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Abstract

Microbial communities are complex and dynamic entities, and their structure arises from the interplay

of a multitude of factors, including the interactions of microorganisms with each other and with the

environment. Since each extant community has a unique eco-evolutionary history, it might appear that

contingency rather than general rules govern their assembly. In spite of this, there is evidence that some

general assembly principles exist, at least to a certain extent. In this work, we sought to identify those

principles  by  performing a  cross-study,  cross-biome meta-analysis  of  microbial  occurrence  data  in

more than 5,000 samples from ten different environmental groups. We adopted a novel algorithm that

allows the same taxa to aggregate with different partners in different habitats,  capturing the complexity

of  interactions  inherent  to  natural  microbial  communities.  We  tried  to  decouple  function  from

phylogeny,  the environment,  and genome size,  in  order  to  provide an unbiased characterization of

phylogenetic and functional redundancy in environmental microbial assemblages. We then examined

the phylogenetic and functional composition of the resulting inferred communities, and searched for

global patterns of assembly both at the community level and in individual metabolic pathways.

Our analysis of the resulting microbial assemblages highlighted that environmental communities are

more functionally redundant than expected by chance. This effect is greater for communities appearing

in more than one environment, suggesting a link between functional redundancy and environmental

adaptation.  In spite  of this,  certain pathways are observed in  fewer taxa than expected by chance,

suggesting  the  presence  of  auxotrophy,  and  presumably  cooperation  among  community  members,

which is supported by our analysis of amino acid biosynthesis pathways. Furthermore, this hypothetical

cooperation may play a role in genome reduction, since we observed a negative relationship between

the size of bacterial genomes and the number of taxa of the community they belong to.

Overall,  our results  provide a global characterization of environmental microbial  communities, and

offer design principles for engineering robust bacterial communities. 
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Introduction

Microorganisms are the second most abundant component of the global biomass on Earth (Bar-On et

al., 2018), and the first one in terms of biodiversity (Locey & Lennon, 2016). In addition, they are the

only ones capable of performing key ecological functions, including nitrogen fixation, methanogenesis,

and  all  kinds  of  anaerobic  respirations.  As  such,  they  play  a  critical  role  in  driving  the  essential

biogeochemical cycles that sustain life on our planet (Falkowski et al., 2008). Microorganisms interact

among  themselves  and  with  the  environment,  giving  rise  to  emergent  community-level  properties

(Konopka et al., 2015; Louca et al., 2018). These interactions are primary driving forces in microbial

ecology,  and  determine  the  fate  of  microbial  communities  and,  by  extension,  of  their  constituent

microorganisms (Konopka et al., 2015). Therefore, the study of individual microorganisms is often not

enough to predict how those very same microorganisms will behave in nature; instead, they have to be

considered in the context of the community they live on.

Microbial communities are complex and dynamic entities, and their structure arises from the interplay

of  four  key  ecological  processes:  selection,  diversification,  dispersal and  drift  (Vellend,  2010;

Nemergut  et  al.,  2013).  Among  them,  selection  (i.e.,  the  existence  of  fitness  differences  between

individuals)  is  a  primary  force  shaping  microbial  community  assembly  (Nemergut  et  al.,  2013;

Konopka et al., 2015; Louca et al., 2017). Natural selection counteracts random fluctuations and acts

over short timescales, which makes it experimentally tractable (Chuang et al., 2009; Ribeck & Lenski

2015; Yu et al., 2017). This has led to an increasing interest in synthetic microbial ecology as a tool to

generate and test hypotheses regarding community assembly processes (reviewed in Dolinšek  et al.,

2016). However, the simplicity inherent to synthetic microbial communities, while facilitating their

precise characterization, might also limit their usefulness as proxies of natural microbial communities

(Yu et al., 2016; Ehsani et al., 2018).

A complementary approach is to study natural microbial communities and look for common assembly

patterns, trying to unravel the bases of microbial association (Datta et al., 2016; Rivett & Bell, 2018;

Enke et al., 2019; Pascual-García & Bell, 2020; Ma et al., 2020). It has been argued that each extant

community has a unique evolutionary history, which makes the search for ‘laws’ in Ecology futile

(O’Hara, 2005). Still, there is evidence that microbial dynamics can be generalized to a certain extent

(Bashan et al., 2016; Goldford et al., 2018), allowing to extract useful broad principles from the study
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of  multiple  microbial  communities.  Such  principles  can  be  experimentally  tested,  improving  the

understanding of natural communities, and ultimately allowing to design robust synthetic communities

(Konopka et al., 2015; Gibson et al., 2016).

In this  work, we sought to identify general assembly principles by performing a cross-study, cross-

biome meta-analysis  of  microbial  occurrence  data  in  more  than  5,000  samples  from ten  different

environments. We used a novel algorithm to create ecological assemblages from pairwise aggregations

of microbial genera, which includes a statistical procedure to evaluate the significance of multi-genera

assemblages.  The  significance  is  evaluated  on  the  basis  of  a  null  model  that  is  specific  to  each

environmental class, attempting to separate the influence of the environment from the influence of

biological interactions. This novel algorithm allowed the same taxa to aggregate with different partners

in  different  habitats,  thus  capturing  the  complexity  of  interactions  inherent  to  natural  microbial

communities.  Finally,  we analyzed the metabolic  potential  of  the  genera  present  in  our  ecological

network in order to investigate the roles of redundancy and functional complementation in specific

metabolic pathways for microbial community assembly.
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Results and discussion

Generation of a modular ecological network

Our taxa-assembly  algorithm generates  ecological  networks  by following the  steps  summarized  in

Figure  1.  Briefly,  we  collected  environmental  16S  rRNA gene  sequences  from the  NCBI  env  nt

database,  assigned  them  a  sample  identifier  and,  when  possible,  classified  them  into  a  defined

environmental hierarchy (Pignatelli  et al., 2009). We then clustered 16S sequences into OTUs at the

97% level, which we subsequently classified phylogenetically (Pignatelli et al., 2009). For this study,

we chose to classify our OTUs at the genus level. This provided a high taxonomic resolution while still

allowing us to reliably combining results from different studies, which in many cases targeted different

regions of the 16S rRNA gene.

Thus, we obtained a database that records the presence/absence patterns of microbial genera across

thousands of samples from different environments (Figure 1a). Again, the use of presence/absence data

was a necessary compromise in order to reliably aggregate data from studies that used very different

methodologies. We demonstrated before the usefulness of this approach for generating cross-biome

microbial association networks (Pascual-García et al., 2014).

For this study, we focused on ten different environments: freshwater, marine water, marine sediments,

hypersaline, oil, thermal, hypothermal/polar, soils, host-associated and water-treatment plants, which

amounted to a total of 13,362 samples and 1,424 genera in our database. After filtering (see methods),

we obtained a total of 5,369 samples and 966 genera for creating an agglomerative ecological network

as  follows.  At  the  beginning  of  the  process,  each  node  represents  one  genus,  and  from  the

presence/absence  profiles  we  compute  all-against-all  pairwise  aggregation  scores,  which  represent

significant  co-occurrences  between  pairs  of  genera  (Pascual-García  et  al.,  2014;  Figure  1b).  The

computation of the scores considers as a null model that co-occurrences occur by chance. To reduce the

influence of the environment, we develop a different null model in any specific environment. We then

iteratively cluster genera into larger environmental assemblages. At each step, we join the two nodes A

and B with the highest aggregation score (Figure 1c). A novelty of our method is that the new node

A+B only  conserves  the  samples  in  which  both  nodes  are  present.  We then assign  the  remaining

samples from A and from B to two new nodes A* and B*. This strategy allows investigating the
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Figure 1. Construction of an agglomerative ecological network
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aggregation of  each genus with different  partners  in  different  environments.  (Figure 1c).  We then

recalculate the aggregation score of the nodes A+B, A* and B* with respect to all the other nodes

considering the samples in which each of them is observed (Figure 1d). We iterate this process until all

pairwise  scores  fall  below  a  significance  threshold,  obtaining  a  directed  network  that  captures

significant  associations  between increasingly  large  groups  of  genera  (Figure 1e).  Importantly,  our

procedure ensures that the whole assemblage is statistically significant. Finally, we use the Pathologic

algorithm (Karp et al., 2011) to predict the metabolic pathways present in the genera and assemblages

included in our network (Figure 1f). In this way, we obtain a taxonomically and functionally annotated

agglomerative  ecological  network  that  represents  microbial  associations  at  different  levels  of

complexity (Figure 1g, Supplementary Data S1).

7

Figure  2.  Summary  of  the  agglomerative  ecological  network.  a)  Number  of  assemblages  of
different sizes, and their environmental distribution. Pie chart colors indicate environments as shown
in b), multi-environment assemblages are indicated in gray. b) Contribution of each environment to
the  network,  and  assemblages  shared  by  different  environments.  Nodes  are  environments,  the
number of assemblages (size 2 or more) per environment is indicated inside the node. Link width
and color show the assemblages that are shared between pairs of environments (as a percentage of
the  assemblages  in  the  smallest  environment  of  the  pair,  min  1.41%,  max  29.41%).  See
Supplementary Table S1 for details.
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The final network included a total of 514 genera and 5,253 samples, resulting in 1,215 nodes and 1,428

edges. 701 nodes corresponded to assemblages of two or more genera, with the largest assemblage

having 13 members (Figure 2a). The assemblages were distributed across the different environments,

roughly following the number of input samples per environment (Figure 2b;  Supplementary Table

S1). Notably, some assemblages were reconstructed in more than one environment. For example, one

third of the assemblages found in marine sediments were also found in marine water, highlighting the

connectivity between both environments. Conversely, the host-associated environment, while having

the highest number of assemblages, shared a small fraction of them with other environments (Figure

2b).

Significant functional and phylogenetic redundancies in environmental microbial assemblages

Functional  redundancy  (i.e.,  the  notion  that  multiple  species  can  share  similar  roles  in  ecosystem

functioning) has been previously reported in microbial communities, both for individual functions (Bell

et  al.,  2005;  Wertz  et  al.,  2006;  Jones  et  al.,  2008,  Louca  et  al.,  2016,2017)  and  full  metabolic

reconstructions (Zelezniak et al., 2015). On the other hand, its generality has also been challenged by

several authors (Strickland et al., 2009; Peter et al., 2011; Fetzer et al., 2015; Delgado-Baquerizo et al.,

2016;  Galand  et  al.,  2016;  Morrissey  et  al.,  2016).  There  are  several  issues  that  complicate  the

quantification of functional redundancy in microbial communities. In microorganisms, function is often

associated to phylogeny (Martiny et  al., 2012; Morrissey  et al.,  2016; Tamames  et al.,  2016).  The

presence  of  phylogenetically  close  taxa  in  a  given  community  might  thus  increase  the  observed

functional redundancy. Furthermore, taxa have themselves different environmental preferences (e.g.,

host-associated vs free living, saline vs non-saline, etc.; Tamames et al., 2010; Nemergut et al., 2011),

which will  aggravate this  issue.  Finally,  some environments  and lifestyles will  favor  organisms of

certain genome sizes (Lauro et al., 2009; Nikoh et al., 2011; Bentkowski et al., 2016; Cobo-Simón &

Tamames, 2017). Since the prevalence of certain functional categories is also linked with genome size

(Konstantinidis & Tiedje, 2004), selection based on genome size may indirectly enrich those functional

categories, which would thus appear to be functionally redundant. In this work, we tried to decouple

function  from  phylogeny,  the  environment,  and  genome  size,  in  order  to  provide  an  unbiased

characterization of phylogenetic and functional redundancy in environmental microbial assemblages.
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We first  compared  the  average  pairwise  phylogenetic  and  functional  similarities  of  the  microbial

assemblages obtained by our approach (environmental assemblages) to that of random assemblages of

genera  (Figure  3a,b Random).  The  functional  and  phylogenetic  distances  in  the  environmental

assemblages  (blue  and green  boxplots  in  Figure 3a,b)  were  significantly  lower  than  expected  by

chance (Figure 3a,b, Random vs Real, single environment), suggesting the existence of phylogenetic

and  functional  redundancy.  Furthermore,  the  assemblages  that  were  detected  in  more  than  one

environment (green boxplots) had a higher functional redundancy than single-environment ones (blue

boxplots),  pointing  to  a  relationship  between  functional  redundancy  and  the  ability  to  cope  with

environmental change.

9

Figure 3. Phylogeneticand functional redundancy in environmental versus random assemblages
of microbial taxa. Boxplots represent the distributions of average a) pairwise phylogenetic distances,
b) pairwise functional  distances and  c) number of pathways  in  the members of increasingly large
assemblages (x-axis).  Boxplot  colour  shows  assemblage type:  1) fully  random assemblages (dark
grey),  2) environmentally-equivalent random assemblages (medium gray), in which taxa come from
the same environment,  3) environmentally/phylogenetically equivalent assemblages, with taxa from
the same environment and average phylogenetic distances similar to those found in environmental
assemblages (grey), 4) environmentally/genome size equivalent random assemblages, with taxa from
the  same  environment  and  with  the  same  average  number  of  pathways  as  the  environmental
assemblages,  5) environmental  assemblages  appearing  in  only  one  environment  (blue),  or  6)
environmental assemblages appearing in more than one environment (green). Significant differences
between different types or assemblages were evaluated with the Mann-Whitney U test. Horizontal red
lines represent the average pairwise phylogenetic or functional distance of all the genera included in
our network.
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We then aimed to control for possible confounding factors by creating random assemblages in which

the  genera  came from the  same environmental  subtype,  which  is  the  most  detailed  environmental

classification in the microDB database (differentiating for example between coastal,  open and deep

marine samples,  see Pignatelli  et  al.,  2009 for details).  After  doing this,  we further  controlled the

random  assemblages  so  that  their  average  phylogenetic  similarities  were  the  same  as  for  the

environmental assemblages (Figure 3a,b, Random, same environment, same phylogenetic distance).

These phylogenetically-equivalent random assemblages had a higher functional redundancy (i.e., lower

average distance) than completely random  assemblages, which was expected since phylogenetically

related organisms tend to  be functionally similar  (Tamames  et  al.,  2016).  However,  the functional

redundancy in the environmental assemblages was significantly higher than in these phylogenetically

equivalent assemblages, showing that natural communities are constituted by organisms that are more

functionally redundant than expected from their phylogenies.

Regarding the average number of pathways per genus (used here as a proxy for genome size), it was

reduced for  larger  assemblages,  in  a  behavior  that  deviated  from that  of  the  random assemblages

(Figure 3c). In order to control for this factor, we created random assemblages in which the average

number of pathways per genus was similar to that of the environmental assemblages (Figure 3a,b,

Random, same environment, same number of pathways). Functional and phylogenetic redundancy was

significantly higher in the environmental assemblages than in these genome-size-equivalent random

assemblages,  showcasing  once  again  the  apparent  prevalence  of  phylogenetic  and  functional

redundancy in environmental communities.

Relationship  between  pathway  redundancy,  pathway  specificity  and  community  size  in

environmental microbial assemblages 

The results presented in the previous section obeyed to assemblage-wide selection patterns, but we

were also interested in the selection pressures affecting individual metabolic pathways. Selection may

result in pathway specificity (i.e., a pathway appearing only in one member of an assemblage), due to

competitive exclusion effects (only the best competitor for a contested resource involving that pathway

is  present  in  the  community)  or  cooperative  interactions  (a  complex  route  being  divided  among

different organisms, or a common good being supplied by one member of the community; Morris et al.,
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2012). Conversely, a metabolic pathway will have low specificity (i.e., it will be redundant) if it is

required  by  most  or  all  members  of  a  microbial  assemblage,  as  would  happen  for  housekeeping

pathways,  or  for  pathways selected  by a  common abiotic  constraint  in  a  given environment  (e.g.,

anoxia). 

In  order  to  investigate  whether  individual  metabolic  pathways  are  more  redundant  or  specific  in

environmental assemblages than expected by chance, we first computed the number of times that each

metabolic pathway appeared on each of the microbial assemblages obtained through our algorithm. We

then compared these results to those obtained on 1,000 control assemblages with the same number of

taxa,  randomly  assembled  from  taxa  that  belonged  to  the  same  environmental  class  as  the  real

community  and  have  similar  pairwise  phylogenetic  distances  (see  Methods).  Pathways  whose

prevalence in a real assemblage was more extreme (either higher or lower) than on 95% of the random

control assemblages were subjected to further scrutiny.

We classified each metabolic pathway according to their presence in the members of the microbial

community  in  one  of  the  three  following  classes.  (1)  Missing,  if  the  pathway  is  absent  from all

members but present in the random assemblages, suggesting that it is not needed in the habitat in which

the community lives. (2) Specific, if it is present in at least one member of the real community, but in

less members than in the random communities. The biochemical products of specific pathways are

candidate for being shared in the community through cross-feeding interactions. (3) Redundant, if the

pathway is possessed by more members of the real community than expected by chance, as expected

for a capability that is useful in the given habitat and is seldom shared through cross-feeding.

The heatmap in Figure 4a shows the distribution of redundant, specific and missing pathways in the

microbial assemblages detected by our approach. A hierarchical clustering of the assemblages based on

the content of redundant, specific and missing pathways showed no clear relationship with their source

environment (Figure 4a, color legend at the y axis). This suggests that we successfully controlled for

biases coming from the source environment in our analysis, and that our results obey to other, more

universal causes.

The number of pathways of the three types belonging to different MetaCyc categories is shown in

Figure 4b.  For  most  categories  redundant  pathways prevail,  in  particular  pathways that  belong to

categories of energy metabolism, such as carbohydrate degradation,  electron transfer, respiration, and
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12

Figure 4. Signs of selection in individual metabolic pathways a) MetaCyc pathways redundant,
specific and missing in the consensus network. Only pathways that were redundant, specific  or
missing in 10 or more communities are shown. The color legend in the y-axis dendrogram shows
the source environment for each community, following the color code shown in Figure 2. Multi-
environment communities are colored in light green.  b) Number of times each MetaCyc class was
redundant, specific and missing in the consensus network. Only the 15 MetaCyc classes with the
highest deviation from the random communities are shown; c) Differences in average pathways per
genome  between  environmental  assemblages  and  control  assemblages  (null  models).
Environmental  and  control  assemblages  are  separated  in  small  (<  5  members)  and  large  (5+
members).  First  panel  (grey)  shows  the  total  differences  between  the  real  and  the  control
assemblages, the other three (red, green, blue) show the contribution of redundant, specific, and
missing pathways to the total differences.
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carboxylate degradation.  Pathways of  inorganic nutrient metabolism,  carbohydrate biosynthesis  and

secondary metabolite biosynthesis  also tend to be redundant. We hypothesize that these pathways are

redundant because they favor the use of the resources available in the given habitat, also consistent

with the fact that the second most frequent type of these categories is “Missing”. In contrast, in the

category  “Biosynthesis  of  amino  acids”  specific  pathways  prevail,  and  in  the  Biosynthesis  of

“cofactors, prosthetic groups, electron carriers”, “fatty acid and lipids” and in “amino acid degradation”

the pathways tend to be missing or specific.  These results are consistent with our interpretation of

specific and redundant pathways presented above.

An interesting result, presented in  Figure 3c, is that environmental assemblages have on the average

smaller  genomes than  expected  by chance,  particularly  if  they  contain  many members.  To further

explore this observation, we show in Figure 4c the difference in average pathways per genome (proxy

of genome size) between the environmental and the control assemblages, for both small (< 5 members)

and  large  (5+  members)  assemblages.  The  figure  reveals  that  large  assemblages  are  indeed

characterized  by  genomes  with  fewer  pathways.  In  order  to  assess  which  types  of  pathways  are

responsible  for  this  genome  reduction,  we  separately  considered  redundant,  specific,  and  missing

pathways (Figure 4c).

Redundant  pathways produced an increase of  the  number of  pathways with  respect  to  the control

community, but this increase was not uniform: redundant pathways contribute 50 additional pathways

per genome in small communities (with 4 or fewer members), but only 20 pathways per genome in

large communities (Figure 4c, red). This difference is significant (Wilcoxon test,  p =  0.008), and it

might be attributed to  interactions between species,  suggesting that  some of the members of large

communities may benefit  from the leakiness of some of the products of these otherwise redundant

pathways. In contrast, missing pathways, which are also influenced by habitat filtering but cannot be

shared because they are not present in the community, are not significantly different between small and

large communities (the average reduction of the number of pathways is 50 and 40 respectively, Figure

4c, blue; Wilcoxon test,  p = 0.09), supporting the idea that the comparison between small and large

communities yield information about community interactions.

Interestingly, specific pathways produce on the average a reduction of 10 pathways per genome in

small  communities  and  25  pathways  per  genome  in  large  assemblages  (Figure  4c,  green).  This
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difference  is  highly  significant  (Wilcoxon  test,  p  =  0.003),  despite  the  small  number  of  large

communities that we detected, and it is consistent with the results from redundant pathways. A possible

interpretation is that large communities offer a larger variety of “public goods” that are shared by the

members  of  the  community,  and  that  these  conditions  allow reduced metabolic  cost  and genomic

streamlining,  which act as a selective force favoring the formation and maintenance of these large

communities. This interpretation is consistent with recent simulation studies (Thommes  et al., 2019;

Wang  et al.. 2021) and with our observations that amino acid biosynthesis is the biochemical class

whose pathways are most frequently specific (see Figure 4b) and that the fraction of communities in

which the biosynthesis of a given amino acid is specific is significantly correlated with its biochemical

cost (Figure 5;  next section). Overall,  this suggests that the reduction of the biosynthetic cost is a

relevant selective pressure behind the reduction of the number of pathways. 

Patterns of amino acid auxotrophy in environmental microbial assemblages

As  discussed  above,  environmental  microbial  communities  are  more  functionally  redundant  than

expected by chance (Figure 2b). In spite of this, it is also true that some pathways tend to appear in

fewer members of the community, which we hypothesize is due to biotic effects. Microorganisms are

well known to engage in complex interactions (Goldford et al.,  2018), among which auxotrophy and

cross-feeding are perhaps the most studied (Zengler & Zaramela, 2018). We therefore focused on the

redundancy/specificity profiles of pathways related to amino acid biosynthesis, as they are the one of

the metabolites most usually involved in such processes (Embree et al., 2015).

In order for auxotrophy to be a viable strategy, the potential benefits must be higher than the drawbacks

derived from the resulting loss of autonomy (Oliveira  et al., 2014). Accordingly, the environmental

assemblages captured in our study contained more auxotrophs for expensive amino acids than for cheap

ones,  with the exception of tryptophan (Figure 5, p = 0.049 for all  amino acids,  p < 0.001 after

removing tryptophan). The comparatively lower prevalence of tryptophan auxotrophs can be explained

due to its  tight  regulation:  not  only is  the use of  this  expensive amino acid minimized across  the

proteome (Akashi & Gojobori, 2002), but it is also seldom leaked into the environment (Mopper &

Lindroth, 1982; Zomorrodi & Segrè, 2017). The difficulty of finding free tryptophan in nature might

thus partly negate the potential benefits of auxotrophy. On the other hand, since tryptophan is only
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required in small amounts, these benefits will be lower than otherwise suggested by its per-molecule

biosynthetic cost.

These observations  are consistent with  those of Mee  et al., 2014, which similarly reported a larger

prevalence of auxotrophy and cross-feeding for expensive amino acids.  We note that this does not

preclude the exchange of cheap amino acids as described in Wintermute & Silver, 2010. However, this

exchange might not result in the emergence of auxotrophy, as the low cost of the exchanged metabolite

might not be enough to offset the penalties associated with autonomy loss.

Conclusions

We presented a cross-study, cross-biome meta-analysis of microbial occurrence data in more than 5,000

samples from ten different environments, using a novel network generation algorithm aimed to capture

the conditional interactions that commonly appear in environmental microbial communities. This top-

down approach complements the work already developed in synthetic communities (Wintermute &

Silver,  2010;  Mee  et  al.,  2014;  Zomorrodi  &  Segrè,  2017),  since  it  builds  upon  data  from  real

environmental communities, and summarizes complex dynamics that may be difficult to replicate in

experimental settings. For example, the establishment of cross-feeding interactions is expected to be

subject to cost-to-benefit balance. However, the cost of the same metabolite is often context-dependent

15

Figure 5. Average specificity vs
biosynthetic cost of amino acid
biosynthesis  pathways.  Blue
line:  linear  regression model  of
specificity vs cost for all amino
acids  except  for  tryptophan
(R2=0.49, p < 0.001). Grey area:
95% confidence interval for the
linear models. Red dashed line:
linear  regression  model  of
specificity vs cost for all amino
acids  including  tryptophan
(R2=0.15, p=0.049).  Amino acid
biosynthesis costs were obtained
from Akashi & Gojobori (2002).
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and can  vary widely across  microbial  species  and environments  (Pacheco et  al.,  2019).  Microbial

communities can also have different degrees of spatial structuring, which affects the range of beneficial

interactions that can be established (Germerodt et al., 2016). Microbial diversity is another key factor

that influences community assembly,  due to  its  effect  on stability.  A diverse community will  have

different  species  that  perform the  same  function,  and  this  functional  redundancy  will  make  such

communities more resistant to perturbations (Shade et al., 2012). Additionally, the increased number of

potential partners facilitates the establishment of weak interactions (Johnson et al., 2020), which in turn

allow for the development of mutualism without compromising community stability (McCann, et  al.,

1998; Butler & O’Dwyer, 2018).

In spite of the wide range of ecosystems analyzed in this  study, we were able to detect consistent

patterns  of  functional  redundancy  and  auxotrophy,  hinting  at  the  existence  of  conserved,  biome-

agnostic  principles  governing  the  assembly  of  microbial  communities.  We  found  that  functional

redundancy is ubiquitous in environmental microbial communities, and it is, at least partly, decoupled

from phylogeny. We hypothesize that it  is driven by environmental selection for some biochemical

processes.   We  also  discovered  that  the  number  of  biochemical  pathways  per  genome  (which  is

correlated with genome size) is negatively correlated with the size of the microbial community. This

observation  hints  at  interactions  between  members  of  the  community,  and  in  particular  at  “labor

specialization”, i.e. the possibility that some leaky biochemical functions possessed by some members

of the community are exploited by other members, allowing them to reduce their biochemical work and

their  genome size.  This  labor  specialization  would  generate  a  potential  selective  force  behind the

maintenance of large communities, as suggested by recent theoretical (Thommes et al., 2019; Wang et

al., 2021) and observational studies (Anantharaman  et al., 2016; Castelle  et al., 2018; Lannes  et al.,

2019).  In agreement  with this  interpretation,  our results  suggest that,  in spite of the prevalence of

functional  redundancy,  auxotrophy  commonly  occurrs  in  environmental  microbial  communities,

particularly for costly compounds. 

Overall, our results show that redundancy and auxotrophy are not mutually exclusive, but rather coexist

in microbial communities from different origins. Combining a background of functional redundancy

with  cooperation  in  the  biosynthesis  of  key  nutrients  might  thus  be  a  useful  design  principle  for

engineering more robust microbial communities in the future.
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Materials and methods

Description of the data set

We obtained the data from the microDB database (formerly envDB,  http://botero.cnb.csic.es/envDB)

(Pignatelli  et al., 2009), following the procedure in Tamames  et al., (2010). The database comprises

more than 20,000 environmental samples and their associated 16S rRNA gene sequences, with each

sample classified in a unique environment, thus informing of the presence or absence of taxa across a

wide range of  ecosystems. The genus level  was chosen as  the taxonomic working unit  because it

provided a good balance between the taxonomic resolution, the ability to accurately classify partial

fragments of 16S coming from different regions, and the sparsity of the observations. In this study, we

only  considered  samples  coming  from  the  following  environments  (as  defined  in  the  microDB

classification):  freshwater,  marine  water,  marine  sediments,  hypersaline,  oil,  thermal,

hypothermal/polar,  soils,  host-associated  and  water-treatment  plants.  In  order  to  more  reliably

aggregate results from studies that used very different methodologies, data was binarized into a matrix

that recorded the presence/absence of genera across samples. Samples with less than five genera and

genera present in less than five samples were excluded from further analysis. This left a total of 966

genera distributed across 5369 samples.

Detection of significant associations between pairs of taxa

For a given pair of taxa i and j that co-occurr in N out of M samples, we define its aggregation score Sij,

which represents their propensity to appear together in the same samples, as the negative logarithm of

the conditional probability of i  and j co-occurring in more than  N out of  M samples. The original

implementation  of  the  aggregation  scores  can  be  found  in  Pascual-García  et  al.  (2014),  the

implementation used in this work is detailed in  Supplementary Note S1. Briefly, we used the null

model  from Navarro-Alberto  &  Manly  (2009)  that  estimates  the  probability  that  a  given  taxa  is

observed in a given sample under the assumption of no interaction between taxa.  We developed a

different null model in each of the ten studied environments. After inferring the parameters of the null

models, we used them to generate 1000 random presence-absence matrices with the same row and

column  totals  as  the  real  matrix. These  random  matrices  allow  to  assess  the  influence  of

cosmopolitanism (i.e. the number of samples in which taxa were present) into the aggregation scores.
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To obtain the aggregation scores, we calculated he probability that two taxa co-occur in the number of

samples observed following the algorithm in Supplementary Note S1. Aggregation scores were then

transformed to Z-scores related to the mean and standard deviation of the null aggregation scores of

pairs of taxa with similar cosmopolitanism. Finally, we derived a Z-score cutoff from the distribution of

null Z-scores such that the False Positive Rate (i.e.,  the rate of significant aggregations in the null

model) was not larger than 0.0001. Pairs of taxa with a Z-score higher than the cutoff were deemed

significantly associated in our samples.

Network generation

We generated  an  ecological  network  representing  significant  associations  between  groups  of  taxa

across multiple environments through the following steps:

1. For each of the ten environments included in this study:

1.1.  Compute aggregation Z-scores between pairs of taxa i in samples a from the binary

presence-absence matrix Xia and the probability matrix  πia as described in  Supplementary

Note S1.

1.2. Create 100 independent networks (in order to minimize path dependency during the

clustering process) applying the following clustering procedure. We will refer generically to

“nodes”  for  both  individual  taxa  (e.g.  elements  at  the  beginning  of  the  algorithm)  and

assemblages (taxa clustered together):  

1.2.1. While there are significantly associated pairs of nodes appearing together in

more than 5 samples:

1.2.1.1. Select  one  significantly  associated  pair  i,j  at  random,  weighted  by  its

aggregation Z-score so that pairs with higher aggregation scores are more likely to

be selected.

1.2.1.2. Create a new node  k that represents the aggregation of the selected pair of

nodes  i,j  in  the  samples  in  which  they  appear  together,  with  X ka=X ia · X ja and

πka=π ia · π ja.

1.2.1.3. Create the links i→ k and j → k. 
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1.2.1.4. Replace  the  values  for i  and j in  the  presence  absence  matrix  and  in  the

probability matrix, so that they represent the presence of  i  and  j  in the samples in

which  they  do  not  appear  together,  with  X i ' a=X ia · ( 1− X ja ),  π i 'a=π ia · ( 1− π ja) ,

X j ' a=X ja · ( 1 − X ia)  and π j ' a=π ja · ( 1− π ia ). 

1.2.1.5. Recalculate the aggregation Z-scores from the new X and π matrices.

2. Combine the 1000 independent networks (100 networks from each of the 10 environments) into

a single network as follows:.

2.1.1. The  combined  network  contains  all  the  nodes  present  in  the  individual

networks. Nodes containing the same taxa in the individual networks are collapsed into

a single node in the combined network.

2.1.2. All incoming and outgoing edges present in the individual networks are added

to the collapsed nodes in the combined network.

2.1.3. For  each  node  and  edge,  we  define  its  support value  as  the  number  of

individual networks in which that node or edge was observed. Nodes and edges with a

support value smaller than 10 are discarded.

2.1.4. Nodes  are  annotated  based  on  the  source  environment  of  the  individual

networks in which they were found.

Environmental and bibliographic annotation of assemblages

For each sample, the microDB database contains its isolation source, as originally found in the NCBI

database, as well as the Pubmed ID (PMID) of any published work related to it. We annotated each

assemblage representing a significant aggregation of two or more genera with the isolation sources and

related PMIDs of the samples in which the genera appeared together.

Functional annotation of assemblages and intra-assemblage functional redundancy

We used the MetaCyc database version 19 (Caspi et al., 2016) to download the predicted reactomes for

all the sequenced genomes from the genera included in our network (Supplementary Data S3). For

each genome, we predicted its metabolic pathways from its reactome using an in-house implementation
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of  the  PathoLogic  algorithm as  described  in  Karp  et  al.,  2011.  As  a  deviation  from the  original

algorithm, we did not add a more lenient prediction rule for energy metabolism pathways, as we found

out that doing so would result in false positive predictions (e.g. sulfate respiration would be predicted

for Escherichia). The fraction of genomes from each genus that contain each pathway is reported in

Supplementary Data S2. We considered that a pathway is  present in a genus if it is predicted in at

least 25% of the complete genomes from that genus. We chose this threshold to reduce false positives

due  to  pathways  wrongly  predicted  in  only  few genomes  within  the  genus.  We then  defined  the

pathways present in an assemblage  {R}a as the set union of the pathways present in its constituent

genera. We also defined the average pairwise functional distance of an assemblage as the average of the

of the all-against-all Jaccard dissimilarities (1 – the Jaccard Index; Jaccard, 1912) between the pathway

vectors of its constituent genera. 

Phylogenetic distance between genera and intra-assemblage phylogenetic distances

We  used  16S  rRNA sequences  from  the  GreenGenes  database  (DeSantis  et  al.,  2006)  to  obtain

estimates of the phylogenetic distances between genera. First, we selected a representative full-length

16S sequence for each prokaryotic species in the database, usually the type strain. Then, we calculated

the distance between the aligned sequences as the number of substitutions per site using RaxML with a

GTRGAMMA model (Stamatakis, 2014). We calculated distances between genera as the median of the

distances  between the species  belonging to  those genera.  We then calculated  the average pairwise

phylogenetic distance between the constituent genera of each assemblage.

Detection of significant functional and phylogenetic redundancies at different assemblage sizes

For each assemblage size, ranging from 2 to 12 genera (the largest assemblage present in our graph for

which all genera could be annotated) we compared the average functional and phylogenetic distance

distributions of the assemblages present in our network to those of random assemblages of the same

genera. Assemblages in which one or more genera could not be functionally annotated were ignored for

this  and subsequent  computations.  Multi-environment  assemblages  (i.e.  assemblages  of genera that

were considered significant in more than one environment during our clustering process) were treated

separately from single-environment ones. For each real assemblage, we generated four different kinds

of random assemblages:
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a) 1000 random assemblages with the same size.

b)  100  environmentally-equivalent  random  assemblages  with  the  same  size  of  the  real

assemblage,  such  that  their  genera  came  from  the  same  environmental  subtype  (i.e.  the  finest

environmental classification available in the microDB database, see Pignatelli et al., 2009).

c)  100 environmentally/phylogenetically - equivalent random assemblages with the same size,

such  that  their  genera  came  from  the  same  environmental  subtype  and  the  average  pairwise

phylogenetic distances in the random assemblages differed by 0.05 substitutions per position or less

from the average pairwise phylogenetic distance of the original assemblage. This was done in order to

assess  whether  the  functional  redundancy  was  explained  by  phylogenetic  similarity  and  source

environment alone.

d)  100 environmentally/genome size – equivalent random assemblages  with the same size,,

such that their genera came from the same environmental subtype and the average number of pathways

per genus differed by 20% of less from the average number of pathways in the original assemblage.

We assessed significant differences between different types or assemblages with the Mann-Whitney U

test.

Detection of redundant and specific pathways in the assemblages of our network

The procedure described above provided us with a per-assembly estimate of functional redundancy, but

we were also interested in assessing functional redundancy on a per-pathway basis. For this, we first

selected a subset of the network connected by highly supported (support > 70) edges. We then selected

the terminal assemblages with no outgoing edges to larger assemblages, which represent the sink nodes

of our clustering algorithm. For each of these assemblages, we then generated 1,000 phylogenetically

and environmentally equivalent random assemblages (see previous section). In order to obtain a higher

number of valid random assemblages, we increased the maximum difference in phylogenetic distances

from  0.01  to  0.1  substitutions  per  position.  Then,  for  each  metabolic  pathway,  we  compared  its

prevalence in the real assemblage with its prevalence in the random assemblages and classified it into

one three categories:

1. Redundant, if its prevalence in the real assemblages was higher than its prevalence in 95% of
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the random assemblages.

2. Specific, if its prevalence in the real assemblage was lower than its prevalence in 95% of the

random assemblages.

3. Missing,  if  it  was  missing  from  the  real  assemblage,  but  present  in  95%  of  the  random

assemblages.

Finally, for each metabolic pathway, we computed its average specificity as 1-(P/T), where P is the sum

of its prevalence in the individual assemblages, and T is by the sum of the sizes of those assemblages.

This  value  will  become  higher  as  more  auxotrophs  for  the  pathway  exist  in  the  environmental

assemblages.
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Supplementary Material

Supplementary Note S1: Calculation of aggregation scores assessing the propensity of pairs of

taxa to appear together in the same samples

Supplementary Table S1. General statistics on the network

Supplementary Figure S1. Average number of pathways per genus in environmental versus

random assemblages of microbial taxa. Boxplot color denotes assemblage type as described for

Figure 1.

Supplementary Data S1. Annotated network in the Cytoscape format

Supplementary Data S2. Fraction of genomes containing each pathway in each generality

Supplementary Data S3. Number of genomes per genus in the MetaCyc19 database
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