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Abstract 

Single-molecule localisation microscopy produces data in the form of point-clouds. Here, we 
present a tool for assessing the similarity of two such point-clouds, which, unlike measures such 

as co-localisation, is insensitive to differences that are not preserved between data sets. The 

presented method can determine whether two point-clouds were generated from the same 

conditions and can identify from which of two experimental conditions an unseen point-cloud 

was likely derived. 

Introduction: 

Single-molecule localisation microscopy (SMLM) outputs data in the form of a point-cloud 

representing1. These can either be rendered to produce images or interrogated directly to extract 

biologically relevant information. For the latter, various methods of cluster or fibre analysis have 

been developed. An important capability is to be able to quantify the similarity two point-clouds 

for which there are several methods, depending on the measure required. For example, a number 

of co-localisation and co-clustering measures have been developed, notably the Cross-Ripley’s K-

function and Pair-Correlation function2-5. These measures require the two point-clouds to be 

derived from the same space to be meaningful – for example, co-localisation is measured between 
two channels acquired in the same region-of-interest (ROI) within the same cell. A separate class 

of similarity measures exist when the two point-clouds come from different cells or conditions. 

The most common measure is to test whether statistical descriptors of the point-clouds are 

similar. For example, users may perform cluster analysis and compare the sizes of clusters, the 

number of clusters etc6,7. This approach does not produce a similarity measure as there is no 

defined way to combine these descriptive outputs into one overall score.  

We present a non-parametric statistical approach to assess similarity between two point-clouds 

derived from different ROIs that provides a score independent of  specific statistical descriptors. 

Since it is designed for ROIs collected separately (e.g. from different cells), it is insensitive to 

differences that are not preserved in the context of cell biology or SMLM, such as the positions of 

clusters within the point cloud and rotations of the ROI. We show that being able to extract a 

single dissimilarity score from otherwise complex data, is profoundly useful. For example: the 

method can take two sets of simulated point-clouds and determine if they were generated using 

different simulation conditions. The biological analogy to this, which we also demonstrate, is the 
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assessment of similarity between two point-clouds derived from two experimental conditions, 

for example, a wild-type condition versus a mutant. This approach generates a p-value, reporting 

on the significance of similarity, i.e. whether a treatment has an effect. The method can also take 

a single ROI and determine from which of a selection of conditions it was most likely derived. 

Together, our method provides a simple means of assessing similarly in complex point-cloud data, 

in a quantitative, robust and rapid manner. 

Results: 

We have developed a similarity measure for comparing two point-clouds, described 

mathematically in the Online Methods. Briefly, we divide a ROI into 30 nm pixels and calculate 

the cumulative frequency histogram for the number of localisations per pixel. A Kolmogorov-

Smirnov (K-S) test is then used to derive a similarity measure between two such histograms in 

the form of a dissimilarity value, which we term  (Figure 1b). A value of zero indicates that the 

point-clouds are identical. Higher values indicate increasing dissimilarity.  Typically, multiple 

ROIs will be acquired per condition. In this case, we compute all possible pair-wise -values both 

within and between conditions, from which we derive a histogram of -values, and the mean, λ̅.  
This allows for a p-value calculation (Figure 1b).   

 

Figure 1: Description of the algorithm. a) Schematic of the algorithm which relies on a K-S test 

between the cumulative frequency histograms of the number of localisations per 30 nm pixel. b) For 

multiple ROIs per condition, every pair-wise comparison is made, resulting in a histogram of -

values to which significance testing can be applied.  

We first demonstrate the method on simulated data. Localisations are placed into circular, 

Gaussian clusters whose centre positions are located randomly within an ROI. On top of these, 

un-clustered points are placed randomly within the ROI. Points are then scrambled to reflect the 

localisation error.  A default condition generates 30 3000 x 3000 nm ROIs each containing 10 

50nm clusters of 100 localisations and 1000 (50%) unclustered localisations, with an average 

localisation precision of 30 nm. A representative example is shown in Figure 2a. We first tested 
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the algorithm by varying the cluster size and obtaining the dissimilarity scores with respect to 

the default condition (Figure 2b). We then varied the number of clusters per ROI (Figure 2c), the 

number of localisations per cluster (Figure 2d) and the percentage of localisations in the 

background (Figure 2e), and compared to the default condition. The algorithm was able to 

correctly determine that the given condition was significantly different from the default case. We 

also performed a comparison of point clouds derived from fibrous structures (Supplementary 

Figure 1) and showed that the algorithm can discriminate between different arrangements of 

fibres. Finally, the total number of points in the ROI may or may not be relevant and/or controlled 

in the experiment. We therefore developed a version of the code that is insensitive to the total 

number of localisations by randomly thinning the denser dataset (Supplementary Figure 2). They 

show that the algorithm can still distinguish between these conditions even when insensitive to 

overall point density. Note the results when varying the number of molecule per cluster give very 

low values because this simulation parameter only alters the overall point density and the 

algorithm therefore perceives these as similar, as expected. 

 

Figure 2: Demonstration of the method on simulated data. a) Representative simulated ROIs for 

the default condition and varying the cluster size (SD). Bee-swarm plots of -values for the default 

condition versus b) varying cluster sizes (nm). c) varying numbers of clusters per ROI. d) varying 

values of localisations per cluster. e) varying values for the percentage of un-clustered molecules. 

Bars show mean and S.D. 

We next acquired PALM data of Linker-for-Activation of T cells (LAT)-mEos3.2 at artificial T cell 

synapses8. As a comparison, we generated a version of LAT lacking phosphorylatable tyrosine 

residues (YF LAT). -values for the WT-WT LAT comparison (Figure 3a) were significantly higher 

than for YF-YF LAT, indicating greater diversity of nanoscale organisation. -values for the WT-

YF LAT comparison were significantly higher still, indicating that the YF LAT mutant does show 

differing nanoscale organisation. We next tested whether the algorithm, given a single blinded 

ROI, can determine from which condition it was most-likely derived. A blindly selected ROI is 

shown in Figure 3b, together with -values versus the other ROIs in the WT or YF condition. 
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Scores are significantly higher against the YF LAT condition, indicating the ROI likely derived from 

the WT condition; the correct result.  

 

Figure 2. Demonstration of the method on biological data acquired via PALM. a) 

Representative ROIs from WT and YF LAT together with Bee-swarm plots for the dissimilarity scores 

within and between conditions. b) A blind ROI (example shown) is compared to all other ROIs in the 

WT and YF conditions. Bars show mean and S.D. 

Discussion 

Obtaining a quantitative comparison of SMLM-derived point clouds is an important and  

necessary development to enable a direct, simple and robust means of comparing complex point-

cloud data sets. Current methods exist on a spectrum – co-localisation measures, which compare 

point clouds derived from the same position and statistical comparison of extracted features 

between clouds from different conditions. Neither produces a similarity score between two 

separately acquired data sets. Here, we develop such a capability via an algorithm which is simple 

and rapid. The method allows the following new capabilities: a) to test whether an intervention 

(e.g. drug treatment, protein mutation) alters the nanoscale organisation of a given molecule. b) 

To assign a new ROI as have being derived from one of a number of previously acquired 

experimental conditions (e.g. from a healthy cell or a diseased cell). c) to detect anomalous data 

within a data collection, d) To tune the parameters of a data simulator to allow it to generate data 

statistically close to experimental data, but for which the ground truth distribution is known and 

e) to implement a search of a database of point-clouds for the most statistically similar condition.  
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Online methods: 

Code availability 

Code is available as Supplementary Material together with installation instructions. 

Sample preparation 

Jurkat E6.1 cells (ECACC 88042803) expressing LAT-mEos3.2 were introduced to anti-CD3 (at 2 

μg/ml; eBioscience clone OKT3, 16-0037-81) and anti-CD28 (at 5 μg/ml; RnD Systems, clone 

CD28.2, 16-0289-85) coated glass-bottomed chamber slides (#1.5 glass, ibidi μSlides) at 50 × 10³ 

cells/cm² in warm HBSS and incubated at 37°C for 5 minutes to allow for synapse formation. 

Chamber wells were gently washed with warm HBSS and fixed in 3% paraformaldehyde for 20 

minutes at 37°C. Fixed cells were washed in PBS. 

PALM imaging and image reconstruction 

PALM image sequences were acquired on a Nikon N-STORM system in TIRF using a 100 × 1.49 

NA CFI Apochromat TIRF objective running NIS Elements software v4.6. Samples were 

continuously illuminated with 561 nm laser light at approximately 2 kW/cm² and 405 nm laser 

light at approximately 2 W/cm². PALM data was acquired using  an Andor IXON Ultra 897 EMCCD 

with an EM gain of 200 and pre-amplifier gain profile 3 to a centered 256 × 256 pixel region at 40 

ms per frame for 5,000 to 15,000 frames. Localization of fluorophore coordinates were 

reconstructed using ThunderSTORM9 and corrected for sample drift using cross-correlation of 

images from five bins at a magnification of five. 

Description of the algorithm 

Various statistical methods have been proposed in order to measure the similarity/dissimilarity 

between graphs. Some depend on finding the union and intersection for two or more graphs 

based on using the vertex labels. While this approach is straightforward, it can return different 

values if the vertices are relabelled without changing the structure of the graphs. The Jaccard 

index is one statistic used for measuring the similarity and diversity of sample sets based on union 
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and intersection, but does not consider term frequency, instead, simply counting the number of 

terms that are common between two sets. Moreover, it ignores rare features in the structure of 

the data, which are significantly informative in the comparison process. Other similarity 

approaches have been used to classify nearest neighbours and measure the similarity between 

the sets. Examples of these approaches are cosine similarity, Pearson’s correlation, mean square 

distance, Neuman Kernels and several data mining algorithms. Many of these approaches are 

complex or computationally expensive. As a result, the graph edit distance (GED), which relies on 

structure rather than vertex labels, has been introduced to measure the similarity between 

pairwise graphs, error-tolerantly in inexact graph matching. However, computing the graph edit 

distance between two graphs is NP-complete problem. Finding the identity for each vertex and 

edge in two graphs is called the isomorphism problem. In order to overcome the limitations of 

GED, the A*-based (search) algorithm has been used as one of the most efficient algorithms for 

measuring the similarity between graphs and more specifically in network analysis. It estimates 

the cost of path-completion and finds the optimal with minimum cost. However, the A* algorithm 

suffers from complexity, which depends on the heuristic, especially in the unbounded search 

space case as the number of nodes expanded is exponential in the depth of the solution. 

 

The Kolmogorov-Smirnov image comparison technique uses the image histogram and grayscale 

distribution to test whether two images are similar. Here, instead of calculating the grayscale 

distribution, we calculate the empirical cumulative distribution function for the number of points 

in each pixel. The proposed method is a data-driven, non-parametric distribution free method 

which is less sensitive to the statistical model assumptions. It is also straightforward and efficient 

in terms of the computational time.   

 

Generally, let 𝑋1, … , 𝑋𝑚 and 𝑌1, … , 𝑌𝑛 be two random samples from a continuous population, 1 and 

2, with distribution functions F and G respectively, where both 𝑋’s and 𝑌’s are mutually 

independent and identically distributed. Using a Kolmogorov-Smirnov test, our goal is to 

determine whether there are any differences between the 𝑋 and 𝑌 probability distributions. In 

other words, we are interested in testing the null hypothesis: 

 

𝐻0 ∶  [𝐹(𝑡) = 𝐺(𝑡), 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡]                                                 (1) 

against the most general alternative hypothesis: 

 

𝐻0 ∶  [𝐹(𝑡) ≠ 𝐺(𝑡), 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑡]                                           (2) 

In order to compute the two-sided Kolmogorov–Smirnov alternative statistic for the above 

hypothesis, we first need to obtain the empirical cumulative distribution functions for both 𝑋 and 

𝑌 samples, such that for every real number 𝑡: 

 

 𝐹𝑚(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑋’𝑠 ≤ 𝑡

𝑚
                                           (3) 

and 

𝐺𝑛(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑌’𝑠 ≤ 𝑡

𝑛
                                           (4) 

So, the two-sided two-sample Kolmogorov–Smirnov statistic is defined as: 

 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2022. ; https://doi.org/10.1101/2022.09.12.507560doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507560
http://creativecommons.org/licenses/by-nc/4.0/


𝜆 =
𝑚𝑛

𝑑
max

−∞≤𝑡≤∞
{|𝐹𝑚(𝑡) − 𝐺𝑛(𝑡)|}                                            (5) 

where 𝑑 is the greatest common divisor of 𝑚 and 𝑛. 

 

Now, let’s consider the two images 𝑚1 and 𝑚2 with pixels 𝑃1 × 𝑄1 and 𝑃2 × 𝑄2 respectively, and 

suppose that 𝑃1 = 𝑃2 = 𝑄1 = 𝑄2 = 100 pixels, which means that we divide each axis for each 

image to 100 pixels. Then, in each pixel we count how many points/ molecules exist which gives 

the distribution for the points located in the 𝑝th pixel. Thus, the empirical cumulative distribution 

for the points located in the 𝑝th pixel for the two images can be defined as 𝐹 =

{𝐹𝑝 , 𝑝 = 0, … ,100 }  and 𝐺 = {𝐺𝑝 , 𝑝 = 0, … ,100 } respectively. Consequently, the distance of 

one distribution from the other is defined as: 

 

𝐷̂ = max|𝐹𝑝 − 𝐺𝑝|                                                          (6) 

Under the assumption that the theoretical distributions for the two populations are the same, 

Kolmogorov and Smirnov [4] proved that the probability that the observed distance, 𝐷̂ is greater 

than 𝐷 is: 

𝑄𝐾𝑆(𝜆) = 2 ∑(−1)𝑗−1𝑒𝑥𝑝(−2𝑗2𝜆2)

∞

𝑗=1

                                          (7) 

where 𝜆 is the Kolmogorov–Smirnov statistic: 

 

𝜆𝐾𝑆 = 𝐷 (√𝐽 +
0.1

√𝐽
+ 0.12)                                                 (8) 

 

and  

𝐽 =
𝑃1𝑄1  𝑃2𝑄2

𝑃1𝑄1 +  𝑃2𝑄2
                                                           (9) 

Thus, the test statistic 𝜆𝐾𝑆 defined in (8) can be used as a dissimilarity measure where the greater 

the distance between distributions, the bigger the value of  𝜆𝐾𝑆. As a result, if we have a third 

image 𝑚3, we could say that both 𝑚1 and 𝑚3 are more similar to each other than 𝑚2 and 𝑚3 

provided that 𝜆𝐾𝑆(𝑚1, 𝑚3) < 𝜆𝐾𝑆(𝑚2, 𝑚3). 

 

More generally, assuming we have 𝑘 groups of images/data sets, with population distributions 

𝐹1, 𝐹2, … , 𝐹𝑘, we may assign the image 𝑚 to the group in which the mean of the dissimilarity values 

based on 𝐹𝑖 is smallest such that: 

 

𝜆̅𝐹𝑖
(𝑚) = min

1≤𝑗≤𝑘
𝜆̅𝐹𝑗

(𝑚)                                                 (10) 

where 𝑖 ≠ 𝑗, 1 ≤ 𝑖 ≤ 𝑘 and 𝜆̅𝐹𝑖
(𝑚) = ∑ 𝜆𝐾𝑆(𝑚𝐹𝑖,𝑙 , 𝑚)𝑙=1 . 

 

Significance testing 

The p-values were generated via parametric, two-sided z-test using Graphpad Prism.  
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Supplementary Information 
 

 

Supplementary Figure 1: Similarity scores between point-clouds derived from simulated 

fibrous structures. a) Representative examples of 3000 x 3000 nm ROIs containing point-clouds 

derived from fibres placed on an orthogonal axis (Condition 1, left), randomly arranged linear 

fibres (Condition 2, centre) and parallel fibres (Condition 3, right). b) Dissimilarity scores 

between Condition 1 and conditions 2 and 3 show that the algorithm can discriminate between 

these different point-cloud distributions  
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Supplementary Figure 2: Demonstration of the method invariant to the total number of 

points on simulated data. Bee-swarm plots of -values for the default condition versus a) varying 

numbers of clusters per ROI. b) varying values of localisations per cluster. c) varying cluster sizes 

(nm). e) varying values for the percentage of un-clustered molecules. Bars show mean and S.D. 
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