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Abstract

The conversion of supplemental greenhouse light energy into biomass is not always
optimal. Recent trends in global energy prices and discussions on climate change
highlight the need to reduce our energy footprint associated with the use of
supplemental light in greenhouse crop production. This can be achieved by
implementing “smart” lighting regimens which in turn rely on a good understanding of
how fluctuating light influences photosynthetic physiology.

Here, a simple fit-for-purpose dynamic model is presented. It accurately predicts net
leaf photosynthesis under natural fluctuating light. It comprises two ordinary
differential equations predicting: 1) the total stomatal conductance to CO2 diffusion
and 2) the CO2 concentration inside a leaf. It contains elements of the Farquhar-von
Caemmerer-Berry model and the successful incorporation of this model suggests that for
tomato (Solanum lycopersicum L.), it is sufficient to assume that Rubisco remains
activated despite rapid fluctuations in irradiance. Furthermore, predictions of the net
photosynthetic rate under both 400ppm and enriched 800ppm ambient CO2

concentrations indicate a strong correlation between the dynamic rate of photosynthesis
and the rate of electron transport. Finally, we are able to indicate whether dynamic
photosynthesis is Rubisco or electron transport rate limited.

Author summary

The cultivation of greenhouse crops under optimised conditions will become increasingly
important, with supplemental lighting playing a vital role. However, converting light
energy into plant photosynthesis is not always optimal. A potential venue that may lead
to the efficient conversion of light energy involves a model-based implementation of
“smart” lighting control strategy. This approach does however necessitate a good
understanding of how plants harness light energy under natural fluctuating irradiance.
Accordingly, as a first step, we have developed a small leaf-level model that predicts
dynamic photosynthesis in natural fluctuating light. It may potentially be used in
future supplemental light control applications.
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Introduction 1

The cultivation of greenhouse crops under optimised conditions will become increasingly 2

important, with the need for year-round crop harvesting under changing environmental 3

conditions as a driving factor. The widespread use of supplemental lighting to optimise 4

growing conditions is a key tool at our disposal. The efficiency of converting light 5

energy into plant photosynthesis is however not always optimal. This is particularly 6

true when lights are first turned on, where time is required for the activation of key 7

photosynthetic enzymes and for adjustments in stomatal pore aperture [1]. 8

Given recent trends in global energy prices and continuous discussions on climate 9

change, our energy footprint associated with the use of supplemental light needs to be 10

reduced. Two potential avenues that may lead to the efficient conversion of light energy 11

into photosynthesis are: 1) the use of light-emitting diodes (LEDs) in supplemental 12

lighting applications. LEDs increase the efficiency with which electrical energy is 13

converted to photosynthetically active radiation (PAR), the radiation with wavelength 14

400-700nm, which powers photosynthesis [2]. 2) A model-based implementation of 15

“smart” lighting regimens. This approach necessitates a good understanding of how 16

plants harness light energy under natural fluctuating irradiance (I). 17

Plant responses to fluctuating irradiance occur across numerous levels of complexity, 18

ranging from the whole canopy (at crop level and governed by plant structure) to the 19

biochemistry of a single reaction (at leaf level and governed by physiology) and across 20

different orders of magnitude in time. At the top of the canopy light levels depend on 21

factors such as the solar angle and amount of cloud cover. Lower parts of a crop canopy 22

rely on light in the form of sun-flecks, and the amount of these in turn depends on the 23

canopy’s structure [3]. 24

Light intensity is the most dynamic condition to which greenhouse crops need to 25

respond and can change at time scales ranging from a season (winter versus summer) to 26

less than 1 second (passing clouds) [4]. The variation of incident light on leaves in the 27

upper canopy can have a substantial effect on photosynthesis in this upper layer since it 28

accounts for up to 75% of crop canopy carbon assimilation [5]. 29

At leaf level, a plant’s ability to regulate photosynthesis in response to rapid 30

variations in irradiance may be restricted by the following factors: 1) the 31

opening/closing of stomata, 2) the activation/deactivation of Calvin cycle enzymes, 3) 32

the up-regulation/down-regulation of photoprotective processes [3], and 4) transiently 33

changing mesophyllic conductance [6]. 34

Previous leaf-level models have ranged both in complexity and in time scales of 35

prediction. These often include the well-know Farquhar-von Caemmerer-Berry (FvCB) 36

model, which mathematically describes key Calvin cycle processes and linear transport 37

rates [7]. The result is an estimated net photosynthetic rate (An) which stems from 38

competitive enzymatic processes involving CO2 and O2 binding under different 39

environmental conditions [8]. A brief summary of selected small dynamic models is 40

given in Table (1). We included a summary of the model presented here for comparison. 41

The rest of this article is organised as follows. In section 1 we provide the theoretical 42

background to the model and describe the plant physiology underpinning the 43

well-known FvCB model. We also discuss three of the factors that may restrict An in 44

greater detail. The model is defined in section 2, and the materials and methods used 45

are discussed in section 3. Results and discussion are presented in sections 4 and 5 46

respectively, and conclusions are given in section 6. 47
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Nomenclature

Symbols

An Net photosynthetic rate [µmolm−2s−1]

gtc Total stomatal conductance to CO2 diffusion [molm−2s−1]

gm Mesophyllic conductance [molm−2s−1]

ci CO2 concentration inside a leaf [µmolm−2s−1]

ca Ambient CO2 concentration [µmolm−2s−1]

cc CO2 concentration in the chloroplast stroma [µmolm−2s−1]

I Irradiance [µmolm−2s−1]

Tl Leaf temperature [K]

ku Time constant for increases in gtc [s]

kd Time constant for decreases in gtc [s]

R Ideal gas constant [m3Pa1mol−1K−1]

d Leaf diameter [m]

Pa Atmospheric pressure [Pa]

Vcmax Maximum obtainable carboxylation rate [µmolm−2s−1]

Kc Michaelis-Menten constant for CO2 [µmolm−2s−1]

Ko Michaelis-Menten constant for O2 [kPa]

Oi Partial pressure of O2 in air [kPa]

Γ* The Rubisco compensation point [µmolm−2s−1]

J Steady-state electron transport rate [µmolm−2s−1]

G Steady-state total stomatal conductance to CO2 diffusion [molm−2s−1]

Wc Rubisco limited carboxylation rate [µmolm−2s−1]

Wj Electron transport rate limited carboxylation rate [µmolm−2s−1]

Rd
Mitochondrial respiration which includes CO2 release in light other than photo-

respiration [µmolm−2s−1]

RH Relative humidity [%]

1 Theory 48

We briefly introduce three of the factors that affect An, and which are included in the 49

model: 1) stomatal conductance, 2) the Rubisco limited carboxylation rate, and 3) the 50

electron transport limited carboxylation rate. 51

1.1 The opening and closing of stomata 52

Stomata are located on both the upper (u) and lower (l) surfaces of tomato leaves. 53

They are tasked with regulating the flux of gaseous H2O and CO2 between a leaf and 54

its surroundings. They do so by adjusting their pore aperture and this is achieved by 55

changing the form of their 2 guard cells. These structures can therefore be thought of as 56

conductors of CO2 diffusion, and therefore only allow a certain amount of CO2 to enter 57

a leaf. 58

Stomatal aperture depends on numerous environmental cues. For C3 plants (plants 59

that allow for the direct carbon fixation of CO2) under non-limiting growth conditions, 60

pore sizes increase with increased irradiance and low CO2 concentrations [12]. 61

The metabolic regulation of these guard cells is highly complex and accordingly, an 62

empirical model that predicts dynamic changes in the conductance of CO2 related to 63

perturbations in irradiance is used here [11]. Refer to S1 Supporting Information for a 64

discussion on how the total stomatal conductance to CO2 diffusion (gtc) is defined. 65
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Table 1. Summary of selected small dynamic leaf-level photosynthesis models. (Ordinary differential equations
abbreviated as ODEs).

Year ODEs
Reported
Timescale

Summary

Pearcy
1997 [9]

8 total
(3 Stomata)
(5 Calvin cycle)

Seconds

Species: Alocasia macrorrhiza Soybean (Glycine max )
1. Environmental disturbance considered: irradiance.
2. Contains predictions for metabolite pool sizes and the
activation and deactivation of Calvin cycle enzymes.
3. Describes the asymmetric response of the stomata to
either increasing or decreasing irradiance using 2 different
time constants.
4. High correlation between parameters.

Noe
2003 [10]

3 total
(1 Stomata)
(2 Calvin cycle)

Minutes

Species: Oak (Quercus robur L.)
1. Environmental disturbances considered: irradiance,
vapour pressure deficit, temperature.
2. Amount of Calvin cycle intermediates, predicted by a
third ODE, are regarded as inhibitors to the rate of CO2

binding.
3. Assumes symmetric response of the stomata to either
increasing or decreasing irradiance.

Vialet-
Chabrand
2016 [11]

4 total
(1 Stomata)
(3 Calvin cycle)

Hours

Species: Arabidopsis thaliana
1. Environmental disturbances considered: irradiance,
temperature.
2. CO2 concentration at the site of carboxylation is
modelled, thereby including mesophyllic conductance.
3. Photosynthetic efficiency that gradually decreases
over the course of the day is used as negative feedback
to the photosynthetic rate.
4. Dynamic estimation of 7 parameters.

Our model
2 total
(1 Stomata)
(1 Calvin cycle)

Simulated
every 2
seconds

Species: Tomato
1. Environmental disturbances considered: irradiance,
temperature, ambient CO2 concentration.
2. Predicts which of the limiting factors of FvCB model
are at play under natural fluctuating irradiance.
3. Dynamic estimation of 3 parameters.

1.2 The FvCB model 66

This model describes the steady-state net photosynthetic (An) rate as [7, 13]: 67

An = Ag −Rd (1)

= min(Wc,Wj ,Wp)(1−
Γ∗
cc

)−Rd (2)

where (1) defines An as the difference between the gross photosynthetic rate (Ag) 68

and Rd, the mitochondrial respiration which includes the release of CO2 in light other 69

than photo-respiration [13]. From (2) follows that An can be limited by the Rubisco 70

limited carboxylation rate (Wc), the electron transport limited carboxylation rate (Wj) 71

or the rate at which triose phosphates are utilised (Wp). Opting to keep our model 72

structure concise and the number of unknown system parameters to a minimum, we 73

omit the limiting factor Wp. 74
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1.2.1 The Rubisco limited carboxylation rate (Wc) 75

Once CO2 enters a leaf through the stomata, it diffuses through the inter-cellular spaces 76

into the chloroplasts by means of a diffusion gradient between the chloroplast and the 77

rest of the leaf. The numerous photosynthesis reactions that occur inside the chloroplast 78

are summarised in the Calvin cycle, a process which comprises both light dependent 79

and independent reactions. 80

During the first phase of this cycle, a single CO2 molecule is fixed onto a Ribulose 81

1,5-bisphosphate (RuBP) molecule to form two 3-Phosphoglyceric acid (3-PGA) 82

molecules. Important here in the context of modelling enzyme kinetics is that this 83

process is catalysed by the enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase 84

(Rubisco), and its activation state is in turn increased by Rubisco activase. The 85

structure of 3-PGA allows it to be combined and rearranged to form sugars which can 86

be transported or stored for energy. The rate at which CO2 fixation takes place is 87

known as the carboxylation rate. However, Rubisco also catalyses RuBP oxygenation 88

(binding RuBP to O2). This reduces the efficiency of the Calvin cycle. The rate at 89

which this takes place is called the oxygenation rate. 90

Mathematically, the Rubisco limited carboxylation rate is given as [7, 13,14]: 91

Wc = Vcmax

cc
cc +Kc(1 +Oc/Ko)

.
[R]

[R] +K ′
r

(3)

where Vcmax is the maximum obtainable carboxylation rate, and cc is the partial 92

pressure of CO2 in the chloroplast stroma whereas Oc is the partial pressure of O2 in 93

the chloroplast stroma. Kc is the Michealis-Menten constant for CO2, Ko is the 94

Michaelis-Menten constant for O2, [R] is the concentration of unbound (available) 95

RuBP, and Kr’ is the effective Michealis-Menten constant for RuBP. Assuming that 96

RuBP is in excess, (3) reduces to [15], 97

Wc = Vcmax

cc
cc +Kc(1 +Oc/Ko)

(4)

A relationship between Wc and the oxygenation rate is introduced in (2) by Γ∗, the 98

CO2 concentration at which oxygenation proceeds at twice the rate of carboxylation 99

causing the photosynthetic uptake of CO2 to be compensated for by the 100

photorespiratory release of CO2 [16]. 101

Notice that expression (4) is defined for CO2 concentrations in the chloroplast 102

stroma (cc). This concentration can however not be measured directly and so is 103

predicted if An, ci, and gm are known, by, 104

cc = ci −
An

gm
(5)

where gm is the mesophyllic conductance encountered along the CO2 diffusion pathway. 105

By assuming that this conductance is infinitely large (5) simplifies to cc = ci. 106

1.2.2 Electron transport limited carboxylation rate (Wj) 107

The synthesis of RuBP also requires energy in the form of ATP and NADPH, and both 108

ADP and NADP+ are continuously converted to these energy supplying molecules in 109

light dependent reactions which are dependent on the rate of electron transport (J). 110

Accordingly, the electron transport limited carboxylation rate (Wj) is given as [7, 13], 111

Wj =
J

(4 + 8Γ∗

cc
)

(6)
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Equation (6) assumes 4 electrons per carboxylation and oxygenation and so, based on 112

the number of electrons required for NADP+ reduction, the standard values used are 4 113

and 8. However, there are uncertainties in the relationship between electron transport 114

and ATP synthesis. For example, 4.5 and 10.5 have also been used [16]. 115

Given the above mentioned assumptions, expression (2) can be written as 116

An = min

(
Vcmax

ci
ci +Kc(1 +Oi/Ko)

,
J

(4 + 8Γ∗

ci
)

)
(1− Γ∗

ci
)−Rd (7)

1.3 Temperature and light intensity effects on steady-state 117

photosynthesis 118

The dependence of key FvCB model parameters on both leaf temperature (Tl) and 119

irradiance (I) was already included in the 1980 publication by Farquhar et. al. [7]. 120

Changes in the values of parameters Γ∗, Ko, and Kc (in (7)) associated with leaf 121

temperature changes are described using the Arrhenius equation [16], 122

Γ∗(Tl(t)) = e
(c1− ∆Ha1

R1Tl(t)
)

(8)

Ko(Tl(t)) = e
(c2− ∆Ha2

R1Tl(t)
)

(9)

Kc(Tl(t)) = e
(c3− ∆Ha3

R1Tl(t)
)

(10)

Here, the ideal gas constant R1, is expressed in units [kJmol−1K−1]. Constants 123

∆Hai and ci, where i = 1, . . . , 3, are the respective energies of activation and scaling 124

constants for parameters Γ∗, Ko and Kc. 125

Electron transport becomes limited when insufficient quanta are absorbed [7]. 126

Accordingly, J is modelled as a function of irradiance [17], 127

J(I(t)) =
Jmax + θI(t)−

√
(Jmax + θI(t))2 − 4JmaxγθI(t)

2γ
(11)

where parameter Jmax is the upper limit to potential chloroplast electron transport 128

determined by the components of the chloroplast electron transport chain [13]. 129

Parameters θ and γ are unit-less (refer to S1 Supporting Information for details). All 130

parameter values are given in Table (3). 131

2 Dynamic model structure 132

The model we present in this paper comprises only two ordinary differential equations,
the first predicting the total stomatal conductance to CO2 diffusion (gtc) and the
second the CO2 concentration inside the leaf (ci). Here, gtc is the sum of the boundary
layer and stomatal conductances (see S1 Supporting Information). An algebraic relation
between the predicted states is used to approximate the net photosynthetic rate (An).
An overview of the dynamic states, system parameters, model inputs, and the measured
output is given by the standard state-space representation,

d

dt

[
gtc(t)
ci(t)

]
= f(t, gtc(t), ci(t); ku, kd, c3; I(t), ca(t), Tl(t)) (12)

y(t) = [gtc(t), ci(t), An(t)]
′ (13)

Function f is defined in equations (15)-(18). States gtc and ci, and the predicted An 133

are measured model outputs. The three system parameters that need to be inferred 134
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from the measured data are ku, kd and c3 in expressions (10), and (15) and (16) 135

respectively. Three environmental conditions, I(t), ca(t) and Tl(t), are directly 136

measurable and modelled as inputs/disturbances to the system. Predictions for An are 137

made using Fick’s law of diffusion. Also known as the net flux of CO2 that enters a leaf, 138

the dynamic An (achieved at a specific light intensity, as opposed to the attainable 139

steady-state values predicted in (7)) is calculated as [18,19] 140

An(t) = gtc(t)(ca(t)− ci(t)) (14)

The asymmetric exponential response of stomata to increases and decreases in 141

irradiance has often been reported [20]. This is modelled by introducing 2 time 142

constants to the system, ku describing the rate of increase in gtc observed with an 143

increase in irradiance, and kd describing the rate of decrease in gtc following a decrease 144

in irradiance [9, 12,20–24]. The resulting model structure is, 145

dgtc(t)

dt
=

G(I(t), ca(t))− gtc(t)

ku
if

dgtc(t)

dt
≥ 0 (15)

dgtc(t)

dt
=

G(I(t), ca(t))− gtc(t)

kd
if

dgtc(t)

dt
< 0 (16)

G(I(t),ca(t)) can be interpreted as the steady-state target function of gtc for a particular 146

combination of I(t) and ca(t). A description of how G(I(t),cc(t)) should be calibrated is 147

given in S1 Supporting Information. 148

The CO2 concentration inside the leaf is modelled using a mass balance equation
(refer to S1 Supporting Information for a discussion),

dci(t)

dt
=
RTl(t)

dPa
[gtc(t) (ca(t)− ci(t)) +Rd −min (Wc(t),Wj(t))

(
1− Γ∗(Tl(t))

ci(t)

)
] (17)

The minimum function stems from the FvCB model in equation (7). Substituting the
functions Wc(t) and Wj(t), that have been adjusted to take Tl and I into account, into
(17) gives,

dci(t)

dt
=
RTl(t)

dPa
[gtc(t) (ca(t)− ci(t)) +Rd

−min

 Vcmaxci(t)

ci(t) +Kc(Tl(t))[1 +
Oi

Ko(Tl(t))
]
,

J(I(t))

(4 + 8Γ∗(Tl(t))
ci(t)

)

(1− Γ∗(Tl(t))

ci(t)

)
]

(18)

3 Materials and Methods 149

3.1 Growing conditions of plants 150

Tomtato plants were cultivated in a climate chamber (size: 16 [m2]) in Wageningen 151

University & Research, Wageningen, the Netherlands (52◦N, 6◦E). Seeds were 152

germinated in rockwool plugs (diameter: 2 [cm]) and transferred to rockwool cubes 153

(10×10×7 [cm]) one week after sowing. 154

Unless stated otherwise, day and night temperatures were set at 23◦C and 20◦C 155

respectively. Relative humidity was set at 70%. The CO2 concentration was kept at 156

ambient. Plants were irrigated automatically twice per day using an ebb & flow system 157

(at 7 AM and 7 PM) with tomato nutrient solution (EC:2.2±0.1 [mScm−1], pH:5.5) 158

(see S1 Supporting Information). 159

September 8, 2022 7/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.09.10.507401doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.10.507401
http://creativecommons.org/licenses/by/4.0/


3.1.1 Plants used to estimate Vcmax and Rd 160

These plants were exposed to an irradiance of 250 [µmolm−2s−1] provided by two types 161

of high-pressure sodium lamps (SON-T and HPI-T PLUS, Philips Lighting). The 162

photoperiod in the chamber was 16 hours. The SON-T lamps were switched on one 163

hour before the HPI-T PLUS lamps and were switched off one hour after the HPI-T 164

PLUS lamps in an attempt to mimic the gradual increase and decrease of irradiance 165

during sunrise and sunset. 166

3.1.2 Plants used to parameterise function J(I(t)) 167

The plants were exposed to an average irradiance of 200 [µmolm−2s−1], with irradiance 168

fluctuating between 50 and 500 [µmolm−2s−1] every minute. The photoperiod in the 169

chamber was 16 hours. The irradiance pattern was randomly changed on a daily basis 170

to simulate natural fluctuations in irradiance. Key properties including the photoperiod, 171

minimum and maximum irradiance, daily average irradiance, and the overall shape of 172

the light pattern were kept the same. Dynamic irradiance was provided by GreenPower 173

LED top lighting compact modules (Philips Lighting). 174

3.1.3 Plants used to measure photosynthesis under natural fluctuating 175

irradiance 176

The plants were brought to the greenhouse compartment to grow for another four weeks. 177

Plants were grown on growth tables in the compartment of a Venlo-type glasshouse. 178

One layer of cloth was put on the growth table and the greenhouse compartment had a 179

photoperiod of 16 hours to allow for ample root growth. Only when global radiation 180

outside the greenhouse dropped below 150 [Wm−2], were high-pressure sodium (HPS) 181

lamps (600 [W], Philips) used during the light period. These were switched off when 182

outside global radiation increased to values above 250 [Wm−2]. When the HPS lamps 183

were on, the light intensity from these was approximately 150 [µmolm−2s−1] at plant 184

level. The shading screen (HARMONY 4215 O FR, Ludvig Svensson) was closed when 185

outside global radiation increased to values above 600 [Wm−2] and was opened when 186

outside global radiation dropped below 500 [Wm−2]. Set points of day and night 187

temperature were 22◦C and 18◦C respectively. Relative humidity was set at 65% and 188

plants were irrigated four times per day with tomato nutrient solution (see S1 189

Supporting Information). 190

3.2 Measurements conducted 191

Unless stated otherwise, gas exchange measurements were conducted on the fourth or 192

fifth leaf of four-week-old plants (after transplanting) using a portable gas exchange 193

system (LI-6400XT, Li-Cor Bioscience) equipped with a 6 [cm2] leaf chamber 194

fluorometer. Airflow was set to 500 [µmols−1] during measurements and relative 195

humidity was controlled at 75%. Irradiance was provided by a mixture of red (90%) and 196

blue (10%) LEDs in the fluorometer. 197

3.2.1 Measurements to estimate Vcmax and Rd 198

Leaf temperature was kept around 25◦C. CO2 response curves of photosynthesis (An/ci 199

curves) were measured by changing the atmospheric CO2 concentration in the following 200

order: 400, 300, 200, 100, 50, 400, 400, 500, 600, 800, 1000, 1200 ppm while keeping the 201

light intensity at 1800 [µmolm−2s−1]. Each CO2 concentration step took about 2-5 202

minutes to finish. Measured photosynthetic rates during An/ci curve constructions were 203
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corrected for diffusion leaks according to the Li-Cor manual [25]. In total, eight 204

replicates were obtained (see S1 Supporting Information for details). 205

3.2.2 Measurements to parameterise function J(I(t)) 206

Measurements were performed at an air temperature of 23◦C, and at two atmospheric 207

CO2 concentrations: 400 ppm and 800 ppm. For each CO2 concentration, the leaf was 208

exposed to a respective irradiance of 0, 50, 100, 200, 400, 600, 800, 1000 and 1200 209

[µmolm−2s−1] for at least 45 minutes to allow both leaf net photosynthetic rate and 210

stomatal conductance to reach steady-state. Six replicates were obtained for each CO2 211

concentration (refer to S1 Supporting Information for details). 212

3.2.3 Measurements to track photosynthesis under natural fluctuating 213

irradiance 214

Dynamic photosynthesis measurements were conducted between 3 and 24 September 215

2021 in a compartment (8×8 [m]) of a Venlo-type glasshouse located in Wageningen. 216

Measurements were conducted on leaves at the top of the plant that were fully 217

exposed to sunlight and an air temperature of 23◦C. Two sets of atmospheric CO2 218

concentrations, i.e. 400 ppm and 800 ppm were used. The photosynthetically active 219

radiation (PAR) in the leaf chamber fluorometer was continuously adjusted to match 220

the readings from an adjacent PAR sensor placed next to the chamber. 221

Gas exchange data were logged every two seconds between approximately 9:00 to 222

16:00 hours. In total, five measured replicates were obtained at 400 ppm CO2 and one 223

measurement was taken at 800 ppm CO2. 224

3.3 Photosynthesis under naturally fluctuating irradiance: 225

parameter estimation data set 226

Consider the set of observed greenhouse conditions shown in Fig.(1). The dynamics of 227

the three model inputs, I(t), ca(t) and Tl(t), observed over a 6 hour period [09:37-15:33] 228

were measured on 8 September 2021, with ca(t) kept constant at 400 [µmolm−2s−1]. 229

Notice that irradiance (Fig.(1).a) peaks during 3 stages, 30-70 [min], 105-170 [min], and 230

again after 335 [min]. It reaches a maximum of approximately 1193 [µmolm−2s−1] for a 231

brief period. For the majority of the day light levels fluctuate between 200 and 400 232

[µmolm−2s−1]. 233

Fig 1. Parameter estimation data set: model inputs measured on 8
September 2021. (a) Measured irradiance (I) [µmolm−2s−1] (b) Measured leaf
temperature (Tl) [K].

3.4 Parameter Estimation 234

Values for the 3 unknown system parameters, ku, kd and c3, were estimated using
Matlab’s global optimisation function, the genetic algorithm (ga). This method is well
suited to the optimisation of highly nonlinear problems and problems with a
discontinuous objective function [26]. The parameters were inferred by minimising the
objective function,

O(ku, kd, c3) ≡
√∑

(0.2(gtc − gtc,m)2 + 0.2(ci − ci,m)2 + 0.6(An −An,m)2)

N
(19)
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where gtc,m, ci,m and An,m denote the measured outputs defined in (13) and N is the 235

number of observed data points, recorded every 2 seconds. By attributing weights to 236

the individual terms, we ensured that an accurate prediction of the important metric An 237

was favoured. Measured gtc and An values are shown in blue in Fig.(5.a) and Fig.(5.b). 238

Initial conditions: Given that both gtc and ci are measured outputs, the initial 239

conditions of the 2 state equations are known. 240

4 Results 241

4.1 Estimated parameter values 242

Figs.(2)-(4) show the converged results of the genetic algorithm optimisation. Here, this 243

global search method generated 300 random parameter combinations from the 244

3-dimensional space bounded by the intervals as indicated in Figs.(2.a)-(4.a). These 245

results reveal the frequency with which a particular parameter value was computed as 246

optimal. In Fig.(3.a) for example, the algorithm converged after a certain number of 247

iterations, and computed roughly 200 of the 300 optimal points on the interval [800,850] 248

for parameter kd. 249

Fig 2. Global optimisation results for the stomatal parameter ku in
expression (15). (a) The range of potential ku values considered is shown along with
the optimised ku distribution. The genetic algorithm converged to a parameter value on
the interval [170,180], with the optimised ku=179.4 [s]. (b) Objective function values:
computed profile likelihood for a range of ku values. The 95% confidence interval is
shown in red as [157.5, 202.5] [s].

Fig 3. Global optimisation results for the stomatal parameter kd in
expression (16). (a) The range of potential kd values considered is shown along with
the optimised kd distribution. The genetic algorithm converged to a parameter on the
interval [800,850], with the optimised kd=830.3 [s]. (b) Objective function values:
computed profile likelihood for a range of kd values. The 95% confidence interval is
shown in red as [735.6, 927.5] [s].

Fig 4. Global optimisation results for parameter c3 in expression (10) used
in (18). (a) The range of potential c3 values considered is shown along with the
optimised c3 distribution. The genetic algorithm converged to an optimal parameter
value on the interval [37.9,38] as c3=37.96. (b) Objective function values: computed
profile likelihood for a narrow range of c3 values. The 95% confidence interval is shown
in red as [37.95, 37.98] [s].

Notice that the derived time constants ku=179.4 [s] and kd=830.3 [s] suggest that 250

for a leaf under natural fluctuating irradiance, the overall stomatal dynamics related to 251

an increase in irradiance is faster than those associated with a decrease in irradiance. 252

The optimised c3 value 37.96 (see Fig.(4)) increases the value of Wc (defined in 253

expression (4)) compared to this function’s value computed using the commonly used 254

c3=38.28 [27]. All parameter values in (15) and (16) are given in Table (2) with 255

parameter values in (18) given in Table (3). 256
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Table 2. Values of the model parameters in expressions (15) and (16). Parameters of the steady-state target
function G(I(t),ca(t)) (indicated in blue), computed under ca=400ppm and ca=800ppm respectively, are also included.
Estimated unknown system parameters are indicated in red with accompanying confidence intervals. Steady-state parameters
estimated a priori are indicated in green.

Parameter Description Value

ku [s] Time constant for increases in gtc 179.4 [157.5,202.5]
kd [s] Time constant for decreases in gtc 830.3 [735.6,927.5]

G(I(t),ca(t)) [
mol
m2s ] Steady-state target function for stomatal conductance [S1 Supporting Information]

gmin,400 [mol
m2s ] Minimum stomatal conductance under ca = 400ppm 0.1

gmax,400 [mol
m2s ] Maximum stomatal conductance under ca = 400ppm 0.325

α400 [ mol
µmol ] Slope of relation between steady-state G and I under ca = 400ppm 0.00033

gmin,800 [mol
m2s ] Minimum stomatal conductance under ca = 800ppm 0.165

gmax,800 [mol
m2s ] Maximum stomatal conductance under ca = 800ppm 0.29

α800 [ mol
µmol ] Slope of relation between steady-state G and I under ca = 800ppm 0.00017

Table 3. Values of the model parameters in expression (18). A priori estimated parameters of function J(I(t)) and
the respective steady-state parameters Vcmax and Rd are shown in green. The respective functions are indicated in blue and
the estimated unknown system parameter is indicated in red with its accompanying confidence interval.

Parameter Description Value

R [m
3Pa

molK ] Ideal gas constant 8.314
d [m] Leaf thickness 0.0001 [10]
Pa [Pa] Atmospheric pressure 101325

Vcmax [µmol
m2s ] Maximum obtainable carboxylation rate 99.25

Rd [µmol
m2s ] Mitochondrial respiration 1

Γ∗(Tl) = e
(c1−∆Ha1

R1TL
)

Rubisco compensation point [µmol
mol ] [27]

c1 Scaling constant 19.02 [27]

∆Ha1 [ kJ
mol ] Energy of activation of Γ∗ 37.83 [27]

R1 [ kJ
molK ] Ideal gas constant 0.008314 [27]

Ko(Tl) = e
(c2−∆Ha2

R1TL
)

Michaelis-Menten constant for O2 [kPa] [27]
c2 Scaling constant 12.3772 [16]

∆ Ha2 [ kJ
mol ] Energy of activation of Ko 23.72 [16]

Kc(Tl) = e
(c3−∆Ha3

R1TL
)

Michaelis-Menten constant for CO2 [µmol
mol ] [27]

c3 Scaling constant 37.96 [37.95,37.98]

∆ Ha3 [ kJ
mol ] Energy of activation of Kc 79.43 [27]

Oi [kPa] Partial pressure of O2 in air 21 [27]

J(I(t)) [µmol
m2s ] Electron transport rate [see equation(11)]

Jmax [µmol
m2s ] Maximum potential electron transport rate 190.68

θ Initial slope of J versus I 0.41
γ Dimensionless convexity parameter 0.9

4.2 Photosynthesis under naturally fluctuating irradiance: 257

parameter estimation 258

We parameterise the model using data measured on 8 September 2021 under natural 259

fluctuating light as this contains rich information pertaining to fluctuations between Wc 260

and Wj limitation (refer to Fig.(5.c)). 261

Predictions for gtc are shown in red in Fig.(5.a). A 9% increase in predicted accuracy 262

(from the objective function in (19)) was obtained by modelling gtc with an asymmetric 263
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Fig 5. Results obtained after parameter estimation. (a) Total stomatal
conductance to CO2 diffusion [molm−2s−1]. (b) Net photosynthetic rate [µmolm−2s−1]
(c) min(Wc,Wj) [µmolm−2s−1], indicates whether photosynthesis is limited by the
carboxylation or electron transport rate.

as opposed to a symmetric response to irradiance (see S1 Supporting Information). 264

The dynamic relationship between the respective Wc and Wj limitations is shown in 265

red in Fig.(5.c). Results indicate that Rubisco limited photosynthesis (Wc) coincides 266

with elevated levels of natural irradiance seen Fig.(1.a). The model predicts that 267

photosynthesis is limited by the electron transport rate (Wj) for the majority of the day, 268

thus for irradiance levels that remain below 400 [µmolm−2s−1]. The correlation 269

between An and the rate of electron transport J(I(t)) is shown in Fig.(6). 270

Fig 6. Results obtained after parameter estimation. The correlation between An

and the electron transport rate (J(I(t)) is shown for both measured and simulated data
sets.

4.3 Photosynthesis under natural fluctuating irradiance: model 271

validation 272

We proceed by using the parameter values obtained in section (4.2) (given in Tables (2) 273

and (3)) during model validation. The outcome is summarised in Table (4). 274

Table 4. Greenhouse data measured under natural fluctuating irradiance. Summary of RMSEs computed to
assess the accuracy of An. Here RMSE =

√∑
(An −An,m)2/N , with the measured output denoted by An,m. Results

comparing the use of the optimised parameter c3=37.96 to the original c3=38.28 [27] are shown. Experiments were conducted
under 2 sets of ambient CO2 concentrations, 400ppm and 800ppm respectively. R2 values are given in [ ].

Data set (ca=400ppm RH=75%) RMSE with c3=37.96 RMSE with c3=38.28

Estimation set (8 Sept 2021) (Fig. 5) 0.747 [0.98] 2.082 [0.85]
Validation set 1 (3 Sept 2021) 0.661 [0.98] 1.54 [0.88]
Validation set 2 (6 Sept 2021) (Fig. 7) 0.659 [ 0.99] 1.3 [0.95]
Validation set 3 (23 Sept 2021) 0.998 [0.9] 0.936 [0.91]
Validation set 4 (24 Sept 2021) 1.164 [0.91] 1.13 [0.92]
Data set (ca=800ppm RH=75%)

Validation set 5 (7 Sept 2021) (Fig. 8) 0.89 [0.97] 0.89 [0.97]

The results obtained for measurements taken on 6 Sept 2021 under an ambient CO2 275

concentration of 400ppm are shown in Fig.(7), whilst the results for measurements 276

conducted on 7 Sept 2021 under a CO2 concentration of 800ppm are shown in Fig.(8). 277

Both Figs.(7.b) and (8.b) show good agreement between measured and modelled An. 278

Simulations shown in Fig.(8.c) suggest that when ca is 800ppm, photosynthesis is solely 279

limited by the electron transport rate. Furthermore, one observes similarities between 280

the shapes of the modelled Wj and An. Given that Wjc is computed using J(I(t)) from 281

expression (11), this suggests that for tomato under the conditions reported here, it may 282

be sufficient to use electron transport rates, inferred from steady-state data, in a 283

dynamic setting. The correlation between An and J(I(t)) is shown in Fig.(9). 284
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Fig 7. Model validation results obtained for measurements taken on 6 Sept
2021 with ca=400ppm. (a) Measured irradiance [µmolm−2s−1]. (b) Net
photosynthetic rate [µmolm−2s−1] (c) min(Wc,Wj) [µmolm−2s−1], indicates whether
photosynthesis is limited by the carboxylation or electron transport rate.

Fig 8. Model validation results obtained for measurements taken on 7 Sept
2021 with ca=800ppm. (a) Measured irradiance [µmolm−2s−1]. (b) Net
photosynthetic rate [µmolm−2s−1] (c) min(Wc,Wj) [µmolm−2s−1], indicates whether
photosynthesis is limited by the carboxylation or electron transport rate.

Fig 9. Results obtained for the validation data set measured on 7 Sept 2021
under elevated ca = 800ppm. The correlation between An and the electron
transport rate (J(I(t)) is shown for both measured and simulated data sets.

5 Discussion 285

It is highly unlikely that An is in steady-state under natural fluctuating irradiance 286

conditions and so observing natural dynamic as opposed to step-change responses to 287

light is useful in aiding our understanding of this key photosynthetic property. However, 288

nonsteady-state photosynthesis is often overlooked, with kinetic measurements of An 289

reported less due to the complexity associated with measuring and analysing them [28]. 290

We set out to develop a fit-for-purpose dynamic photosynthesis model. The model is 291

both calibrated and validated using measurements taken under naturally fluctuating 292

greenhouse conditions. Sufficiently accurate An predictions in section (4) suggest that 293

the model (given in expressions (15)-(17)) can potentially be used in greenhouse lighting 294

control applications. 295

Model - Our model comprises 2 ODEs, predicting the total stomatal conductance to 296

CO2 (gtc) diffusion and the CO2 concentration inside a leaf (ci). These predictions are 297

required to compute the net photosynthetic rate (An) using Fick’s law of diffusion 298

(expression (14)). Our results show that satisfactory fit for purpose An values can be 299

obtained by merely predicting the elements that comprise Fick’s law of diffusion. 300

The dynamic binding of CO2 inside a leaf is modelled using the FvCB model that 301

has been adapted the predict steady-state J values at different light intensities (see 302

section (1.3)). Here, we used this application in a dynamic setting, defining the dynamic 303

electron transport rate function, J(I(t)). It does not include the process of how J 304

gradually increases after light increase. 305

Given that parameter Vcmax is estimated from a priori A/ci measurements (see S1 306

Supporting Information for details), we chose to optimise a parameter used to describe 307

the temperature dependence of the Michaelis-Menten constant for CO2, c3, to increase 308

the accuracy of our An predictions (see Table (4)). 309

The model is unique given its small size and the fact that it only comprises 3 310

unknown system parameters. We opt not to predict any detailed molecule 311

concentrations such as RuBP (see [19] for example), and by assuming that the leaf is 312

homogeneous, we do not include an additional equation that accounts for mesophyllic 313

conductance (see [11] for example). 314

Furthermore, for Vcmax as defined in the FvCB model [7], we too assume is that 315

Rubisco is activated [29]. Predictions for An reported for tomato suggest that adequate 316

An values can be obtained under this stringent model assumption. 317

Finally, it is important to realise that the implementation of a system which contains 318

the FvCB model necessitates the a priori calculation of a multitude of species specific 319

steady-state parameters. This requires repeated experimental measurements and some 320

background knowledge on how to interpret and assimilate data. 321
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Results - The first interesting point that emerges from using rapid fluctuating 322

measurements to calibrate a model is the inferred time constants pertaining to the total 323

stomatal conductance to CO2 diffusion. Notice from Table (2) that ku, associated with 324

an increase in irradiance is faster than kd. When inferring these parameter values from 325

data measured after a single step change in irradiance, ku is slower than kd. 326

We highlighted the correlation between An and the electron transport rate in section 327

(4) (see Figs. (6) and (9)). We know that the formation of ATP and NADPH molecules 328

are dependent on the rate of electron transport and that this is light dependent. 329

Accordingly, we observe a strong linear relationship between between An and J under 330

low irradiance levels. This indicates that under such conditions, photosynthesis is Wj 331

limited. Accurate results shown in Figs.(7) and (8.b) in particular, suggest that: 1) it is 332

sufficient to use an electron transport rate function, at least for our greenhouse-grown 333

tomato leaves, calibrated using steady-state values at different irradiance levels, in a 334

dynamic setting, and 2) the calibration of this function i.e. the parameter values Jmax, 335

θ and γ, is critically important. 336

6 Conclusions 337

The importance of monitoring nonsteady-state responses to natural fluctuations in 338

irradiance for improving crop photosynthesis has gained substantial support in recent 339

years [30]. Our aim was to develop a small fit-for-purpose dynamic photosynthesis 340

model that can be used in supplemental lighting control applications in greenhouses. 341

We set out to build a model that accurately predicts the net photosynthetic rate (An) 342

by taking plant physiology into account, and both calibrated and validated our model 343

using nonsteady-state data measured under rapid fluctuating light conditions. 344

Four main points have emerged from our analysis: 345

1. We corroborated the added value of accounting for differences in stomatal 346

responses to both increasing and decreasing fluctuations in irradiance. We 347

observed a 9% increase in model accuracy when using 2 different time constants to 348

describe the total stomatal conductance to CO2 (refer to S1 Supporting 349

Information). 350

In contrast, we observed no significant increase in the predicted accuracy of An 351

when modelling the steady-state target function of the total stomatal conductance 352

to CO2, denoted by G, as a function of both irradiance and ambient CO2 353

concentration (refer to S1 Supporting Information). 354

2. We showed that incorporating the FvCB equations into a dynamic model is 355

sufficient for obtaining accurate fit for purpose An predictions under rapid natural 356

light fluctuations. In particular, we found that the a priori parameterisation of 357

the steady-state electron transport rate with respect to different irradiance levels 358

(J(I(t)) is very effective in capturing the dynamics of photosynthesis in tomato 359

leaves. 360

3. We showed the added value of optimising a parameter in one of the 361

Michaelis-Menten constants in the FvCB model. Here, we opted to adjust 362

parameter c3 related to Kn. Its value is often used from literature, despite being 363

calibrated for different plant species. This cautions us when we are simply using 364

parameter values from literature derived for different plant species. 365

4. We showed that satisfactory photosynthesis results can be obtained even when a 366

model does not account for complex biological factors such as enzymatic 367

inhibition, liquid-gas interactions or chloroplast movement. 368
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Supporting information 369

S1 Supporting Information. A small dynamic leaf-level model predicting 370

photosynthesis in greenhouse tomatoes. 371
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