data from actigraphy (Lüdtke et al., 2021; Sadeh et al., 1989) and multisensor consumer-wearables 401 

(Ameen et al., 2019; Boe et al., 2019; Roberts et al., 2020; Tal et al., 2017). 402 

Spectral slope and neural complexity are modulated by task demands 403 

In addition to our findings during sleep, we demonstrate that the spectral slope and neural 404 

complexity track different levels of task demands. That the slope and complexity are in general also 405 

modulated during wakefulness is in line with other research (Jacob et al., 2021; Mediano et al., 2021; 406 

Sheehan et al., 2018; Waschke et al., 2021), however, to our best knowledge this is the first study 407 

assessing the effect of task demand and the influence of different frequency ranges on the two 408 

parameters. Similar to sleep, we observed a homogenous modulation of the broadband (3 – 45Hz) slope 409 

and complexity, where flatter slopes and higher complexity were associated with an increase in task 410 

demands. This pattern was identical for the narrowband slope but was inverted for the narrowband 411 

complexity, where higher task demands were accompanied by decreasing levels of complexity. In the 412 

E/I balance framework, flatter narrowband slopes are the result of higher excitation in the brain (Chini et 413 
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al., 2022; Gao et al., 2017). Thus, our observed pattern of a flattening of the spectral slope with 414 

increasing task demands seems plausible as more difficult tasks require more cognitive resources and 415 

therefore lead to stronger excitatory brain activity (Harris & Thiele, 2011; He, 2011; Kanashiro et al., 416 

2017). Unlike Waschke et al. (2021), who reported a stronger occipital flattening of the slope in a visual 417 

compared to an auditory task, we did not observe clear topographical differences between modalities, 418 

even though the attentional Go/Nogo task was entirely auditory except for a fixation-cross whereas the 419 

declarative memory task mainly relied on visual content. However, this lack of topographical 420 

distinctiveness might be due to a partial overlap between involved brain areas since both, auditory 421 

discrimination and learning involve frontotemporal brain regions (Ackerman, 1992; Halsband, 1998).  422 

Differential contributions of narrow- and broadband frequency ranges 423 

Based on the results from the broadband frequency range, it is tempting to assume that the 424 

spectral slope and neural complexity are indexing the same or at least very similar features of brain 425 

activity. Indeed, according to Medel et al. (2020), both parameters might actually be driven by the 426 

transition entropy of the underlying cortical system and flatter slopes as well as lower complexity values 427 

could be similarly characteristic of the same cortical states. However, the divergence between the 428 

narrow- and broadband slope and complexity during sleep and wakefulness clearly demonstrates that 429 

the two parameters cannot be used interchangeable. Instead, especially in a restricted frequency range, 430 

they track different facets of the underlying brain activity. Here, we revealed that this selected frequency 431 

range dramatically influences the information that the two parameters provide and therefore also their 432 

interrelation. Using a narrowband frequency range from 30 – 45Hz for estimation decreases the 433 

relationship between the spectral slope and neural complexity. During wakefulness, different 434 

contributions of oscillatory and aperiodic brain activity to the slope and complexity could account for their 435 

diverging patterns in the narrowband range. Although it appears paradoxical that flatter narrowband 436 

slopes, representing an increase in aperiodic activity, should be accompanied by a decrease in neural 437 

complexity, others have also reported this type of counterintuitive behavior of neural complexity. 438 

Mediano et al. (2021) showed that in MEG within 0.5 – 30Hz, active tasks actually exhibited lower 439 

complexity values compared to rested wakefulness. In addition, a recent review from Lau et al. (2022) 440 

discussed several studies that reported apparently contradicting modulations of neural complexity in 441 

different clinical conditions, where some report lower and others higher levels of complexity. Thus, the 442 

question whether higher neural complexity can always be clearly interpreted as more complex or 443 

irregular brain activity remains unclear. So far, the best explanation for the contradictory findings in the 444 

neural complexity literature is that higher complexity values can both represent either more complex or 445 

more random systems (La Torre-Luque et al., 2016), which makes it difficult to argue whether higher 446 

complexity always represents a healthier neurophysiological brain state. Interestingly, other studies also 447 

showed a strong relationship between different complexity or entropy measures and the spectral slope 448 

(Colombo et al., 2019; Miskovic et al., 2019; Waschke et al., 2017), thus, it would be interesting to 449 

investigate in the future what drives their shared information and under which circumstances (i.e., 450 

frequency ranges) this relationship vanishes. 451 

The narrowband spectral slope as a unique marker of task performance 452 
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When relating the spectral slope and neural complexity to behavioral outcomes, we observed 453 

that only the narrowband slope within 30 – 45Hz was correlated with attentional task performance in an 454 

auditory Go/Nogo task across all recordings per subject. Thus, it appears that the narrowband slope 455 

serves as a particularly sensitive marker for task-dependent fluctuations in brain states associated with 456 

behavioral performance. This association between adaptively flatter slopes and better task performance 457 

might even translate to more general cognitive tasks that do not solely rely on attention since we also 458 

observed a consistent positive but weaker relationship with memory performance. In larger scale studies 459 

that rely on databases or in multicenter studies, which commonly have higher statistical power, however, 460 

the broadband slope and complexity were also significantly correlated with task performance. For 461 

instance, Mediano et al. (2021) and Waschke et al. (2021) found an association between task-specific 462 

attention levels and spectral slope or neural complexity in a broader frequency range. As in our study 463 

the correlation between the broadband slope and complexity with the Go/Nogo task performance was 464 

also consistently positive but too weak to reach statistical significance, these findings do not necessarily 465 

contradict our claim that the narrowband spectral slope is even more sensitive to adaptive task-466 

dependent changes in brain state. In contrast, this shows that lower statistical power might suffice for 467 

the narrowband slope to index robust relationships with behavioral performance. 468 

Limitations 469 

It should be noted that the cognitive tasks were not specifically designed for the analyses of 470 

varying levels of task demand as the data presented here was obtained from a study that was originally 471 

designed for the investigation of short-wavelength light effects on sleep, attention and memory 472 

performance (cf., Höhn et al., 2021 and Schmid et al., 2021). In the future, it might be promising to 473 

contrast tasks that exclusively rely on different cognitive resources and sensory modalities (e.g., auditory 474 

vs. visual) to assess how spectral slope and neural complexity adapt topographically to different 475 

modalities. Even though we used only 11 scalp electrodes, we still robustly detected the effects of sleep 476 

stage and task demand, providing evidence for the power of the spectral slope and neural complexity 477 

as indices of different brain states. Nevertheless, research with high-density or intracranial EEG setups 478 

might further contribute to the understanding of which topographical areas are most influential in driving 479 

changes in slope or complexity across brain states. Finally, we only recruited healthy male adults in a 480 

restricted age range (18 – 25 years) in order to avoid potential sex differences and hormonal effects 481 

(Kozhemiako et al., 2021; Plamberger et al., 2021). Therefore, it is unclear to what extent our results 482 

generalize to other populations. While sex does not necessarily affect the spectral slope or neural 483 

complexity when controlling for overall signal amplitude (Bódizs et al., 2021; Tosun et al., 2019), age 484 

does seem to play an important role in terms of developmental changes in the spectral slope and 485 

decorrelation of brain activity, which begins during early childhood (Chini et al., 2022; Schaworonkow & 486 

Voytek, 2021) and lasts until late adulthood (Dave et al., 2018). While this task-independent flattening 487 

of the slope in older subjects has been associated with decline in cognitive functioning (Voytek et al., 488 

2015), our results suggest that task-dependent increases in excitation (expressed by flatter slopes) 489 

might be beneficial for behavioral performance. Thus, an adaptive task-specific modulation of the slope 490 

in healthy individuals appears to be associated with better task performance and might index cognitive 491 

adaptability. 492 
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Conclusion 493 

Taken together, our results demonstrate that the EEG spectral slope and neural complexity are 494 

powerful indices of different brain states during sleep and wakefulness. We provide robust evidence 495 

from multiple recordings of three within-subjects measurements, showing that sleep stages and task 496 

demands are reliably indexed by both, the spectral slope and neural complexity. Critically, we show that 497 

the selected frequency range has a strong impact on the interpretability and functional relevance of the 498 

two parameters. When trying to distinguish different brain states, the broadband spectral slope and 499 

neural complexity are more sensitive, however, only the narrowband spectral slope within 30 – 45Hz 500 

turned out to be a powerful index of behavioral performance and best suited to differentiate REM sleep 501 

from wakefulness and all other sleep stages. 502 

Materials and methods 503 

Key resources table 

Reagent type 

(species) or resource 

 

Designation 

Source or 

reference 

 

Identifiers 

Additional 

information 

Software,  

algorithm 

Brain Vision 

Analyzer 2.2 

Brain Products 

GmbH 

RRID: 

SCR_002356 

https://www.brainproduct

s.com 

Software, 

algorithm 

Adobe 

Illustrator CS6 

Adobe Inc. RRID: 

SCR_010279 

 

Software, 

algorithm 

Fieldtrip 

(obob_ownft) 

Oostenveld et 

al., 2011 

RRID: 

SCR_004849 

https://gitlab.com/obob/o

bob_ownft/ 

Software, 

algorithm 

FOOOF 

(specparam) 

Donoghue et 

al., 2020 

 https://fooof-

tools.github.io/fooof/ 

Software, 

algorithm 

ggplot-2 Wickham, 

2016 

RRID: 

SCR_014601 

https://cran.r-

project.org/web/package

s/ggplot2/index.html 

Software, 

algorithm 

Lempel-Ziv 

complexity 

Comsa, 2019  https://github.com/iulia-

m-

comsa/EEG/tree/master/

Lempel-

Ziv%20complexity 

Software, 

algorithm 

MANOVA.RM Friedrich et 

al., 2019 

 https://cran.r-

project.org/web/package

s/MANOVA.RM/index.ht

ml 

Software, 

algorithm 

MATLAB 

2018b 

MathWorks 

Inc. 

RRID: 

SCR_001622 

 

Software, 

algorithm 

MVPA-light 

toolbox 

Treder, 2020 RRID: 

SCR_022173 

https://github.com/treder/

MVPA-Light 
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Software, 

algorithm 

Psychtoolbox 

PTB-3 

Kleiner et al., 

2007 

RRID: 

SCR_002881 

http://psychtoolbox.org/ 

Software, 

algorithm 

RStudio 

2021.09 

RStudio Team RRID: 

SCR_000432 

 

Software, 

algorithm  

Somnolyzer 

24 x 7 

Koninklijke 

Philips N.V. 

 https://www.philips.co.in 

 504 

Participants and inclusion criteria 505 

We recorded data from 28 male participants (18 – 25 years; mean age 21.54 ± 1.90 years). 506 

Final sample sizes varied for each analysis between N = 26 – 28 as some participants had missing data 507 

for specific tasks or timepoints (the exact sample size for each analysis is provided in the corresponding 508 

figure captions). All participants were free of medication and did not suffer from a mental or physiological 509 

illness or from sleep problems. They adhered to a regular sleep-wake rhythm (i.e., regular bedtimes with 510 

about 8 hours of sleep per night) and refrained from drug abuse and above-average caffeine 511 

consumption (more than three cups of coffee per day) during participation. For screening purposes, all 512 

subjects filled in an entrance questionnaire in which we checked for sleep quality, mood, anxiety, 513 

perceived stress level and chronotype (see Supplementary file – Table 1). Written informed consent was 514 

obtained from every participant and all subjects were remunerated with either 100€ and 16 hours course 515 

credit or 50€ and 24 hours course credit. The study was approved by the local ethics committee of the 516 

University of Salzburg (EK-GZ: 16/2014) and conducted in agreement with the Declaration of Helsinki.  517 

Experimental protocol 518 

Study design 519 

Each subject participated over a time span of 14 days, with an entrance examination marking 520 

day one (an outline of the study protocol is presented in Figure 1). From that day on, participants wore 521 

an actigraph (MotionWatch 8; CamNtech Ltd, Cambridge, England) and filled in daily online sleep 522 

protocols (LimeSurvey GmbH, Hamburg, Germany), which we used to check for compliance with a 523 

regular sleep-wake rhythm. 524 

The first recording was scheduled on day four and was implemented only for adaptation 525 

purposes in order to avoid potential first night effects (Browman & Cartwright, 1980; Curcio et al., 2004). 526 

After placement of all EEG, ECG, EMG and EOG electrodes, the participants were familiarized with the 527 

resting and Go/Nogo tasks. Bedtime was scheduled for approximately 11:00 pm and the participants 528 

were woken up 8 hours after lights out before they left the laboratory at approximately 9:00 am.  529 

The experimental recordings were scheduled on days 7, 10 and 13. Participants arrived at 6:00 pm and 530 

EEG, ECG, EMG and EOG electrodes were mounted. The recordings started with an initial resting 531 

session (3min eyes closed and 3min eyes open) and the Go/Nogo task (10min), which was followed by 532 

the encoding sessions (two times 14min) of a declarative memory task. Before the first cued recall, 533 

another resting and Go/Nogo session were conducted. Afterwards, the participants had a 1.5 hours 534 

break from the tasks, in which they read stories under different light conditions (for details cf., Schmid 535 

et al., 2021). Before going to bed at approximately 11:00 pm, participants completed the last resting and 536 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.09.10.507390doi: bioRxiv preprint 

http://psychtoolbox.org/
https://www.philips.co.in/
https://doi.org/10.1101/2022.09.10.507390


 

21 
 

Go/Nogo session of the day. After awakening, a morning session of resting and the Go/Nogo task as 537 

well as another recall from the declarative memory task were performed. During all wake-recordings, 538 

daylight mimicking room lights (provided by Emilum GmbH, Oberalm, Austria) were dimmed to 4.5 539 

photopic lux and room temperature was adjusted via air conditioning based on participant’s preferences.  540 

Go/Nogo task 541 

To assess objective levels of attention, we implemented an auditory version of the Go/Nogo 542 

paradigm (Donders, 1969) via the Psychophysics Toolbox (PTB-3; Kleiner et al., 2007) in MATLAB 543 

(Release 2018b, The MathWorks Inc., Natick, MA). Participants were asked to react as quickly as 544 

possible with a button press on a response time box (RTBox v5/6; Ohio State University, Columbus, 545 

OH) whenever they heard a ‘Go’ sound and needed to inhibit their reaction when a ‘Nogo’ sound was 546 

played. The task comprised 400 trials with Go sounds being presented in 80% of the trials and Nogo 547 

sounds occurring in the remaining 20% of trials (the order of Go and Nogo sounds was randomized 548 

each time). The two stimuli used for the Go and Nogo sounds were low- (1000Hz) and high-pitched 549 

(1500Hz) tones, which were presented for 50ms with a varying interstimulus interval (1480 – 1880ms). 550 

Whether the low- or high-pitched sound represented the Go-signal was determined by chance at the 551 

beginning of each session. Participants had to react within 500ms for the response to be considered 552 

valid, but responses were recorded until 1000ms post-stimulus with reaction times longer than 500ms 553 

being regarded as attentional lapses. From each session, the performance score was computed by 554 

dividing the percentage of correct trials by the median reaction time of all valid responses (≤ 500ms, no 555 

errors) in milliseconds (Figueiro et al., 2016; Höhn et al., 2021). 556 

Declarative memory task 557 

Participants encoded a set of 80 word pairs on days 7, 10 and 13. To avoid learning effects over 558 

time, a different but similarly difficult set of 80 word pairs was presented on each of the three days. The 559 

order of the sets was randomized across subjects. Each set was presented twice for 14min during 560 

encoding and the data from both encoding sessions was pooled for further analyses. Each word pair 561 

was presented for 1500ms and was followed by a fixation-cross for 8500ms. Participants were instructed 562 

to encode the word pair as vividly as possible during the presentation of the fixation-cross by imagining 563 

a semantic connection between the two words. During the cued recall sessions, only the first word of a 564 

pair was presented, and participants were asked to press a button on the response time box as soon as 565 

they remembered the second word. Whenever a button was pressed, the participant was instructed to 566 

name the missing word and a fixation-cross appeared for 3500ms while the experimenter noted the 567 

answer. When no button was pressed, the fixation-cross appeared automatically after 6500ms. 568 

EEG recording and analyses 569 

All electrophysiological data were recorded with a sampling rate of 500Hz via the BrainVision 570 

Recorder software (Version 2.11, Brain Products GmbH, 2015) using a 32 channel BrainAmp system 571 

(Brain Products GmbH, Munich, Germany). We placed 11 gold-cup electrodes (Grass Technologies, 572 

Astro-Med GmbH, Rodgau, Germany) according to the international 10-20 system on the positions: F3, 573 

Fz, F4, C3, Cz, C4, P3, Pz, P4, O1 and O2. The average of positions A1 and A2 on the left and right 574 
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mastoids was used for offline re-referencing as the data were online referenced against Cz. Fpz was 575 

used as ground electrode. Additionally, two EMG electrodes were placed on the musculus mentalis for 576 

measuring muscle activity during sleep and four EOG electrodes around the eyes to record horizontal 577 

and vertical eye movements. ECG was recorded with an electrode on the right clavicular and another 578 

one on the lowest left costal arch. Impedances were always kept below 10kΩ. 579 

Polysomnography 580 

The time in bed was standardized for all polysomnography recordings and comprised exactly 8 581 

hours. For sleep staging, the data were first low-pass filtered at 30Hz and re-referenced to contralateral 582 

mastoids with the BrainVision Analyzer software (Version 2.2.0.7383, Brain Products GmbH, 2019). 583 

Physio-channels were referenced in a bipolar manner and the data were down-sampled to 128Hz before 584 

sleep stages were classified for each 30 second epoch with the Somnolyzer 24 x 7 algorithm (Koninklijke 585 

Philips N.V.; Eindhoven, The Netherlands) in accordance with the criteria of the American Academy of 586 

Sleep Medicine (Richard et al., 2012). The results were finally verified by a human expert scorer. The 587 

general sleep architecture of each night is presented descriptively in Supplementary file – Table 5.  588 

EEG preprocessing 589 

In a first step, the data were processed with the BrainVision Analyzer software, and we applied 590 

a 0.3Hz high-pass as well as a 50Hz notch filter. The EEG channels were re-referenced to linked 591 

mastoids and the online reference Cz was restored. We corrected for eye movements with the Gratton 592 

& Coles method (Gratton et al., 1983; only implemented for data during wakefulness) and ran an 593 

automatic artifact detection. The data were then down-sampled to 250Hz and exported for further 594 

analyses in MATLAB. The continuous data were de-trended and subsequently segmented into epochs 595 

of 4s for each task and sleep stage using the fieldtrip toolbox (Oostenveld et al., 2011). To be able to 596 

compare all task- and sleep-data, we decided to set the epoch-length to 4s as this enabled the best 597 

tradeoff between a sufficient number of epochs even for the shortest tasks (3min resting sessions) and 598 

an adequate frequency resolution within 0.5 – 45Hz. All artifact-containing epochs (defined as > 1% 599 

being detected as artifact) were removed for the following analyses. Since the remaining number of 600 

clean epochs from the different tasks (resting, Go/Nogo, encoding and retrieval) and sleep-stages 601 

(WAKE, N1, N2, N3 and REM) varied dramatically due to different recording lengths, we balanced the 602 

number of epochs across tasks and sleep-stages for the multivariate pattern analyses (MVPA) to ensure 603 

the validity of the classification results. In more detail, we set the maximum number of epochs for the 604 

MVPA analyses to the highest possible number of epochs from the shortest task (i.e., 45 epochs as the 605 

resting sessions only comprised 3min). To do so, we drew a random subset of 45 epochs from all data 606 

that contained more than 45 clean epochs. For all other analyses we used all available data to maximize 607 

the signal to noise ratio wherever possible (for the number of epochs used per task and sleep stage see 608 

Supplementary file – Table 6). 609 

Spectral Slope 610 

To obtain the spectral slope, we first calculated power-spectra between 0.5 – 45Hz from the 611 

preprocessed, 4s segmented data via the mtmfft method in Fieldtrip (Oostenveld et al., 2011) using a 612 
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multi-taper approach (1Hz frequency smoothing; Lendner et al., 2020). To extract the spectral slope 613 

information, we applied robust linear fits (using the robust fit MATLAB function) in log-log space between 614 

30 – 45Hz based on a previously established method (Lendner et al., 2020). We decided to use robust 615 

linear fits instead of using the FOOOF algorithm (alternatively known as specparam; Donoghue et al., 616 

2020) for the narrowband frequency range since this approach has already been established to yield a 617 

sensitive aperiodic marker of arousal by Lendner et al. (2020) and because in this frequency range also 618 

the FOOOF would approximate a linear fit, thus leading to highly comparable results. However, for the 619 

broadband frequency range (3 – 45Hz), we applied the FOOOF algorithm to extract the slope as the 620 

linear fits would have been skewed by oscillatory bumps in the power spectrum.  621 

Neural Complexity 622 

We followed previous approaches (Mediano et al., 2021; Schartner et al., 2015) and calculated 623 

the Lempel-Ziv-Welch complexity (Lempel & Ziv, 1976; Welch, 1984) as a proxy for neural complexity 624 

per channel and epoch. To obtain the neural complexity in the same frequency ranges in which we 625 

calculated the spectral slope, we applied additional 3 or 30Hz high-pass and 45Hz low-pass filters to 626 

ensure that the underlying signal contained the same frequencies as for the spectral slope. As Rivolta 627 

et al. (2014) demonstrated that 1000 datapoints are sufficient for reliable Lempel-Ziv complexity 628 

analyses during sleep, we used the same 4s segmented data (which translates to 1000 sampling points 629 

per epoch in the down sampled data) for the neural complexity analyses that we used for the spectral 630 

slope. We then applied a Hilbert-transformation on each epoch to obtain the instantaneous amplitude. 631 

Afterwards, we binarized the resulting single epoch data around its median amplitude and transformed 632 

it into a binary sequence. Values of 1 were given for amplitude samples above the median and values 633 

of 0 for amplitudes below (or equal with) the median. This binary sequence of ones and zeros was finally 634 

subjected to the Lempel-Ziv-Welch complexity algorithm (Comsa, 2019) in MATLAB. To make sure that 635 

our results were not affected by different algorithm implementations, we additionally ran the original 636 

Lempel-Ziv algorithm (LZ76, implemented in MATLAB by Thai, 2012) but did not obtain any different 637 

results. Thus, only the results from the Comsa (2019) algorithm are reported. 638 

Statistical analyses 639 

Statistics were calculated in R-Studio (Version 4.1.2.; RStudio Team, 2021). MATLAB functions 640 

from the Fieldtrip toolbox and the ggplot-framework (Wickham, 2016) in R were adapted for data 641 

visualization. 642 

Factorial analyses and correlations 643 

All analyses involved three repeated measurements (on days 7, 10 and 13; cf., Figure 1) and 644 

therefore at least two factors (lab-session and task or sleep stage). Since in most cases at least one 645 

assumption for parametrical testing was violated, we decided to compute more conservative semi-646 

parametrical analyses with the MANOVA.RM package (Friedrich et al., 2019). For these factorial 647 

analyses, data were averaged over all EEG electrodes to facilitate interpretation of the results. In the 648 

statistical results, we always refer to the Wald-Type-Statistics (WTS) with empirical p-values obtained 649 
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from permutation resampling procedures and 10.000 iterations. Whenever multiple comparisons were 650 

conducted for follow-up testing, p-values were corrected for alpha error inflation with the Benjamini-651 

Hochberg procedure (Benjamini & Hochberg, 1995). 652 

For correlation analyses, we computed Spearman rho coefficients instead of Pearson 653 

correlations whenever the normality assumption was significantly violated (indicated by Shapiro-Wilk 654 

tests) and in general for all cluster correlations on the whole scalp level. For the cluster corrected 655 

correlation approach, we used the Monte-Carlo method with 10.000 iterations to assess the relationship 656 

between the EEG parameters per channel and the behavioral measures.  657 

Multivariate pattern analyses (MVPA) 658 

Since it is difficult to take topographical patterns into account in classical factorial designs, we 659 

additionally computed multivariate pattern analyses using the MVPA-Light toolbox (Treder, 2020) in 660 

MATLAB to further exploit the information present in the complexity and slope data as patterns across 661 

electrodes. For each task and sleep stage, the complexity and slope from every epoch and electrode 662 

was fed into the classifier. Thus, the single epochs per subject were used for training and testing while 663 

the complexity and slope patterns over electrodes represented the multivariate information. For 664 

comparisons between more than two tasks or sleep stages, multiclass linear-discriminant analyses 665 

(LDA) were used and regular LDA for two-condition comparisons. We calculated classifier accuracies 666 

per subject via leave-one-out cross validation (LOO-CV) to account for the restricted amount of data 667 

available for training and testing in our sample. Since no effects regarding the different lab-sessions 668 

emerged, we pooled the data from the different lab-sessions for each subject in order to improve the 669 

reliability of the MVPA analyses. 670 
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